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Abstract: Increasing evidence is suggesting that amyloid-β peptide (Aβ), a characteristic of Alzheimer’s
disease (AD), induces oxidative stress and mitochondrial dysfunction, leading to neuronal death. This
study aimed to demonstrate the antioxidant and anti-apoptotic effects of fucoxanthin, a major marine
carotenoid found in brown algae, against neuronal injury caused by Aβ. Non-toxic dose range of
fucoxanthin (0.1–5 µM) were selected for the neuroprotective study against Aβ25–35. The PC12 cells
were pretreated with different concentrations of fucoxanthin for 1 h before being exposed to 10 µM
Aβ25–35 for another 24 h. The present results showed that fucoxanthin inhibited Aβ25-35-induced cell
death by recovering cell cycle arrest and decreasing intracellular reactive oxygen species (ROS) level.
The compound enhanced mitochondrial recovery and regulated apoptosis related proteins including
B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) from Aβ25-35-induced oxidative stress.
Concomitantly, fucoxanthin increased the expression of nuclear factor E2-related factor 2 (Nrf2) and its
downstream phase II detoxifying enzymes including NADPH: quinone oxidoreductase-1 (NQO-1),
glutamate cysteine ligase modifier subunit (GCLm), and thioredoxin reductase 1 (TrxR1), whereas
it decreased the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Moreover,
pretreatment of fucoxanthin reduced Fyn phosphorylation via protein kinase B (Akt)-mediated in-
hibition of glycogen synthase kinase-3β (GSK-3β), which increased the nuclear localization of Nrf2,
suggesting that the compound enhanced Nrf2 expression by the activation of upstream kinase as well
as the dissociation of the Nrf2-Keap1 complex. Further validation with a specific phosphatidylinositol
3-kinase (PI3K) inhibitor LY294002 demonstrated that the fucoxanthin-mediated Nrf2 antioxidant
defense system was directly associated with the Akt/GSK-3β/Fyn signaling pathway. In silico simu-
lation revealed that the oxygen groups of fucoxanthin participated in potent interactions with target
markers in the Nrf2 signaling pathway, which may affect the biological activity of target markers. Taken
together, the present results demonstrated that the preventive role of fucoxanthin on Aβ-stimulated
oxidative injury and apoptosis via Akt/GSK-3β/Fyn signaling pathway. This study would provide a
useful approach for potential intervention for AD prevention.

Keywords: Alzheimer’s disease; amyloid-β peptide; fucoxanthin; oxidative stress; nuclear factor
E2-related factor 2

1. Introduction

The most common cause of dementia is Alzheimer’s disease (AD), causing a decline in
memory and recognition [1]. Alzheimer’s disease is characterized by senile plaque accumu-
lation, resulting from the extracellular deposition of amyloid-beta (Aβ) and neurofibrillary
tangles, consisting mainly of hyperphosphorylated tau protein [2]. The production and
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accumulation of Aβ, which plays a causative role in AD pathogenesis, is generated from
amyloid precursor protein (APP) through sequential cleavage by β-secretase (BACE1)
and γ-secretase.

Excessive oxidative stress is one of the neurotoxic mechanisms of Aβ and is observed
in the early stages of AD with markers for protein, lipid, and DNA oxidation [3]. Overpro-
duction of reactive oxygen species (ROS) leads to oxidative stress, which accelerates Aβ

accumulation and initiates a vicious cycle of mitochondrial dysfunction [4]. Furthermore,
oxidative damage overwhelms the antioxidant enzyme system, leading to the disruption of
the intracellular redox balance, which leads to apoptosis [5].

A growing body of evidence indicates that nuclear factor E2-related factor 2 (Nrf2) is a
key regulator of the genes involved in antioxidant and detoxification responses [6]. The
Nrf2 activity is negatively regulated by the repressor protein Kelch-like ECH-associated
protein 1 (Keap1) that promotes Nrf2 degradation. Under oxidative stress conditions,
interactions between Keap1 and Nrf2 are disrupted, and Nrf2 translocates to the nucleus
where it interacts with the antioxidant response element (ARE) and induces the expression
of antioxidant genes, including NADPH: quinone oxidoreductase-1 (NQO-1), glutamate
cysteine ligase (GCL), thioredoxin reductase 1 (TrxR1), and other antioxidant proteins.

Keap1-independent Nrf2 regulation involves multiple signaling cascades such as
nuclear localization and nuclear export signals [7]. Among these regulatory signaling
pathways, glycogen synthase kinase-3β (GSK-3β) has emerged as a point of convergence.
Existing literature suggests that GSK-3β phosphorylates Nrf2, resulting in its ubiquitination
and subsequent degradation [8]. Alternatively, GSK-3β may indirectly regulate Nrf2 via
Fyn. Phosphorylated Fyn by GSK-3β accumulates in the nucleus and phosphorylates
Nrf2, which stimulates Nrf2 nuclear export degradation to switch off the Nrf2-dependent
antioxidant responses [9].

Marine algae have attracted considerable attention as a natural source of bioactive
components with an important role in developing functional foods [10]. Furthermore,
marine algae are crops that grow in the oceans, occupying approximately 70% of the
earth’s surface, and have relatively low impacts on the environment compared to other
food ingredients. Given that the world population is growing and requires more re-
sources for climate resilience, marine algae could serve as a sustainable food source for
the future [11].

Fucoxanthin, one of the most abundant carotenoids present in brown algae, con-
tributes to more than 10% of total carotenoid production in nature [12]. The compound
forms a complex with chlorophyll protein and plays a pivotal role in photoprotection for
effective photosynthesis and light stress responses [13]. Fucoxanthin exhibits remarkable
biological activities such as anti-obesity, anti-diabetes, anti-inflammatory, anticancer,
and hepatoprotective effects based on its unique structure with an unusual allenic bond,
5,6-monoepoxide, which is different from that of other carotenoids, including β-carotene
and astaxanthin [14]. Recent studies have shown that this compound exerts novel effects
on neurodegenerative diseases [15–17]. Fucoxanthin inhibits BACE1, a major enzyme
involved in Aβ production, and reduces Aβ fibril formation [15,16]. Additionally, fu-
coxanthin inhibited acetylcholinesterase (AChE), a key enzyme involved in cholinergic
regulation, and decreased AChE activity and cognitive impairment in scopolamine-
induced mice [17]. Moreover, the compound improved Aβ oligomer-induced memory
deficits by increasing brain-derived neurotrophic factor (BDNF) expression [16]. Fu-
coxanthin may be a potential therapeutic alternative for AD prevention, although the
underlying molecular mechanisms are still unclear. It has been speculated that the
neuroprotective activity of fucoxanthin might be attributable to its dual antioxidant
and anti-apoptotic properties against Aβ. Therefore, the present study was designed to
discover the role of the Nrf2-mediated antioxidant response and the Akt/GSK-3β/Fyn
signaling pathway in the neuroprotective effects of fucoxanthin against Aβ using in vitro
and in silico approaches.
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2. Materials and Methods
2.1. Sample and Aβ Preparation

Fucoxanthin (purity≥ 95%) was purchased from Sigma–Aldrich (St. Louis, MO, USA).
The Aβ25-35 (Genscript, Piscataway, NJ, USA) was solubilized in phosphate-buffered saline
(PBS; WELGENE, Gyeongsan, Republic of Korea) at a concentration of 1 mM and incubated
at 37 ◦C for 48 h for aggregation before use. The Aβ25-35 stock solution was stored at
−70 ◦C prior to use. The solution was further diluted to 10 µM before using. The final
concentration of DMSO was less than 0.01%, which did not affect the cell viability.

2.2. Cell Culture and Treatments

The PC12 cells were obtained from American Type Culture Collection (ATCC,
Rockville, MD, USA). The cells were cultured in Roswell Park Memorial Institute (RPMI)
medium containing 10% horse serum (HS), 5% fetal bovine serum (FBS), and 100 U/mL
penicillin-streptomycin (all from Hyclone, Logan, UT, USA) at 37 ◦C and 5% CO2. The cells
were seeded in 6-, 8-, 24-, or 96-well plates, grown for 24 h, and then replaced with a serum-
free medium. The cells were pretreated with fucoxanthin at different concentrations (0.1, 1,
5, or 10 µM) or 50 µM resveratrol (Sigma–Aldrich, St. Louis, MO, USA) for 1 h before treat-
ment with 10 µM Aβ25-35. For inhibitor studies, the cells were pretreated with or without
10 µM LY294002 (Sigma–Aldrich, St. Louis, MO, USA) for 30 min before treatment with or
without fucoxanthin in the presence or absence of Aβ25-35.

2.3. Evaluation of Cell Viability

Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-
tetrazolium bromide (MTT; Sigma–Aldrich, St. Louis, MO, USA) assay. The MTT
(5 mg/mL) stock solution was dissolved in phosphate-buffered saline (PBS) was stored
at −20 ◦C. Cells (4 × 104 cells/well) were seeded in 96-well plates and cultured for 24 h.
The cells were pretreated with fucoxanthin for 1 h, followed by exposure to Aβ25–35 for
24 h. After incubation, the MTT solution was added to each well and incubated for another
3 h at 37 ◦C. The formazan crystals formed in each well were dissolved in 100 µL DMSO
(Sigma–Aldrich), and absorbance was measured using a microplate spectrophotometer
(Elx808, Winooski, VT, USA) at 570 nm [18].

2.4. Measurement of Reactive Oxygen Species (ROS) and Apoptosis

Intracellular ROS levels were detected using the redox sensitive dye CM-H2DCFDA
(Invitrogen, Carlsbad, CA, USA). The PC12 cells (5 × 104 cells/well) were seeded into
96-well plates and cultured for 24 h. The cells were pretreated with fucoxanthin for 1 h,
followed by exposure to Aβ25–35 for 24 h. The cells were treated with 10 µL CM-H2DCFDA
solution at 37 ◦C for 30 min in the dark and then washed carefully using HBSS (Gibco
BRL, Grand Island, NY, USA) three times to remove non-specific staining. The fluorescence
intensity of ROS was determined using a fluorescence microplate reader (Flx800, Winooski,
VT, USA) with excitation and emission wavelengths of 485 and 528 nm, respectively. The
cells were also imaged using a fluorescence microscope (×400, Olympus, Tokyo, Japan) [19].

Apoptotic cells were measured using Hoechst 33342 dye (Invitrogen). The cells
(2×105 cells/well) were seeded into 8-well plates and cultured for 24 h. The cells were fixed
with 4% formaldehyde and stained with Hoechst 33342 dye solution at 37 ◦C for 15 min in
the dark. Changes in the morphology of apoptotic cells were captured using a fluorescence
microscope, and then cell apoptosis was counted and expressed as a percentage of the total
number of cells [19].

2.5. Cell Cycle Assay

The cell cycle was analyzed using a Muse™ Cell Analyzer (Millipore, MA, USA). The
PC12 cells (1× 106 cells/well) were seeded in 24-well plates and cultured for 24 h. The cells
were pretreated with fucoxanthin for 1 h, followed by exposure to Aβ25–35 for 24 h. The
cells were washed with PBS and fixed for 3 h at −20 ◦C with 70% ethanol. After washing,
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200 µL Muse™ cell cycle reagent (Merck Millipore, Darmstadt, Germany) was added to
each well and incubated for 30 min at room temperature in the dark [20].

2.6. Measurement of Mitochondrial Membrane Potential and Intracellular Free Calcium Level

Rhodamine 123 dye (Sigma–Aldrich, St. Louis, MO, USA) was used to detect the
mitochondrial membrane potential (MMP). Cells (5 × 104 cells/well) were seeded into
96-well plates and cultured for 24 h. Thereafter, the cells were pretreated with fucoxanthin
for 1 h, followed by exposure to Aβ25–35 for 24 h. Then, the cells were incubated with
rhodamine 123 (final concentration, 5 µM) at 37 ◦C for 30 min in the dark. After staining,
the cells were washed with PBS, and the fluorescence intensity of MMP was measured at a
485 nm excitation wavelength and 528 nm emission wavelength (Flx800). The fluorescence
signal in the cells was observed using a fluorescence microscope (× 400) [21].

Intracellular calcium levels were measured using Fluo-3/AM, a fluorescent dye for
Ca2+ containing 0.02% Pluronic F-127 (Invitrogen). After treatment, the cells were rinsed
for 30 min, and fluorescence intensity was detected using a fluorescence reader at a 485 nm
excitation wavelength and 528 nm emission wavelength (Flx800) [21].

2.7. Western Blot Analysis

Cells were seeded in 6-well plates at a density of 2 × 106 cells/well and treated with
fucoxanthin for various durations. After treatment, cells were washed twice with cold
PBS. For whole cell protein analysis, cells were lysed in extraction buffer (Cell Signaling
Technology Inc., Beverly, MA, USA) containing a protease inhibitor cocktail (Tech and Inno-
vation, Chuncheon, Korea) for 1 h on ice, and then centrifuged at 4 ◦C for 10 min. Cytosolic
and nuclear proteins were prepared using an NE-PER Nuclear Cytoplasmic Extraction
Reagent Kit (Thermo Scientific, Rockford, IL, USA). Protein concentrations were deter-
mined using the BCA method. Equal amounts of protein samples (20 µg) were separated
using 8–12% SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes
(Millipore Corporation, Bedford, MD, USA). Blotted membranes were blocked in a 5% skim
milk solution in Tris-buffered saline with Tween 20 (TBST) buffer at room temperature for
2 h, and probed overnight at 4 ◦C with the following primary antibodies: Bcl-2, Bax, NQO1,
GSK-3β, p-Fyn, Fyn, β-actin (1:2000 dilution; all from Santa Cruz Biotechnology, Dallas, TX,
USA), Keap1, p-Akt, Akt, p-GSK-3β (1:2000 dilutions; all from Cell Signaling Technology,
Danvers, MA, USA), GCLm (1:2000 dilution; Cusabio Technology LCC, Wuhan, China),
TrxR1, Nrf2, and PCNA (1:2000 dilution; all from GeneTex Inc., San Diego, CA, USA).
The membranes were then washed with TBST and incubated with horseradish perox-
idase (HRP)-conjugated secondary antibodies (Bethyl Laboratories, TX, USA) at room
temperature for 8–12 min. After washing with TBST, all bands were detected using Atto
EZ-Capture (Tokyo, Japan) [22]. The housekeeping genes, β-actin (for whole cells) and
PCNA (for nuclear fractions) were used as internal loading controls in Western blot.

2.8. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from cultured cells using an easy-BLUETM Total RNA
Extraction Kit (iNtRON Biotechnology, Seongnam, Republic of Korea). The cDNA was
synthesized using TOPscript™ RT DryMIX (Enzynomics, Daejeon, Republic of Korea).
The RT-PCR was performed using a Veriti™ 96-Well Thermal Cycler (Thermo Scientific,
Waltham, MA, USA) with HiPi PCR PreMix (Elpis Biotech, Daejeon, Republic of Korea) [23].
The primer sequences used for RT-PCR were shown in Table 1. The housekeeping gene,
GAPDH was used for the normalization of data in RT-PCR experiments.

2.9. In Silico Docking Simulation

The crystal structures of Nrf2 peptide for Keap1 protein (PDB ID:2FLU), Akt (PDB
ID:3MVH), GSK-3β (PDB ID:1H8F), and Fyn (PDB ID:2DQ7) were obtained from the Protein
Data Bank (PDB). The 3D structure of fucoxanthin was retrieved from PubChem database
(CID:5281239). Simulation of the protein-binding site was performed using AutoDock
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Vina 1.1.2. After the docking simulation, binding poses were identified and depicted using
PyMOL 2.5.0, and pharmacophore analysis was conducted using the Ligplot+ program [18].

Table 1. List of primers and their characteristics.

Gene Primer Sequences (5′→3′) Annealing
Temperature (◦C) Product Size (bp) Genbank

Accession No.

NQO1 F: ATGGCGGTGAGAAGAGCCCTG
R: ACCCTTGTCATACATGGTGGC 64 408 XM_032887917

GCLm F: AGACCGGGAACCTGCTCAAC
R: CATCACCCTGATGCCTAAGC 55 1111 NM_017305

TrxR1 F: CAATGAAAAGACCGGGAAGA
R: CACAGCAGCCATACTCCAAA 60 224 NM_001351984

GAPDH F: CATCACCATCTTCCAGGAGCG
R: TGACCTTGCCCACAGCCTTG 60 443 NM_017008

2.10. Statistical Analysis

Statistical analyses were performed using SAS version 9.3 software (SAS Institute,
Inc., Cary, NC, USA). Results are expressed as the mean ± standard deviation (S.D.). All
data were evaluated for homogeneity and normality of variance using O’Brien’s test and
Shapiro–Wilk test, respectively, and assumptions of homogeneity and normality were
met. Statistical significance was evaluated using one-way analysis of variance (ANOVA),
followed by Tukey’s multiple comparison test. For all comparisons, the level of significance
was set at *** p < 0.001, ** p < 0.01, and * p < 0.05.

3. Results
3.1. Fucoxanthin Attenuated Aβ25-35-Mediated G0/G1 Phase Arrest and Cell Death via Reducing
ROS Production

The structure of fucoxanthin is shown in Figure 1A. As shown in Figure 1B, cell
viability decreased with fucoxanthin treatment alone at 10 µM (p < 0.05). Accordingly, a non-
toxic dose range of fucoxanthin (0.1–5 µM) was chosen for further experiments. Exposure of
PC12 cells to Aβ resulted in a significant reduction (55.17± 1.56%, p < 0.001) compared with
the control cells (100 ± 7.78%). However, pretreatment with fucoxanthin attenuated the
Aβ-induced cell death. In particular, fucoxanthin significantly restored the cell viability at
the lowest concentration (Figure 1C). Moreover, the compound showed noticeable recovery
against Aβ-evoked damage at 5 µM (79.26 ± 3.81%) similar to resveratrol (80.94 ± 2.11%),
which was used as a positive control.

As there is evidence that neuronal death is intimately linked to cell division, the cell
cycle of PC12 cells exposed to Aβ has been analyzed [24]. As illustrated in Figure 1D,E,
Aβ25-35 treatment elevated the percentage of cells in the G0/G1 phase and reduced the
percentage of cells in the G2/M phase in PC12 cells compared with the control. Conversely,
pretreatment with fucoxanthin significantly improved the G0/G1 arrest caused by Aβ25-35,
prolonged the G2/M phase.

As shown in Figure 1F,G, Aβ25-35 significantly increased intracellular ROS levels; however,
pretreatment with fucoxanthin dose-dependently eliminated ROS accumulation. In particular,
fucoxanthin at 5 µM showed a strong inhibitory effect, similar to that of resveratrol (50 µM).
These results showed that fucoxanthin exerted protective effect by reducing cellular ROS
production, which then contributed to cell viability and cell cycle arrest in PC12 cells.

3.2. Fucoxanthin Enhanced Mitochondrial Recovery and Regulated Apoptosis

As shown in Figure 2A–C, Aβ exposure resulted in the significant loss of MMP and
increase of Ca2+ levels, whereas pretreatment of fucoxanthin prevented Aβ-caused mito-
chondrial dysfunction in a dose-dependent manner. Moreover, the compound significantly
improved disrupting intracellular Ca2+ homeostasis, similar to those of the control, even at
the lowest concentration.
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Figure 1. Neuroprotective effect of fucoxanthin against Aβ25-35-induced injury. (A) The chemical 
structure of fucoxanthin (B) PC12 cells incubated with various concentrations of fucoxanthin for 1 Figure 1. Neuroprotective effect of fucoxanthin against Aβ25-35-induced injury. (A) The chemical

structure of fucoxanthin (B) PC12 cells incubated with various concentrations of fucoxanthin for
1 h to evaluate cell viability using MTT assay. (C) The cells were incubated with the sample for 1 h,
followed by incubation with Aβ25-35 for another 24 h. After incubation, cell viability was determined
by MTT assay. (D,E) Cell cycle was analyzed by flow cytometry. The cells were treated with sample
for 1 h and further added with Aβ25-35 for 24 h. Intracellular ROS production was detected by
DCF-DA using (F) fluorescence microscopy (400×) and (G) fluorescence microplate reader. Results
are indicated as the mean ± S.D. and represent three independent experiments with 3 replications in
each experiment. ### p < 0.001 and ## p < 0.01 compared to control group; *** p < 0.001, ** p < 0.01
and * p < 0.05 compared to Aβ25-35-treated alone.
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Figure 2. Effects of fucoxanthin on apoptosis and mitochondrial dysfunction in Aβ25-35-induced
PC12 cells. The cells were pretreated with the indicated concentrations of fucoxanthin for 1 h and
stimulated with 10 µM Aβ25-35 for 24 h. Mitochondrial membrane potential (MMP) observed using
(A) fluorescence microscopy (400×) and (B) microplate reader. (C) Intracellular Ca2+ levels were
analyzed using Fluo-3/AM. (D) Protein expression of Bax/Bcl ratio determined using a western
blot. (E) Apoptotic cells were observed using fluorescence microscopy (400×). (F) The percentage of
apoptotic cells. Results are indicated as the mean± S.D. and represent three independent experiments
with 3 replications in each experiment. ### p < 0.001 and ## p < 0.01 compared with the control
groups; *** p < 0.001 ** p < 0.01 and * p < 0.05 compared with the Aβ25-35-treated alone.
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The results showed that fucoxanthin inhibited Aβ25-35-mediated up-regulation of Bax
and downregulation of Bcl-2, thus decreasing the Bcl-2 to Bax ratio (Figure 2D). Moreover, in
Aβ25-35 treated cells, the nuclear morphology appeared to be highly fluorescent condensed
bodies, which are typical characteristics of apoptosis (Figure 2E). As shown in Figure 2F,
the percentage of apoptotic cells in Aβ25-35-induced group was substantially higher than
3 times compared to the control group (p < 0.001). However, pretreatment with fucoxanthin
significantly reduced the number of apoptotic cells at all concentrations tested, suggesting
the compound attenuated mitochondrial-mediated apoptosis by Aβ via regulating MMP,
Ca2+ overload and Bax/Bcl-2 ratio.

3.3. Fucoxanthin Up-Regulated Nuclear Translocation of Nrf2 and Gene Expression of Phase-II
Enzyme on PC12 Cell Injury Caused by Aβ25-35

To further identify the molecular mechanisms underlying the antioxidant effects of
fucoxanthin on Aβ25–35-induced cell injury, Nrf2, a master regulator of the antioxidant
response, and its inhibitor Keap1 were investigated. Quantitative analysis of the Nrf2
nucleus/cytoplasm ratio showed that the Aβ-treated group had no effect on the nuclear
accumulation of Nrf2, whereas fucoxanthin at 1 and 5 µM concentrations resulted in a
more than three-fold increase in Nrf2 translocation compared with that in the control
(Figure 3A,B). As shown in Figure 3C,D, exposure to 10 µM Aβ25-35 resulted in a significant
increase in total Nrf2 expression (p < 0.05). Additionally, total Nrf2 protein levels were
markedly upregulated by fucoxanthin in a dose-dependent manner. An inhibitory effect of
fucoxanthin at all concentrations on cytoplasmic Keap1 was also observed (Figure 3C,E).
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These observations showed that fucoxanthin promoted Nrf2 nuclear translocation
and Nrf2 activation. Thus, we hypothesized that fucoxanthin regulates Nrf2 downstream
target genes, including NQO1, GCLm, and TrxR1. As shown by PCR (Figure 3F,G) and
western blot analysis (Figure 3H,I), pretreatment with fucoxanthin significantly increased
the expression of NQO1, GCLm, and TrxR1 at both mRNA and protein levels. In particular,
fucoxanthin at 0.1, 1, and 5 µM, resulted in approximately 1.5-, 2.0-, and 2.5-fold increases
in NQO1 protein expression, respectively.

3.4. Fucoxanthin Modulated Akt/GSK-3β/Fyn Signaling against Aβ Neuronal Damage

To investigate the mechanism by which fucoxanthin promotes Nrf2 nuclear local-
ization, the regulation of the Akt/GSK-3β/Fyn signaling pathway upon fucoxanthin
pretreatment was evaluated in Aβ-induced neuronal injury. As shown in Figure 4A, fu-
coxanthin significantly elevated Akt phosphorylation of Ser473 compared to that of only
Aβ25-35-treated cells. Similarly, fucoxanthin efficiently augmented the phosphorylation of
GSK-3β (Ser 9), which is a downstream kinase of Akt (Figure 4B). Moreover, phosphoryla-
tion of Fyn was upregulated in cells treated with Aβ25-35 alone (p < 0.01), but fucoxanthin
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at 5 µM down-regulated Fyn phosphorylation to the control level, in parallel with GSK-3β
inactivation and Akt activation (Figure 4C).

To further confirm whether the Akt/GSK-3β/Fyn signaling cascade plays a critical role
in Nrf2 nuclear retention by fucoxanthin, Aβ-treated PC12 cells were exposed to a LY294002,
specific and potent inhibitor of PI3K/Akt, with or without fucoxanthin pretreatment.
As shown in Figure 4D–F, the combination of fucoxanthin and LY294002 resulted in a
significant reduction in phosphorylated Akt and GSK-3β expression, and a corresponding
efficient elevation of Fyn phosphorylation compared to fucoxanthin treatment alone in
Aβ25-35-damaged cells. Moreover, the augmented nuclear expression of Nrf2, mediated
by fucoxanthin at 5 µM, was substantially lowered to the control level after co-treatment
with fucoxanthin and LY294002 (Figure 4G). Finally, the combination of fucoxanthin and
LY294002 reversed the effects of our compound on the expression of antioxidant enzymes,
including NQO1, GCLm, and TrxR1 (Figure 4H–K). These findings suggest that fucoxanthin
promotes the nuclear accumulation of Nrf2 by blocking its nuclear export through the
Akt/GSK-3β/Fyn axis.
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** p < 0.01 compared with the Aβ25-35-treated alone; §§ p < 0.01 compared with the Aβ25–35 -treated
alone;

s
p < 0.01 and

∫
p < 0.05 compared with the fucoxanthin group without LY294002.

3.5. Molecular Docking Simulation between Fucoxanthin and Target Proteins in Antioxidant
Defense System

Clarifying the binding interaction of fucoxanthin with Nrf2-Keap1, Fyn, GSK-3β, and
Akt allows us to better understand the binding mechanism of the compound within the
amino acid residues of target proteins for neuroprotective properties and to design more
effective antioxidant agents. According to the results of the docking simulation (Table 2 and
Figure 5A), the fucoxanthin and Nrf2-Keap 1 complex exhibited a negative binding energy
(−9.4 kcal/mol). The Leu557 residue of Nrf2 with Keap 1 participated in the formation of a
hydrogen-bonding interaction with 5′ the hydroxyl group of fucoxanthin, with a bonding
distance of 3.1 Å. Moreover, the compound formed hydrophobic interactions with residues
including Gly367, Arg415, Ile416, Gly417, Val418, Gly419, Val420, Asp422, Gly462, Val463,
Gly464, Val465, Ala466, Val467, Arg470, Gly509, Gly511, Val512, Val514, Gly558, Ile559,
Val604, and Val606.

The lowest binding energy of the fucoxanthin-Fyn complex was−8.1 kcal/mol (Table 2
and Figure 5B). The hydroxyl and oxygen group of fucoxanthin at C-3, C-3′, and C-5′formed
four hydrogen bonds with Gly88, Arg163, and Lys167, with a bond distance of 3.31 Å,
3.12 Å, 2.80 Å, and 3.11 Å, respectively. It interacts with Fyn via van der Waals interactions
with Leu17, Asn19, Gly20, Gln21, Phe22, Gly88, Ser89, Asp92, Asp130, Arg132, Asp148,
Leu151, Ala166, and Phe168.

The lowest binding energy of the fucoxanthin-GSK-3β complex was predicted to be
−7.4 kcal/mol (Table 2 and Figure 5C). The complex was stabilized by the formation of a
hydrogen bond between the Ser147 residue and the hydroxyl group at C-3 of fucoxanthin,
with a bonding distance of 2.99 Å. In addition, 14 van der Waals interactions were found
between Gly65, Ser66, Val70, Lys85, Arg144, Arg148, Asp200, Tyr221, Gln254, Pro255,
Pro258, Gly259, Asp264, and Glu268.

The results of docking prediction (Table 2 and Figure 5D) showed that fucoxanthin
bonded with Akt and had the lowest binding energy of −8.0 kcal/mol. The five hydrogen
interactions of fucoxanthin-Akt were hydroxyl group at C-3 of fucoxanthin to Asp292,
Gly294, Leu295, and the oxygen group at C-5 and C-3′ of fucoxanthin to Ser4 and Glu440,
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with distances of 3.20 Å, 2.98 Å, 3.04 Å, 2.88 Å, and 2.89 Å. Furthermore, 11 residues
of Akt, including Arg4, Thr6, Lys158, Gly159, Phe161, Glu191, Arg241, Asp274, Phe293,
Asp439, and Glu441, were demonstrated to participate in van der Waals interactions
with fucoxanthin.

Table 2. Molecular interaction of fucoxanthin and target proteins in Nrf2 signaling pathway.

Target
Protein

Binding Energy
(kcal/mol)

No. of
H-Bonds

H-Bonding
Residues

H-Bond
Length (Å)

van der Waals
Residues

Nrf2-Keap1 −9.4 1 Leu557 3.10

Gly367, Arg415, Ile416, Gly417, Val418,
Gly419, Val420, Asp422, Gly462, Val463,
Gly464, Val465, Ala466, Val467, Arg470,
Gly509, Gly511, Val512, Val514, Gly558,

Ile559, Val604, Val606

Fyn −8.1 4
Lys87

Arg163
Lys167

3.31
3.12

2.80/3.11

Leu17, Asn19, Gly20, Gln21, Phe22, Gly88,
Ser89, Asp92, Asp130, Arg132, Asp148,

Leu151, Ala166, Phe168

GSK-3β −7.4 1 Ser147 2.99
Gly65, Ser66, Val70, Lys85, Arg144,

Arg148, Asp200, Tyr221, Gln254, Pro255,
Pro258, Gly259, Asp264, Glu268

Akt −8.0 5

Ser7
Asp292
Gly294
Leu295
Glu440

2.88
3.20
2.98
3.04
2.89

Arg4, Thr6, Lys158, Gly159, Phe161,
Glu191, Arg241, Asp274, Phe293,

Asp439, Glu441
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4. Discussion

The Aβ acts as a direct or indirect pro-oxidant that induces oxidative stress, which
represents an imbalance between ROS and the ability of the cellular defense system to
detoxify reactive intermediates. Emerging evidence has suggested that antioxidants can
control Aβ-induced oxidative damage as a promising strategy for AD prevention. Fucox-
anthin, a xanthophyll carotenoid abundant in brown algae, has been reported to possess
strong antioxidant potential. A 10 µM concentration of Aβ25–35 was selected based on
previously reported concentrations used in vitro [18]. This study provides the first ev-
idence that fucoxanthin exerted a neuroprotective effect and highlighted its molecular
mechanisms involved in the activation of Nrf2 through the Akt/GSK-3β/Fyn signaling
pathway and upregulation of the antioxidant enzymes expression against Aβ25-35-caused
oxidative damage.

The balance between anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins is an impor-
tant factor in apoptosis. In the neuronal response to Aβ damage, Bax relocates from the
cytoplasm to the outer mitochondrial membrane and causes mitochondrial permeability
transition, resulting in an apoptotic cascade [25]. Moreover, the reduction in MMP with
a simultaneous increase in the Bax/Bcl-2 expression ratio directly reflects mitochondrial-
mediated apoptosis [25,26].

Accumulating evidence suggests that Aβ causes excessive Ca2+ release from the en-
doplasmic reticulum (ER) and subsequently elevates mitochondrial Ca2+ levels, leading
to apoptosis via mitochondrial dysfunction [27–29]. The above results are consistent with
our present study showing that exposure of neuronal cells to toxic Aβ25-35 obviously
reduced the Bcl-2/Bax ratio and MMP, and elevated Ca2+ overload, which in turn trig-
gered apoptosis. In addition, it was confirmed that the protective effect of fucoxanthin
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against neuronal injury by Aβ was related to regulating apoptosis associated proteins and
mitochondrial function.

The Nrf2 acts as a master redox regulator that controls the inducible expression of
phase II detoxification and antioxidant enzyme genes [30]. Previous studies have reported
that the genetic ablation of Nrf2 markedly increases oxidative stress and inflammatory
responses, whereas overexpression of Nrf2 improves spatial learning impairment and
enhances neuroprotection against Aβ in an APP/presenilin 1 (PS1) transgenic mouse
model [31–33]. Moreover, Nrf2 is predominantly observed in the cytoplasm but much less
so in the nucleus in AD brains, despite the presence of oxidative stress [34]. A previous
study suggested that fucoxanthin may alter the conformation of Keap1 and promote
dissociation of Nrf2 from Keap1 and its subsequent nuclear translocation in 6-OHDA-
expopsed PC12 cells and zebrafish [35]. The present study revealed that the level of total
Nrf2 was increased without Nrf2 activation following the induction of Aβ. However,
pretreatment of fucoxanthin in Aβ-induced injury in PC12 cells resulted in s substantial
nuclear translocation of Nrf2, which was consistent with a reduction in Keap1 expression,
suggesting that fucoxanthin upregulates Nrf2 nuclear localization by dissociation of the
Nrf2-Keap1 complex.

In addition to Keap1-dependent regulation of Nrf2, GSK-3β is a critical protein in-
volved in Nrf2 degradation and phosphorylates Nrf2 to facilitate its recognition of Nrf2
and subsequent degradation [36]. Moreover, GSK-3β indirectly phosphorylates Nrf2 via
Fyn kinase and exports Nrf2 to the cytoplasm. Compelling evidence suggests that inhibi-
tion of GSK-3β activity by pharmacological treatment prevents cognitive impairment in
transgenic AD mice [37]. The present results revealed that fucoxanthin inactivated GSK-3β
via Akt, which induced Fyn phosphorylation, resulting in nuclear accumulation of Nrf2. To
confirm that the neuroprotective activity of fucoxanthin is mediated through Nrf2, a PI3K
inhibitor was employed as a specific upstream inhibitor of the Nrf2 signaling pathway.
The results revealed that inhibition of the Akt/GSK-3β/Fyn signaling pathway reversed
fucoxanthin-mediated expression of antioxidant enzymes and nuclear accumulation of
Nrf2. Previous studies have reported that fucoxanthin exerts significant protective effects
against acute kidney injury, traumatic brain injury, and skin cancer by increasing Nrf2-
mediated antioxidant enzyme expression via multiple kinase pathways [38–40]. It has been
shown that supplementation of fucoxanthin significantly enhanced expression of Nrf2 and
its target gene, NQO1, in high fat diet fed rats [41].

Fucoxanthin is a major carotenoid found in brown seaweed and has a structure
containing an allenic bond, epoxide group, and hydroxyl group [42]. In particular, the
compound has unusual structural features, such as allene and 5,6-monoepoxide bonds,
which are not found in other carotenoids in brown seaweeds [43]. Moreover, the compound
has multiple oxygenic functional groups, including hydroxyl, epoxy, carbonyl, and carboxyl
moieties, which contribute to its antioxidant activity [14]. According to a previous study,
fucoxanthin supplementation enhanced the expression of antioxidant enzymes, including
glutathione transferase and catalase, and provided more potent antioxidant activity than
β-carotene [44,45]. In the present docking study, the oxygenic group of fucoxanthin at C-3,
C-3′, and C-5′ participated in the formation of hydrogen bonds with Nrf-2, Fyn, GSK-3β,
and Akt. Moreover, fucoxanthin acts on the targeted proteins mainly via hydrophobic
interactions due to its hydrophobic chain consisting of eight conjugated double bonds and
hydrophobic residues of target markers, including Gly, Pro, Val, Phe, Trp, Leu, Ile, and
Ala. Especially, the present study showed that the binding site of fucoxanthin in the Keap1
pocket overlapped with Arg415, known as one of the binding sites of Nrf2. This analysis
implied that the compound can compete with Nrf2 at its Keap1 kelch domain-binding site,
thereby promoting nuclear translocation. Furthermore, with respect to Nrf2 activation by
the upstream kinase pathway, the compound structurally binds to the Fyn, GSK-3β, and
Akt proteins to exert its pharmacological activities.

The permeability of the blood–brain barrier (BBB) is an essential factor in the devel-
opment of novel agents for AD prevention to exert neuroprotective effects. A previous
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study showed that fucoxanthin, a lipophilic pigment, penetrates the BBB and remains in
the brain after oral administration (200 mg/kg), suggesting the potential of fucoxanthin to
exert neuroprotective effects in the brain [16]. Regarding safety, fucoxanthin showed no
signs of Ames or hepatotoxicity during in silico toxicity analysis. Beppu et al. reported no
abnormality or mortality in clinical symptoms and normal organ function in Institute of
Cancer Research (ICR) mice treated with fucoxanthin at a single dose of 2000 mg/kg or a
repeated dose of 1000 mg/kg for 30 days [46].

5. Conclusions

The present findings provide scientific evidence for the first time that fucoxanthin
exerts a protective effect by activating the Nrf2-mediated antioxidant system and upregu-
lating the Akt/GSK-3β/Fyn axis during Aβ-induced oxidative stress. Moreover, molecular
docking analysis demonstrated that fucoxanthin had strong interactions with Nrf2 and its
upstream regulator via hydrogen bonds and van der Waals forces. The protective effect
of fucoxanthin is due to the Akt/GSK-3β/Fyn-dependent Nrf2 activation. The present
findings support a better understanding of the vital role of fucoxanthin in preventing AD
and its potential use as a promising source of anti-AD agents.
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