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Abstract: Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean
region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation
and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial
effects have been described for rosemary, including antimicrobial and antioxidant activities. Here,
we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of
R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also
investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude
extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity
and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action
revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-
MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS)
platform, annotated several phenolic compounds, confirming the previous observation. In accordance,
Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited
the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM.
Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation
of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited
a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide
anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity
or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To
evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo,
a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP)
was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The
treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition
of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining
alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated
rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able
to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and
hepatoprotective effects observed in vivo.
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1. Introduction

The Lamiaceae family contains a set of plants, often cultivated as herbs, whose leaves
can be used as seasonings and whose essential oils are used as flavors in cosmeceuticals [1].
Among these plants, Rosmarinus officinalis L. stands out. Popularly known as rosemary
(or alecrim in Brazil), R. officinalis is native to the Mediterranean region and is currently
found worldwide. It has been extensively studied for its use in food and as a spice
and/or preservative, in which it operates by inhibiting microbial growth and oxidative
reactions [2]. The study of medicinal plants and herbs has proved to be an efficient
strategy for prospecting novel compounds with therapeutic potential [3,4]. In this regard, a
large number of secondary metabolites have been isolated and identified from Rosmarinus
spp., including essential oils, flavonoids, tannins, terpenes, and phenolic acids [5–7]. In
addition, carnosol, carnosic acid, and rosmarinic acids, which are reported to be the main
components of rosemary, account for many of its biological activities [8–10]. The production
of these bioactive secondary metabolites by rosemary depends on several factors, such
as the plant part, climatic conditions and soil nutrients, humidity, temperature, water
availability, and others [11]. Due to the large number of chemical studies carried out on
R. officinalis, we opted for a dereplication strategy to avoid re-isolations [12]. Hyphenated
liquid chromatography with electrospray ionization mass spectrometry (LC-ESI-MS/MS)
is currently the most suitable technique for metabolomics approaches [13]. However,
when analyzing extracts with an antioxidative potential, it is important to follow the
oxidation processes at the source of the ESI in detail since substances with a low oxidation
potential can lose electrons, changing the expected mass balance and leading to erroneous
interpretations of chemical structures [14,15].

Furthermore, R. officinalis has long been used as a medicinal plant. In this context,
a plethora of biological effects and health benefits have been attributed to rosemary es-
sential oil, leaf extracts, and isolated substances, including antibacterial [16–18], anti-
fungal [19,20], anti-inflammatory [21,22], antiatherogenic [23,24], antiangiogenic [25,26],
antihypertensive [27], antiulcer [28], anti-diabetic [29,30], anticancer [31], and other effects
(reviewed elsewhere [32,33]). In addition to these effects, this plant is also well known for
its powerful antioxidant activity (reviewed in [34]). This is expected, as phytochemical
analyses of rosemary extracts and essential oils have revealed several substances with
recognized antioxidant properties, such as flavonoids and phenolic compounds [35,36].
In fact, such antioxidant activities of R. officinalis might help to explain some of the bio-
logical effects described above. The pathophysiology of several human diseases is related
to the overproduction of reactive oxygen species (ROS) or a decreased capacity of the
antioxidant defense system, resulting in oxidative stress, cellular/tissue damage, and,
ultimately, organ dysfunction [37]. In this regard, it has been shown that R. officinalis
exhibits hepatoprotective effects in different models of xenobiotic-induced liver toxicity,
including carbon tetrachloride (CCl4) [38–41], creosote [38], azathioprine [39], hexavalent
chromium [40], streptozotocin [41], and cyclophosphamide [42]. However, its protective
effect against acetaminophen-induced hepatotoxicity has not been clearly demonstrated yet.
Acetaminophen (AAP) is an anti-inflammatory and anti-pyretic drug, and AAP overdose
is associated with acute liver failure [43]. During cytochrome P450 liver metabolism, AAP
is transformed in the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI),
which oxidizes GSH [44] and causes oxidative stress.

Although the antioxidant activity of R. officinalis has been extensively studied in several
biological systems and toxicity models, its potential protective effect on mitochondria under
oxidative stress conditions has not been investigated. Despite the central role they play
in cellular metabolism and energy production, mitochondria are also often associated
with oxidative status since superoxide radical anions (O2

•−) are continuously generated
during electron transport in the respiratory chain. This radical is counteracted by the
antioxidant defense system, with the reducing power provided by reduced glutathione
(GSH) and NAD(P)H [45]. However, excessive O2

•− formation and, consequently, its
conversion to hydrogen peroxide (H2O2), can produce the extremely reactive hydroxyl
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radical (•OH) by means of the Fenton reactions, which are catalyzed by Fe2+ and other
transition metals [46]. Thus, the investigation of the effects of R. officinalis in such a complex
mitochondrial scenario can further elucidate the molecular mechanisms of antioxidant
protection in biological systems. Here, we investigated the antioxidant properties of R.
officinalis leaf extracts in rat liver mitochondria and addressed its protective effect against
AAP-induced hepatotoxicity in rats.

2. Materials and Methods
2.1. Chemicals, Plant Source, and Extract Preparation

All reagents used in this study were of the highest commercially available grade of
purity. Aqueous solutions were prepared using type I water obtained using a Milli-Q system
(Millipore, USA). Rosmarinus officinalis L. species were collected in Brazil (GPS localization:
760 m, 23◦29840′ S) during the winter (August) of 2018. After botanical identification,
voucher specimens were deposited at the Herbarium Mogiense (University of Mogi das
Cruzes, Brazil). After drying at 40 ◦C in a ventilated drying oven, 100 g of selected leaves
were submitted to fractionated percolation using a mixture of propylene glycol/water (7/3)
as solvent, resulting in 100 mL of Rosmarinus officinalis glycolic extract (Ro). This extract
was considered a 100% crude extract for subsequent concentration calculations.

2.2. Isolation of Mitochondria, Animal Treatments, and Sample Preparation

Liver mitochondria were isolated from rats by differential centrifugation in isosmotic
media, as previously described [47]. Adult male Wistar rats weighing approximately 180 g
were randomly divided into four groups (n = 7), kept in a 12/12 h light/dark cycle, and
fed ad libitum. All experiments involving animals were conducted in accordance with the
guide for the care and use of laboratory animals (NIH Guidelines) and were previously
approved by the Animal Ethics Committee of University of Mogi das Cruzes (CEUA).
In order to induce hepatotoxicity, the AAP group received a single dose of 900 mg/kg
of acetaminophen (Sigma-Aldrich, St. Louis, MI, USA) intraperitoneally. Animals were
sacrificed 4 h after drug administration. The control group (C) received the same volume
of solvent used for AAP dissolution, i.e., dimethyl sulfoxide (DMSO; Sigma-Aldrich, USA).
The other two groups received 0.1 mL of 0.5% Ro intraperitoneally once per day in the
morning for four consecutive days. One of these groups (Ro/AAP) also received AAP
on the last day, as described above, 4 h before sacrifice. The animals were anesthetized
with xylazine (5 mg/kg) and ketamine (60 mg/kg) for cardiac blood collection. The
blood was immediately centrifuged at 700× g for 5 min to achieve serum separation. For
homogenate preparation, the livers were removed and cut into small fragments in a buffer
containing 250 mmol/L sucrose, 1 mmol/L EGTA, and HEPES- KOH 10 mmol/L at a pH
of 7.4 at 4 ◦C. After washing the samples twice with the same medium, the tissues were
homogenized using a Potter-Elvehjem. This was followed by centrifugation at 580× g for
5 min at 4 ◦C. The supernatant, called a homogenate, was immediately frozen at −70 ◦C
for subsequent experiments.

2.3. Preparation of PCPECL Liposomes

The phospholipids phosphatidylcholine, phosphatidylethanolamine, and cardiolipin
(PCPECL, 5:3:2 ratio) were dissolved in CHCl3, which was further evaporated under argon
flux. The lipidic film was hydrated with 10 mM of cold sodium phosphate buffer at a pH
of 7.4 and vortexed. To obtain the liposome solution (1 mM), lipids were submitted to
sonication for 30 min at 4 ◦C using a Ney Ultrasonik (J. M. Ney Co., Bloomfield, CT, USA).

2.4. Total Phenols and Flavonoids

The soluble phenol derivatives were estimated using the Folin–Ciocalteu method [48]
and expressed as µM of gallic acid equivalents based on a standard curve [49]. For flavonoid
quantification, an aliquot was incubated in a medium containing 60 µL of glacial acetic
acid, 1.0 mL of pyridine H2O:AlCl3 12% solution (17:80:3), and 1.24 mL of DMSO:H2O
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(1:1) for 5 min at 25 ◦C. The absorbance of the chromophore produced in this reaction was
determined spectrophotometrically at 420 nm, and the flavonoid content was determined
based on a standard curve and expressed as µM of quercetin equivalents.

2.5. DPPH Assay, Fe2+, and Superoxide Scavenger Activity

The reduction of the 1,1′-diphenyl-2-picrylhydrazyl radical (DPPH, Sigma-Aldrich,
USA) by Ro was accompanied by photometric measurement in a UV1800 spectrophotometer
(Shimadzu, Kyoto, Japan). An amount of 1.5 mL of 40 mM sodium acetate pH 5.5 was
mixed into the reaction with 1.0 mL of absolute ethanol containing DPPH to achieve a final
concentration of 0.1 mM. After incubation with different Ro concentrations for 5 min at
25 ◦C, the final absorbance was measured at 517 nm. Quercetin (Q, Sigma-Aldrich, USA)
was used as reference. The amount of Fe2+ was quantified photometrically at 535 nm using
0.2 mM bathophenanthroline disulfonic acid (Sigma-Aldrich, USA) [50] in a competitive
assay with Ro. At last, the xanthine/xanthine oxidase system was used to generate O2

•−.
The scavenger activity of Ro was estimated by the inhibition of the nitroblue tetrazolium
(NBT, Sigma-Aldrich, USA) reduction. After adding 0.08 U/mL xanthine oxidase to a
phosphate buffer at a pH of 7.5, which contained 0.05 mM EDTA, 0.2 mM hypoxanthine,
and 0.1 mM NBT, the absorbance was measured at 540 nm after 20 min of incubation at
37 ◦C (Shimadzu UV1800 Spectrophotometer, Tokyo, Japan).

2.6. Reactive Oxygen Species (ROS)

The production of mitochondrial ROS was estimated kinetically using 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCFDA, Sigma-Aldrich, USA) [51], as previously
described [52]. Briefly, mitochondria (1 mg/mL) were incubated in a buffer containing 125
mM sucrose, 65 mM KCl, and 10 mM HEPES-KOH at a pH of 7.4, plus 1 µM H2DCFDA
at 30 ◦C, under continuous stirring in the presence of 5 mM potassium succinate (Sigma-
Aldrich, USA) (plus 2 µM rotenone, Sigma-Aldrich, USA). The fluorescence emissions
were recorded in a Hitachi F-2500 Spectrophotometer (Tokyo, Japan) at 503/529 nm for
excitation/emission wavelength pairs, respectively.

2.7. Lipid Oxidation

The liposomes (1 mM), mitochondria (1 mg/mL), or liver homogenates (1 mg/mL)
were incubated with or without different Ro concentrations at 37 ◦C for 30 min, and with
50 µM Fe(NH4)2(SO)4 (plus 2.0 mM sodium citrate) or 0.6 mM t-BOOH as inducers of
oxidative stress. Following incubation, for a thiobarbituric acid reactive substances (TBARS)
assay, 1% thiobarbituric acid (TBA, Sigma-Aldrich, USA) was prepared by adding 50 mM
NaOH, 15 µL of 10 M NaOH, and 75 µL of 20% H3PO4 to each sample, followed by
further incubation for 20 min at 85 ◦C. The MDA-TBA complex was extracted with 2 mL of
n-butanol, and the absorbance was measured at 535 nm. The TBARS were calculated from
ε = 1.56 × 105 M−1.cm−1, as described in [53]. Lipid hydroperoxides (LOOH) were also
quantified in isolated mitochondria using xylenol orange, as previously described in [54].
When applied, the percentages of inhibition by Ro were calculated in relation to positive
controls (t-BOOH or Fe2+) which were considered to achieve 100% inhibition.

2.8. GSH and Protein Thiol Groups

After 30 min of incubation at 37 ◦C in a medium containing 125 mM sucrose, 65 mM
KCl, and 10 mM HEPES-KOH at a pH of 7.4, plus 5.0 mM potassium succinate and 2.0 µM
rotenone, the mitochondrial suspensions or liver homogenates were treated with 0.5 mL of
13% trichloroacetic acid and centrifuged at 400× g for 5 min. For the GSH assay, aliquots
(100 µL) of the supernatant were mixed with 1.8 mL of a 0.1 M sodium phosphate buffer
at a pH of 8.0 containing 5 mM EGTA plus 100 µL of 1 mg/mL o-phthalaldehyde (Sigma-
Aldrich, USA). After 15 min of incubation, the fluorescence emissions were detected at
350/420 nm (excitation/emission) in a Hitachi F-2500 (Japan) fluorescence spectropho-
tometer [55]. The reduced thiol groups of proteins were quantified using 5,5′-dithiobis(2-
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nitrobenzoic acid) (DTNB, Sigma-Aldrich, USA) [56]. The pellet obtained from the acid
precipitation described above was suspended with 1 mL of a 0.5 M potassium phosphate
buffer at a pH of 7.6 which contained 0.7% SDS. After adding 100 µM DTNB, the absorbance
was measured at 412 nm and the amount of the reduced thiol groups was calculated from
ε = 13,600 M−1.cm−1 [57].

2.9. Cell Culture and Cellular Assays

BRL 3A cells (CRL-1442, ATCC) were cultivated in high-glucose Dulbecco’s modified
Eagle’s medium (DMEM; Sigma-Aldrich, USA) supplemented with 10% fetal bovine serum
(FBS) (Gibco, Thermo Fischer Scientific, Waltham, MA, USA), 100 U/mL penicillin, and
100 µg/mL streptomycin at 37 ◦C in a 5% CO2 atmosphere (Panasonic MCO-19AIC incuba-
tor, Osaka, Japan). Cells were used for the experiments during 4–8 passages after thawing.
For the experiments, cells were washed twice with a calcium- and magnesium-free buffered
saline solution (CMF-BSS), detached from the flasks using trypsin/EDTA (Gibco, Thermo
Fischer Scientific, USA), and suspended in the supplemented medium. For the viability
assay, cells (5× 104 cells/cm2) were added to 96-well microplates (0.2 mL final volume) and
incubated with different concentrations of Ro for 24 h. After adding 0.25 mg/mL MTT [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] (Sigma-Aldrich, USA), 4
h of incubation, and the solubilization of formazan crystals, the absorbance of each well was
measured at 570 nm in a Biotek ELX 800 microplate reader (BioTek Instruments, Winooski,
VT, USA). Cell viability was determined relative to the control (absence of Ro), which was
considered to have a 100% viability [58]. The mitochondrial transmembrane potential in the
BRL 3A cells was estimated using fluorescence microscopy. Cells (5 × 104 cells/cm2) were
seeded in 3.5 cm glass dishes (with a 0.17 mm thick cover glass on the bottom (Greiner Bio-
One, Frickenhausen, Germany) and loaded with 40 nM DiOC6(3) (Thermo Fisher Scientific,
USA) and 5 nM Hoechst 33258 (Thermo Fisher Scientific, USA) with incubation at 37 ◦C for
30 min. Images were acquired in a widefield Leica AF6000 microscope (Leica Microsystems,
Wetzlar, Germany), using the HCX APO UVI 100×/1.3 oil plan apochromatic objective
and the ultrafast Leica DFC365 FX monochromatic digital camera (Leica Microsystems,
Germany). The set of cube filters used included A4 (ex 360/40, DC 400 nm, em 470/40)
and L5 (ex 480/40, DC 505, em 527/30) (Leica Microsystems, Germany) filters.

2.10. Blood Biochemical Analyses

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were de-
termined in serum using commercial kits according to the manufacturer’s instructions
(LABTEST, Lagoa Santa, MG, Brazil).

2.11. Untargeted Metabolomics Analysis by HPLC-ESI-MS/MS

An HPLC-MS analysis was performed in a Shimadzu UFLC system coupled to a
quadrupole time-of-flight mass spectrometer (micrOTOF QII, Bruker Daltonics, Billerica,
MA, USA) using a C18 column (5 µm, XB-C18 Kinetex, 100Å, 150 × 3 mm, Phenomenex).
The mobile phase was composed of water (A) and MeOH (B), both with 0.1% formic acid,
at a flow rate of 0.75 mL.min−1. The following gradient was employed: 0–23 min, 10–100%
B; 23–26 min, 100% B; 26–27 min, 100–10% B; and 27-30 min, 10% B. The column oven
was set to 45 ◦C, and an injection volume of 10 µL was selected. Chromatograms were
acquired in both positive and negative ionization modes, and the following parameters
were employed for the mass spectrometer: end plate offset, 500 V; capillary voltage, 3200 V
for negative mode and 3500 V for positive mode; nebulizer pressure, 4.5 bar; dry gas (N2)
flow, 9 L.min−1; dry temperature, 200 ◦C; mass range, m/z 150 to 1200; MS/MS scan mode;
number of precursors, 3; exclusion activation, 1 spectrum; and exclusion release, 36 s.

2.12. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The glycolic extract was submitted to a head space analysis, and the GC-MS method-
ology was based on the previously reported methodology [59]. The analysis was carried
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out on the GCMS-QP2010 (Schimadzu, Japan) according to the following parameters: injec-
tor temperature, 250 ◦C; column temperature, 60 ◦C; heating ramp from 60 to 210 ◦C, at
3 ◦C/min, with a total time of 50 min; chromatographic column, DB-5, 30 m × 0.25 mm in
diameter, 0.25 µm in thickness; and helium was used as the carrier gas under 79.7 kPa at
1.30 mL/min with a linear velocity of 41.6 cm/s, a 1 µL injection volume, and a 1:60 split.

2.13. Statistical Analyses

Quantitative data are presented as the mean ± SD of (at least) three independent
experiments performed in triplicate. For multiple comparisons, a one-way ANOVA was
used, followed by Tukey’s post hoc test. The Prism 8.0 software (GraphPad Software Inc.,
La Jolla, CA, USA) was used to perform the data analyses. Statistical significance was
defined as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

3. Results
3.1. Rosmarinus officinalis Glycolic Extract (Ro) Protects Mitochondrial Lipids and Proteins from
Oxidation

The production of mitochondrial ROS was evaluated through the kinetic measurement
of dichlorofluorescein (DCF) fluorescence. When incubated with t-BOOH or Fe2+, isolated
rat liver mitochondria energized by succinate immediately increased the production of
ROS. Due to the nature of the oxidative stress inducer, it was possible to observe that
the fluorescence increase rate was faster for the Fe2+ (Figure 1B, black line) than for the
t-BOOH (Figure 1A, red line). The preincubation of the mitochondrial suspension with Ro
abolished the ROS production triggered by both inducers in a concentration-dependent
manner. These effects were translated into the protection of mitochondrial membranes
from oxidation by Fe2+ (squares, orange) or t-BOOH (circles, red), estimated by TBARS
(Figure 1C). Moreover, the formation of Fe2+-induced lipid hydroperoxides was inhibited by
Ro at 0.025% (orange) and 0.05% (red) (Figure 1D). Such a lipid protective action exhibited
by Ro was accompanied by the prevention of GSH oxidation by t-BOOH (Figure 1E) and
the oxidation of reduced thiol groups of mitochondrial proteins by both t-BOOH (Figure 1F)
and Fe2+ (Figure 1G) at the same concentrations.

Together, these results indicate the ability of Ro to protect mitochondria (and possibly
cells) from oxidative damage, highlighting its potential to prevent pathological conditions
and diseases associated with oxidative stress.

3.2. Iron (II) Chelating and Free Radical Scavenger Activity Account to the Antioxidant Protection
Exhibited by Ro

The quantification of total phenols and flavonoids, substances with recognized an-
tioxidant action, are presented in Table 1. In an attempt to provide further mechanistical
insights regarding the antioxidant capacity of Ro, its ability to chelate Fe2+, which is used
here as inducer of oxidative stress, was investigated. In a competitive spectrophotometric
assay using bathophenanthroline, Ro chelated more than 75% of the available Fe2+, even at
a lower concentration (Figure 2A). This may help to explain, at least partially, the protective
effects observed in the Figure 1. Additionally, the free radical scavenger activity of Ro
was investigated. As observed in Figure 2B, Ro reduced (scavenged) DPPH radicals in a
concentration-dependent manner. At 0.025%, the effect was similar to 10 µM quercetin,
a well-studied flavonoid known for its free radical scavenger activity and antioxidant
properties [60]. Since DPPH is not a biological free radical, we also investigated the ability
of Ro to scavenge O2

•− generated by the xanthine/xanthine oxidase system, using NBT as
indicator [61]. Ro exhibited significant O2

•− scavenger activity at 0.05 and 0.01%, evaluated
by the inhibition of NBT reduction by this radical. Finally, using a lipidic model system to
mimic mitochondrial membranes [62], i.e., unsaturated PCPECL liposomes, it was possible
to demonstrate that Ro prevents Fe2+-induced lipid oxidation regardless of mitochondrial
function or a dependence on mitochondrial constituents. Thus, the ability to scavenge free
radicals and to block lipid peroxidation reactions contributed to Ro’s antioxidant activity
and to the protective effects observed in mitochondria (Figure 1).
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(F) or Fe2+ (G). In (D–G), negative control (absence of Fe2+ and Ro) is represented by white bars, 

Figure 1. Glycolic extract of Rosmarinus officinalis (Ro) protects isolated rat liver mitochondria from
oxidative stress. Mitochondria (1.0 mg/mL) were energized by succinate (site II substrate) in the
presence of rotenone. DCF fluorescence was recorded kinetically using 0.6 mM t-BOOH ((A), red
line) or 50 mM Fe2+ ((B), black line) as inducers of oxidative stress. Ro concentrations are represented
by cyan (0.005%), blue (0.025%), and magenta (0.05%) lines. The inhibitory effect of Ro on the lipid
oxidation (TBARS) induced by Fe2+ (squares, orange line) or t-BOOH (circles, red line). Effects of
different concentrations of Ro on the formation of lipid hydroperoxides (LOOH) induced by Fe2+ (D),
GSH oxidation induced by t-BOI (E), and oxidation of protein thiol groups induced by t-BOOH (F) or
Fe2+ (G). In (D–G), negative control (absence of Fe2+ and Ro) is represented by white bars, positive
control (Fe2+ or t-BOOH) by black bars, and the effects of Ro by yellow (0.005%), orange (0.025%),
and red (0.05%) bars. In (C–G), data are presented as mean ± SD of three independent experiments.
Statistical differences are indicated by * (p < 0.05) and ** (p < 0.01).
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Table 1. Total phenols and flavonoids concentration present in 0.05% Ro.

Concentration (µM)

Total phenols 12.4 ± 0.2
Flavonoids 7.2 ± 0.1
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vitro. This is relevant since many antioxidant substances also have a cytotoxic effect [63] 
which can hinder their therapeutic potential. In this regard, the possible cytotoxicity of Ro 
was investigated in cultured BRL 3A cells, a fibroblast-like cell line isolated from rat livers. 
Cell viability, evaluated by the MTT assay, was not affected by Ro in the concentration 
range tested (0.005–0.05%), i.e., the incubation of Ro with BRL3A cells for 24 h did not 
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Figure 2. Fe2+ chelating and free radical scavenger activities of glycolic extract of Rosmarinus officinalis
(Ro). (A) 0.005 or 0.01% Ro were incubated with 50 µM Fe(NH4)2(SO4)2 and the absorbance of
bathophenanthroline-Fe2+ complex was determined at 535 nm. (B) DPPH reduction by different
Ro concentrations and the absorbance were determined at 517 nm, using 10 µM quercetin (Q) as a
reference. (C) Superoxide was detected by its reaction with nitroblue tetrazolium (NBT) at 540 nm,
considered 100% in the absence of Ro; different indicated Ro concentrations decreased NBT reduction.
(D) Inhibitory effect of Ro on the lipid oxidation (TBARS) of 1.0 mM PCPECL liposomes induced
by Fe2+. Results expressed as percentage were calculated in relation to control (absence of Ro or
Fe2+), considered to be 100%. Data are presented as mean ± SD of three independent experiments.
Statistical differences are indicated by ** (p < 0.01) and *** (p < 0.001).

3.3. Ro Does Not Affect Viability or Mitochondrial Membrane Potential (∆Ψ) of Liver Fibroblasts

To strengthen the pharmacological potential of Ro, its cytotoxicity was evaluated
in vitro. This is relevant since many antioxidant substances also have a cytotoxic effect [63]
which can hinder their therapeutic potential. In this regard, the possible cytotoxicity of Ro
was investigated in cultured BRL 3A cells, a fibroblast-like cell line isolated from rat livers.
Cell viability, evaluated by the MTT assay, was not affected by Ro in the concentration
range tested (0.005–0.05%), i.e., the incubation of Ro with BRL3A cells for 24 h did not
decrease cell viability compared to the control (Figure 3A). These results were confirmed
by the Trypan blue exclusion assay (Figure 3B). Moreover, Ro did not alter the ∆Ψ of BRL
3A cells assessed by fluorescence microscopy using DiOC6(3) (Figure 3C(b),D, red bar).
As a control, the total ∆Ψ dissipation was achieved by adding CCCP, an uncoupler of the
OXPHOS (Figure 3C(c),D, white bar).
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hepatotoxicity in mice and rats [64,65]. As expected, AAP administration increased serum 
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Figure 3. Absence of cytotoxicity of glycolic extract of Rosmarinus officinalis (Ro). (A) Viability of BRL
3A cells incubated with Ro (0 to 0.05%) for 24 h was estimated with MTT (A) and trypan blue (B) assays.
The effects of Ro on cell viability were calculated in relation to control (absence of Ro), considered
100%. (C) Representative images of the mitochondrial membrane potential estimated by fluorescence
microscopy using DiOC6(3). Cells were loaded with dyes, and fluorescence emission was acquired
before and after 0.05% Ro addition. The uncoupler CCCP (10 µM) was used as positive control (see
Methods for details). Scale bars (20 µm) (D) Relative quantification of DiOC6(3) fluorescence emission
(L5 channel) considering the replicates. In (A,B) data are expressed as percentages of viable cells
(mean ± SD) calculated in relation to control (i.e., without Ro), considered as 100%. Statistically
non-significant (n.s.), considering p < 0.05.

3.4. Ro Protection against Acetaminophen-Induced Hepatotoxicity in Rats

The antioxidant activity of Ro, its effect in protecting isolated rat liver mitochondria
from oxidative stress conditions, and its absence of cytotoxicity in vitro led us to investigate
whether such protective effects can be observed in vivo. To this end, a well-established and
clinically relevant model of oxidative-stress-mediated hepatotoxicity was selected. The
acute exposure to high doses of AAP generates radical intermediates during its hepatic
metabolism, depleting antioxidant defenses and resulting in oxidative tissue damage [43].
To establish the experimental model, a single dose of AAP (900 mg/kg) was adminis-
trated to the rats, which were or were not treated with 0.5% Ro, and the blood levels of
alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. This
high dose of AAP is well established in the literature to induce acute hepatotoxicity in
mice and rats [64,65]. As expected, AAP administration increased serum levels of ALT
(Figure 4A, black bar) and AST (Figure 4B, black bar), indicating the occurrence of liver
injury. As a control, Ro alone did not exert any effect on ALT or AST levels (orange bars,
Figure 4A,B, respectively) compared to the basal levels, i.e., control, non-treated rats (white
bars, Figure 4A,B), indicating the absence of an intrinsic hepatotoxicity of the extract.
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Figure 4. Rosmarinus officinalis (Ro) protects against acetaminophen-induced hepatotoxicity in vivo.
Rats were divided into four groups (n = 7) and treated intraperitoneally, as described in Materials
and Methods. Group C (white bars): control, treated with vehicle (DMSO); group Ro (orange bars):
0.5% Ro once a day for four days; group AAP (black bars): single dose of 900 mg/kg acetaminophen;
group Ro/AAP (red bars): received Ro for four days, followed by single dose of AAP. (A) Alanine
aminotransferase and (B) aspartate aminotransferase levels. (C) GSH, (D) TBARS, and (E) reduced
thiol groups of proteins quantified as described by isolated mitochondria in Figure 1. Statistical
differences are indicated by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

Such a hepatotoxic effect of AAP was accompanied by GSH consumption (Figure 4C,
black bar) and increased lipid oxidation (Figure 4D, black bar) without affecting the reduced
thiol levels of proteins (Figure 4E, black bar). Interestingly, the treatment of animals with
0.5% Ro was able to reestablish the basal levels of ALT and AST in AAP-treated animals
(red bars, Figure 4A,B, respectively), indicating a complete restoration of the liver integrity
against the AAP-induced toxicity. We then further investigated whether this effect was
accompanied by an improvement in oxidative stress indicators. In AAP-treated rats, Ro
partially inhibited GSH oxidation (Figure 4C, red bar) and completely prevented lipid
oxidation (Figure 4D, red bar) without an effect on the redox state of the protein thiol
groups (Figure 4E, red bar). It is noteworthy that Ro diminished even the basal lipid
oxidation (Figure 4D, orange bar).
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3.5. Chemical Composition of Rosmarinus officinalis L. Glycolic Extract

In order to gain more information about the chemical composition of Ro, we conducted
an untargeted metabolomics analysis of the glycolic extract at both positive and negative
ionization modes. The annotated metabolites are shown in Figure 5/Table 2 and the ion
intensity of each metabolite are presented in Figure 6. As expected, several phenolic com-
pounds already described for this plant were detected [36], e.g., caffeic acid, rosmanol, and
rosmarinic and carnosinic acids. All metabolites had their annotations confirmed through
a detailed discussion of the decomposition reactions in the gaseous phase [66], following
the correlation with the literature recently proposed by Pilon and collaborators [67] for the
analysis of glycosylated flavonoids.
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Table 2. Metabolites of Ro annotated by HPLC-ESI-MS/MS.

ID RT
(min)

MS
m/z [M − H]−

MS/MS
m/z Compound Reference

1 4.9 179 135 Caffeic acid [68]
2 a 6.5 305 225 Gallocatechin [69]
3 8.2 237 179, 161 Caffeoylglycolic acid -

4 a 9.4 359 161(100), 179,
197 Rosmarinic acid [70]

5 10.8 461 285(100), 199,
151

Luteolin-7-O-
glucuronide [68]

6 11.7 503 399, 285(100),
255

Luteolin-3′-O-(3-
acetyl)-glucuronide [11]

7 12.0 315 300(100), 227,
199

Methoxy-tetra-
hydroxy-flavone -

8 a 12.8 345 301, 283, 267,
217 Rosmanol isomer [70]

9 a 13.4 345 283, 267, 227 Rosmanol
isomer/epirosmanol [70]

10 14.1 313 298, 283, 255,
227, 164 Cirsimaritin [71] (CCM-

SLIB00004718157)

11 15.6 345 283, 227 Rosmanol
isomer/epirosmanol [70]

12 a 16.9 343 299, 243, 216 Rosmadial or
Rosmanol quinone [68]

13 a 17.7 329 285(100), 201 Carnosol [70]
14 18.9 315 285, 201 Rosmaridiphenol [68]

15 20.3 331 287(100), 272,
244 Carnosic acid [68]

16 20.9 345 301(100), 286,
271 Methyl carnosate [70]

RT
(min)

MS
m/z [M + H]+

MS/MS
m/z Compound Reference

17 10.3 611 547, 449,
287(100) Hesperidin [71] (CCM-

SLIB00000214340)

18 10.8 449 287(100) Astragalin [71] (CCM-
SLIB00003136634)

a Majority compounds—TIC (negative mode).
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4. Discussion

The wide range of biological actions reported for R. officinalis has long drawn the
attention of researchers worldwide. In this study, for the first time, we showed that the
antioxidant activity exhibited by rosemary extract and its chemical constituents is able to
protect mitochondria subject to oxidative stress conditions. During the electron transport
by the respiratory chain, mitochondria generate superoxide anions that are converted to
hydrogen peroxide (H2O2). In the presence of Fe2+, H2O2 is converted to hydroxyl radicals,
and these species are able to oxidize mitochondrial lipids and proteins, compromising
energy production and Ca2+ homeostasis and culminating in cell death [46,72]. Thus, we
used this complex system to evaluate the antioxidant potential of the glycolic extract of
R. officinalis (Ro). Two different methods of inducing oxidative stress were used: Fe2+

and t-butyl hydroperoxide (t-BOOH). The former is able to catalyze Fenton reactions,
amplifying the production of reactive oxygen species (ROS). and the latter is an organic
peroxide that per se consumes antioxidant defenses to be eliminated, exposing cells to
oxidative damage [45,46]. In both situations, Ro was able to inhibit ROS production and
the oxidation of mitochondrial lipids and proteins. Previous studies have reported the
ability of R. officinalis to inhibit the lipid peroxidation of phospholipids and membrane
model systems [73–75], erythrocytes [76,77], low density lipoproteins (LDL) [78], and tissue
homogenates [28].

Among the mechanisms of action for antioxidant activity, we found that Ro exhibits
a free radical scavenger activity and the ability to chelate Fe2+. Most studies have used a
DPPH assay to infer the scavenger activity of rosemary extracts and essential oils; however,
it is noteworthy that DPPH is not a radical produced in biological systems. Therefore,
we further examined and demonstrated the capacity of the rosemary leaf glycolic extract
to scavenge superoxide anions. Such an ability was previously shown for diterpenoids
isolated from R. officinalis [79], and it is subject to seasonal variations [80]. The essential
oil of R. officinalis was also able to scavenge hydroxyl radicals and chelate Fe2+ [81]. These
properties of R. officinalis extracts are provided by their high content of powerful, well-
known, synergistically acting antioxidant compounds including flavonoids, phenolic acids,
and terpenes. For example, the antioxidant activity exhibited by carnosol was linked to
an enhanced health and lifespan in C. elegans, accompanied by an increase in the activity
of several antioxidant enzymes and a decrease in TBARS content [82]. As expected, the
phytochemical analysis of the glycolic extract of R. officinalis identified the presence of
several phenolic compounds already described for this plant. It should be noted that chloro-
genic acid, a common compound with significant antioxidant activity, was not observed
in these samples. A recent study demonstrated that the concentration of chlorogenic acid
varies greatly depending on the drying process used for the leaves [83], which may explain,
in part, the absence of the signal. The polyphenolic profile of rosemary has been widely
described in the scientific literature [70,84–86], and the profile observed in the glycolic
extract of the R. officinalis employed in this study was characterized by the presence of
carnosic acid, carnosol, rosmarinic acid, and hesperidin. The mechanism of action was
related to the free radicals’ chain terminators and scavengers of ROS. On the other hand,
compounds such as hesperidin are known for their ability to chelate metals. This confers a
resistance to pests, as described in citrus [87], but can also support antioxidant properties.
The occurrence of astragalin reinforces all the biological effects described in our article. This
kaempferol 3-glucoside has several biological activities described, including antioxidant
effects [88]. Therefore, the global analysis of the main metabolites contained in the extract
support the observed activities. Finally, as expected, GC-MS exhibited a trace signal. The
major compound detected was camphor, showing no contribution of the previous essential
oil constituents to the described biological activities.

The antioxidant power of R. officinalis has been shown to be responsible for the plant’s
protective effects against oxidative stress. Rosemary prevented the renal toxicity elicited by
diethylnitrosamine [89] and potassium dichromate [90] by inhibiting lipid peroxidation
and improving the capacity of the antioxidant enzymatic system. Potassium dichromate
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was also employed to induce hepatotoxicity in rats. In this context, rosemary essential oil
exhibited hepatoprotective action, characterized by the inhibition of the lipid peroxidation,
GSH, and protein oxidation, and by the restoration of the levels of antioxidant enzymes [40].
Similar observations were made for hepatotoxicity induced by CCl4. Rosemary essential oil
inhibited the lipid peroxidation and ‘reversed’ the activities of antioxidant enzymes catalase,
peroxidase, glutathione peroxidase, and glutathione reductase in a liver homogenate [91].
A methanolic extract obtained from R. officinalis leaves [92,93] and a shoot tincture [94]
also presented the same protective results on CCl4-induced hepatotoxicity in rats. When
t-BOOH was used as the oxidizing agent used to induce liver damage, R. officinalis also
exhibited protective effects [95]. Acetaminophen is one of the most widely used analgesic
and antipyretic drugs in the world. Although it is a relatively safe drug at therapeutic
doses, acute overdose, chronical exposition, or association with other xenobiotics can result
in severe hepatotoxicity. After oral intake, a major part of it is conjugated with glucuronic
acid in the liver and eliminated by the kidneys. However, a fraction of AAP undergoes
metabolization by the cytochrome P450 system, generating the toxic metabolite N-acetyl-p-
benzoquinone imine (NAPQI) which, under normal conditions, is conjugated with GSH
and eliminated. Nonetheless, increased NAPQI production results in the depletion of GSH
and, consequently, oxidative liver damage [96]. Thus, we investigated for the first time the
possible protective effect of Ro on AAP-induced hepatotoxicity. To validate the model, our
data showed that a single high dose of AAP caused a depletion of GSH and increased lipid
peroxidation. Such oxidative alterations were accompanied with liver damage. This was
attested by increased levels of ALT and AST, biochemical markers of hepatocyte damage.
Both aminotransferases were quantified since tissues other than the liver have elevated AST
levels, such as the erythrocytes, heart, and muscle, while ALT has more specificity to the
liver. Our data showed an increased AST/ALT ratio (De Ritis ratio), higher than 1.0, when
rats were treated with AAP. This is predictive of long-term complications such as fibrosis
and cirrhosis [97]. As shown, Ro indisputably protected the rat livers from AAP toxicity
since the AST and ALT levels returned to the basal levels when compared to control. The
powerful antioxidant activity of Ro seems to be responsible for this hepatoprotection since
the GSH depletion was abolished and the lipid oxidation was also diminished. This strategy
of using antioxidants to protect the liver from AAP toxicity was successfully achieved with
N-acetyl cysteine [98,99].

Finally, it is important to correlate the general chemistry data annotated in this paper
with the Ro effects. More than half of the compounds have the catechol group. It is
well known that catechol and its many functionalized derivatives are excellent metal
chelators [100]. Considering only the phenol group, which is a good and well-known
antioxidant [100], the number is even more expressive since all 18 major compounds noted
have at least one hydroxyl linked to an aromatic ring. Therefore, we believe that the
observed effect must surely be a synergistic combination of all the actives described in this
work.

5. Conclusions

Together, our data reinforced the antioxidant activity of R. officinalis through a free
radical scavenger activity and by diminishing the Fe2+-catalyzed Fenton reactions. We
showed that these activities enabled Ro to protect isolated rat liver mitochondria from
oxidative damage caused by different mechanisms (Fe2+ or t-BOOH). Moreover, Ro did
not present cytotoxicity in cultured liver cells, and it exhibited a potent hepatoprotective
effect against AAP toxicity in vivo. Further studies are necessary to the development of
pharmaceutical formulations containing Ro, and clinical trials are required to evaluate the
potential hepatoprotective effect in patients.
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88. Kluska, M.; Juszczak, M.; Żuchowski, J.; Stochmal, A.; Woźniak, K. Effect of Kaempferol and Its Glycoside Derivatives on
Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022, 27, 333. [CrossRef] [PubMed]

89. Hassanen, N.H.M.; Fahmi, A.; Shams-Eldin, E.; Abdur-Rahman, M. Protective Effect of Rosemary (Rosmarinus officinalis) against
Diethylnitrosamine-Induced Renal Injury in Rats. Biomarkers 2020, 25, 281–289. [CrossRef]

http://doi.org/10.1016/0041-008X(88)90048-8
http://doi.org/10.1002/jat.1012
http://doi.org/10.1039/b110412h
http://doi.org/10.1021/acs.analchem.8b05479
http://doi.org/10.3390/molecules21111576
http://doi.org/10.3390/molecules25204599
http://doi.org/10.1016/j.foodchem.2012.07.091
http://doi.org/10.1038/nbt.3597
http://www.ncbi.nlm.nih.gov/pubmed/27504778
http://doi.org/10.1126/science.281.5381.1309
http://www.ncbi.nlm.nih.gov/pubmed/9721092
http://doi.org/10.3109/00498259209046624
http://doi.org/10.1021/jf9026487
http://doi.org/10.5851/kosfa.2022.e30
http://doi.org/10.1016/j.jcjd.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25659282
http://doi.org/10.1002/ptr.1774
http://doi.org/10.1055/s-2006-958094
http://doi.org/10.1016/j.foodchem.2017.10.085
http://doi.org/10.1021/jf501006y
http://doi.org/10.1155/2019/5958043
http://www.ncbi.nlm.nih.gov/pubmed/31341531
http://doi.org/10.1021/acsomega.8b02409
http://doi.org/10.1016/j.etap.2011.06.002
http://www.ncbi.nlm.nih.gov/pubmed/21843811
http://doi.org/10.1016/j.jfoodeng.2011.10.015
http://doi.org/10.1016/j.bbr.2012.10.010
http://doi.org/10.1016/j.phytochem.2015.02.011
http://www.ncbi.nlm.nih.gov/pubmed/25749617
http://doi.org/10.3390/molecules27020333
http://www.ncbi.nlm.nih.gov/pubmed/35056649
http://doi.org/10.1080/1354750X.2020.1737734


Antioxidants 2023, 12, 628 19 of 19

90. El-Demerdash, F.M.; El-Sayed, R.A.; Abdel-Daim, M.M. Rosmarinus officinalis Essential Oil Modulates Renal Toxicity and Oxidative
Stress Induced by Potassium Dichromate in Rats. J. Trace Elem. Med. Biol. 2021, 67, 126791. [CrossRef]
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