
Citation: Fortunato, S.; Lasorella, C.;

Dipierro, N.; Vita, F.; de Pinto, M.C.

Redox Signaling in Plant Heat Stress

Response. Antioxidants 2023, 12, 605.

https://doi.org/10.3390/

antiox12030605

Academic Editor: Stanley Omaye

Received: 5 February 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Redox Signaling in Plant Heat Stress Response
Stefania Fortunato *,† , Cecilia Lasorella † , Nunzio Dipierro, Federico Vita and Maria Concetta de Pinto *

Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
* Correspondence: stefania.fortunato@uniba.it (S.F.); mariaconcetta.depinto@uniba.it (M.C.d.P.)
† These authors equally contributed to this work.

Abstract: The increase in environmental temperature due to global warming is a critical threat
to plant growth and productivity. Heat stress can cause impairment in several biochemical and
physiological processes. Plants sense and respond to this adverse environmental condition by
activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an
intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing
amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible
for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses.
The role of ROS as toxic or signal molecules depends on the fine balance between their production
and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense
against oxidative damage and their activity is critical to maintaining an optimal redox environment.
However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering
redox-dependent signaling cascades. This review provides an overview of the redox-activated
mechanisms that participate in the HSR.
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1. Introduction

In recent decades, along with natural causes, anthropic activities have brought about an
alarming trend of global warming, which is driving drastic changes in our climate, resulting
in more frequent and intense heat waves and causing substantial losses to agricultural
production [1–3]. Plants can be exposed to different forms of heat stress (HS), such as heat
shock, which is an increase in temperature of 10–15 ◦C above ambient for a short period
(from several minutes to a few hours) or prolonged warming that consists in exposing
plants to a modest increase in temperature (2–5 ◦C above ambient) for several days or
weeks [4,5]. HS affects plant growth, development, and reproduction at morphological,
physiological, and molecular levels [6], even though plants can use different strategies to
combat these two types of HS [7].

One worrying consequence of temperature rise is how it severely limits crop productiv-
ity. HS occurring during gametogenesis causes morphological abnormalities in pollen and
ovary ultrastructure and viability, thus affecting fertilization efficiency; moreover, HS im-
pacts the duration of grain filling, the availability of assimilates, and the enzymes of starch
metabolism while also altering the abscisic acid/ethylene ratio [8–10]. Like other alterations
in environmental conditions, such as cold, drought, flooding or nutrient deficiency, heat
directly affects plant growth and modifies plant relations with pathogens, thus strongly
impacting crop yield [11]. As occurs in many other biotic and abiotic stresses [12–14],
under HS, several biochemical and physiological processes are altered, including water
potential, transpiration, nutrient uptake and transport, cell division and differentiation,
respiration, and photosynthesis [15–18]. Photosynthesis is the main physiological process
that is affected by heat. High temperatures modify the microscopic ultrastructure of chloro-
plasts, altering membrane fluidity and increasing thylakoid leakiness [19]. Heat damage
in chloroplasts occurs principally on photosystem II (PSII) [20–23], the oxygen-evolving
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complex (OEC) [24], the ATP-generating system, and the cytochrome b6f complex [25,26].
In addition, HS also affects the activity of RUBISCO activase [27,28], the metabolism of
carbon assimilation, and chloroplast biosynthesis, leading to leaf senescence, which is a
clear symptom of heat injury [29–32]. At the cellular level, HS increases the production
of reactive oxygen species (ROS), which directly or indirectly may cause many injuries
such as protein denaturation, the inhibition of protein synthesis, the loss of membrane and
cytoskeleton integrity, and the inactivation of enzymes [33,34].

As sessile organisms, plants have developed sophisticated signaling networks to
sense HS and react to the harmful effects of high temperatures [34–38]. Since photosyn-
thetic apparatus is the primary target of heat damage, chloroplasts can act as sensors
of HS [26,38], activating retrograde signaling that induces changes in the expression of
nuclear-encoded genes for the metabolic and molecular reprogramming required for stress
adaptation [39–41]. One of the most well-studied mechanisms of the heat stress response
(HSR) is the intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs).
HSPs are chaperone proteins that are able to repair aggregated, denatured, or misfolded
proteins, allowing plants to maintain their delicate metabolic processes during heat and
other stress [42].Through their association with the heat shock element (HSE), in the pro-
moter of HSPs and other heat-responsive genes, HSFs alter gene expression to obtain
adjustments in the molecular pathways involved in enabling plants to survive under high
temperatures [43].

In recent years, many data have highlighted a significant role of ROS as signaling
molecules in the HSR [44,45]; moreover, several genetic and biochemical studies have
indicated that complex interactions take place between HSFs/HSPs, ROS, and the heat
acclimatation response [46]. This review aims to provide and discuss data on the role
of ROS and the redox-related signaling pathways that are involved in the acquisition of
thermotolerance.

2. Production of Reactive Oxygen Species in Heat Stress Conditions

High temperature, like many environmental stresses, leads to the overproduction
of ROS, the reactive forms of molecular oxygen (O2), including singlet oxygen (1O2),
superoxide anion radical (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radical (HO•).
Under environmental stress conditions, ROS accumulation results in oxidative damage
to biomolecules, such as pigments, proteins, lipids, carbohydrates, and DNA, leading
to cellular injuries and cell death. However, a fine balance between production and
scavenging, controlling ROS levels, allows these molecules to act as molecular signals
that induce changes in cellular metabolism, leading to adaptative responses or triggering
programmed cell death (PCD) [47,48].

Under abiotic stress, ROS production occurs in different cellular compartments, such
as chloroplasts, mitochondria, peroxisomes, cell wall, apoplast, and plasma membrane.
During stress conditions, ROS production occurring in the photosynthetic and respiratory
electron transport chains performs a regulatory function in alleviating over-reduction [49].
Moreover, the redox state of chloroplasts, peroxisomes, and mitochondria is connected
by photorespiration, which is affected by several environmental stresses [50]. ROS accu-
mulation in different organelles strictly depends on the plant tissues. In organs with low
photosynthetic metabolism, such as fruits and flowers, ROS are principally formed in the
mitochondria, peroxisomes, and apoplast [51], while in photosynthetic tissues, chloroplasts
are the prime source of ROS [52]. Chloroplasts act as the principal sensors of environmental
stresses, including heat [53]. HS in chloroplasts reduces photosynthetic efficiency, deacti-
vating the reaction center of PSII and inhibiting electron flow to the plastoquinone pool
and the induction of non-photochemical quenching [54]. Damage to the photosynthetic
components can lead to excess excitation energy, resulting in the formation of a chlorophyll
triplet state that reacts with molecular oxygen, forming 1O2 [55]. 1O2 formation at high
temperatures is also associated with heat-induced lipid peroxidation in the thylakoid mem-
brane and damage to PSII [56]. In the unicellular green alga, Chlamydomonas reinhardtii,
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which is exposed to 40 ◦C, it has been suggested that 1O2 formed by lipid peroxidation is
initiated by an enzymatic reaction that is catalyzed by lipoxygenase [57]. Additionally, 1O2
can be produced by the direct decomposition of tetraoxide via the Russell reaction [57].

In chloroplasts, O2
•− is formed by three processes: (i) in PSII, associated with incom-

plete water oxidation, (ii) in the electron transport chain, via plastosemiquinone interaction
with O2, and (iii) in Photosystem I (PSI), due to the oxidation of ferredoxin that reduces O2
to O2

•− and that takes place when the Calvin–Benson cycle does not operate properly and
lowers NADP+ availability [50,53]. O2

•− is disproportionate to H2O2 and O2 in a reaction
catalyzed by superoxide dismutase (SOD) [58]. Moreover, H2O2 can also be produced in
PSII when HS causes the cleavage and degradation of the D1 protein with the consequent
release of PsbO, PsbP, and PsbQ [23,56]. These three proteins, which together with the inor-
ganic cluster of Mn4O5Ca form the OEC, are located on the inner surface of the thylakoid
membrane, in close association with PSII, and are involved in its thermal stability [59].
Indeed, the release of PsbO, PsbP, and PsbQ proteins leads to improper H2O accessibility
to the water-splitting manganese complex and the consequent formation of H2O2. On the
PSII electron donor site, H2O2, formed by incomplete water oxidation, can produce the
more toxic HO•, through the Fenton reaction [60].

Under HS, the disturbances of respiratory metabolisms in the mitochondria trigger
impairments of the electron transport chain (ETC), resulting in an increase in ROS levels.
In tobacco cells, an impaired mitochondrial metabolism is responsible for the oxidative
burst arising during heat-induced PCD [61,62]. O2

•−, which is formed when a single elec-
tron leaks to O2 in ETC components, can act as a substrate for the generation of H2O2 by
matrix-localized manganese SOD (MnSOD) [63]. HS promotes Ca2+ increase in mitochon-
dria, which is accompanied by hyperpolarization of the inner mitochondrial membrane,
leading to an increase in ROS generation [64]. HS increases membrane fluidity, impairing
cytochrome c oxidase (COX), resulting in an over-reduction in the ETC that culminates in
ROS production [65,66]. The maintenance of COX integrity is favored by the mitochondrial
HSP70-1; consistently, mtHSC70-1 knockout lines show decreased COX activity and an
increase in ROS production [67]. Additionally, during HS, an induction of COX1, COX2,
and COX3 genes has been reported in Arabidopsis [7], highlighting the fact that plants
try to counteract HS injury to mitochondria by preventing imbalances in the ETC. More-
over, in plants, the presence of alternative oxidase (AOX), which catalyzes the oxidation of
ubiquinol and the reduction of O2 to H2O, helps to maintain electron flow, preventing the
over-reduction in the ETC and O2

•− formation [68]. The increase in the AOX protein after
exposure to high temperatures confirms the participation of this enzyme in HSR [69].

During HS, ROS generation also comes from the activity of the plasma membrane
NADPH-oxidase, which transfers an electron from intracellular NADPH to O2 in the
apoplast, generating O2

•−, which is then converted into H2O2 by SOD [70,71]. NADPH-
oxidase is controlled by phosphorylation and by the direct binding of calcium. Thus,
cytosolic calcium influx, occurring as a result of heat perception, activates the enzyme and
leads to ROS accumulation [72]. In Arabidopsis, NADPH-oxidase is encoded by ten genes
(respiratory burst oxidase homologues—RBOHs), which are involved in several biological
processes, including biotic and abiotic stress responses. AtrbohB and AtrbohD play a key
role in HSR, as suggested by the heat-sensitive phenotype observed in atrbohB and atrbohD
Arabidopsis mutants [73]. In rice, six NADPH-oxidase genes increase their expression in
response to HS [74]. NADPH-oxidase has a crucial function in thermotolerance acquisi-
tion, enhancing the expression of heat-induced genes and controlling the H2O2 level by
regulating antioxidant enzymes [75].

3. Role of Antioxidants in Heat Stress Response

The role of ROS as toxic or signaling molecules depends on a delicate equilibrium
between the production and scavenging of these reactive species in different cell compart-
ments [46,47]. Antioxidants are the first line of defense against oxidative damage and
their activity is critical to maintaining an optimal redox environment. The antioxidant
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machinery includes non-enzymatic components, such as ascorbate (ASC), glutathione
(GSH), carotenoids and tocopherols, as well as enzymatic components such as ascorbate
peroxidase (APX), catalase (CAT), SOD, peroxidases (PODs), glutathione peroxidase (GPX),
glutathione S-transferase, and the enzymes involved in the reduction of the oxidized
forms of ASC and GSH in the ASC–GSH cycle, namely, monodehydroascorbate reductase,
dehydroascorbate reductase, and glutathione reductase (GR) [76].

A primary strategy used to Iimpart thermotolerance in plants involves enhancing the
antioxidant machinery. In wheat, HS is better tolerated by plants that are subjected to heat
priming. The improvement of thermotolerance is related to the enhanced activity of antioxidant
enzymes, particularly to the upregulation of chloroplastic Cu/Zn-SOD and mitochondrial
GR and POD [77,78]. Consistently, in Chinese Spring, an HS-sensitive wheat variety, the
significant decrease in SOD, CAT, POD, and GPX activities, occurring after exposure to high
temperature, causes ROS accumulation and increased levels of oxidized lipids [79]. In apple
trees, HS (48 ◦C for 6 h)—despite the increases in antioxidant activity—causes a rise in H2O2,
O2

•− and lipid peroxidation, and a decrease in chlorophyll content. The overexpression of
MdATG18a, encoding a key protein involved in autophagy, removes damaged chloroplasts
and enhances antioxidant activity, thus improving the expression of heat-related genes. In
transgenic plants, the reduction of ROS accumulation confers thermotolerance [80].

Many treatments that confer thermotolerance activate antioxidant machinery. In
potato seedlings, a pre-treatment with sucrose, before exposure to HS, enhances SOD, CAT,
APX, and POD activity, reducing ROS accumulation and resulting in increased thermotol-
erance [81]. Similar results have been obtained in potato plants treated with exogenous
silicon, which mitigates heat-induced oxidative stress by increasing the expression of antiox-
idant enzymes [82]. In strawberries, the enhanced transcription of biosynthetic enzymes of
ASC and GSH and antioxidant enzymes (APX, CAT, SOD, and GR), occurring in plants
pre-treated with sodium hydrosulfide before HS, leads to a higher stress tolerance [83].
Furthermore, tomato thermotolerance due to the exogenous application of rosmarinic acid,
a plant-derived phenolic compound, is linked to the increased transcript abundance and
activity of ASC–GSH cycle enzymes, which modulate the ASC and GSH redox state [84].

The behavior of antioxidant machinery to counteract and/or mitigate heat injury
depends on plant species, genotypes, phenological stage, and stress severity [85–90]. More-
over, different isoforms of antioxidant enzymes can show different performance in HSR;
therefore, changes in the antioxidant systems in response to HS denote a complex scenario
with a number of controversial points.

Among the antioxidant enzymes, CAT is one of the main scavengers of H2O2. Ara-
bidopsis plants possess three CAT isoenzymes differing in their subcellular localization
and exhibiting different tissue specificity. Analysis of cat mutants has suggested that CAT2
has a greater effect in removing H2O2 compared to CAT1 and CAT3, which are mainly
“backup” or stress-specific enzymes [91]. Studies on Arabidopsis mutants lacking the three
CATs have revealed that only cat2, but not cat1 and cat3, are hypersensitive to moderate
long-term HS (35 ◦C for 5 days), but the same mutants do not differ from the wild type
(wt) in response to short-term HS (42 ◦C for 40 min). However, the CAT2-overexpressing
lines do not show improved thermotolerance, suggesting that CAT2 is necessary but insuf-
ficient to enhance long-term HS response [92]. In Brassica napus seedlings, the total CAT
activity decreases after 24 and 48 h of HS at 38◦; nevertheless, after selenium supply, which
confers HS-tolerance, the increase in CAT activity, along with the subsequent reduction in
oxidative stress, indicate a role for CAT in H2O2 detoxification, which is responsible for
thermotolerance [93].

APX is a plant antioxidant enzyme that uses ascorbate as an electron donor and plays
a key role in the scavenging of H2O2. In Arabidopsis, there are different isoenzymes
classified based on their subcellular localization and that target cytosol (i.e., APX1 and
APX2), mitochondria (mitAPX), chloroplastic stroma (sAPX), and thylakoid membranes
(tAPX) [94]. Both cytosolic isoforms possess a heat shock element (HSE) in the promoters
and are induced during HSR [95–98]. Arabidopsis apx2 mutants are more sensitive to
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HS at the seedling stage, showing a lower survival rate than the wt, but showing higher
thermotolerance at the reproductive stage, producing more seeds under prolonged heat
stress. This finding supports the idea that the lack of APX2 induces a signal suppressing
ROS accumulation during stress, through the activation of different redundant ROS scav-
enging systems or the suppression of ROS production and that this signal may be stage-
or tissue-specific [99]. The phosphorylation of APX2 by the calcium-dependent protein
kinase CPK28 is needed to enhance thermotolerance; indeed, cpk28 mutants show increased
HS-induced ROS accumulation and protein oxidation together with the reduced activity
of APX [100]. The lack of APX1 in Arabidopsis causes stunted growth and enhanced
sensitivity to oxidative stress [101]; moreover, APX1 seems to be necessary to increase
tolerance to HS combined with drought [102,103]. Interestingly, APX1 subjected to heat
treatment shows conformational changes, passing from dimeric to high-molecular-weight
structures, losing peroxidase activity and acquiring chaperone activity, which can confer
thermotolerance [104].

Under HS, the expression profile of APX1 and APX2 is different; in Arabidopsis, APX1
mRNA is already present in unstressed conditions and shows a modest increase under
moderate HS, whereas APX2 mRNA is not detected in control conditions and has a fast,
transient (1–2 h), and strong induction after HS [95,96]. Similarly, in independent studies,
the maximal expression of APX1 and APX2 has been observed after 24 h and 15 min of HS,
respectively [98,105]. These data suggest a similar but not superimposable role of these
two isoforms.

The involvement of APX in HSR has also been widely studied in tobacco BY-2 cells. In
these cells, short-term HS at 35 ◦C or 55 ◦C causes an increase or a decrease in APX activity,
respectively [106]. The increase in APX activity under moderate HS is only imputable to the
cytosolic isoenzymes, whereas exposure at 55 ◦C decreases all of the APX isoenzymes [107].
In this context, the inhibition of APX activity causes ROS accumulation and participates in
the induction of PCD [61]. The reduction in cytosolic APX activity under PCD conditions is
a precocious event, due to nitrosylation, ubiquitination, and the consequent proteasome-
dependent degradation of the protein [108]. In tobacco BY-2 cells, cytosolic APX behaves
differently depending on the duration of the moderate HS: activity and expression increase
in the first 3 days of HS. However, when HS is protracted, a drop in enzyme levels is
responsible for the rise in oxidative damage, leading to cell death [109].

Inconsistent behavior of isoenzyme regulation in the HSR has also been reported for
SODs. In tomato plants, heat acclimation before HS favors an increase in the total SOD ac-
tivity, but while Fe-SODs and Mn-SODs are induced, Cu/Zn-SODs decrease. The increase
in Fe-SOD activity seems to be strictly related to conditions where the photosynthetic func-
tions are unaffected by heat, indicating that Fe-SODs could participate either in reducing
the spread of ROS and also protecting the thylakoid membrane and PSII reaction center
from oxidative damage [110,111]. More recently, it has been reported that the decrease
in Cu/Zn-SOD activity, with concomitant ROS accumulation, enhances thermotolerance
in Arabidopsis [112]; similarly, a decrease in Cu/ZnSOD and Fe-SOD mRNA levels has
been observed in Arabidopsis subject to 45 ◦C for 2 h [113]. This scenario suggests that
the activity of these antioxidant enzymes in chloroplasts may be downregulated by HS,
thus exacerbating ROS accumulation, in order to obtain cellular environment oxidation
that functions as a signal to activate stress-responsive systems [113].

In tomato, an increase in APX and SOD activities, but not in gene expression, occurs
after HS. The increase in the activity of these antioxidant enzymes is due to the induction
of the HSP40, LeCDJ1, which acts as a chaperone that protects APX and SOD protein
conformation, increasing their enzymatic activity, alleviating PSII damage, and conferring
heat tolerance [114,115]. More recently, it has been reported that HSP40 interacts with
SISNAT, an enzyme located in the chloroplast that participates in the biosynthesis of the
ROS scavenger melatonin. SISNAT-overexpressing lines subjected to HS show decreased
ROS levels, increased RUBISCO protection, and an upregulation of HSFs and HSPs [116].
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Consistently, treatment with exogenous melatonin before HS increases thermotolerance, as
a consequence of the reduction in oxidative stress [117,118].

HS tolerance in plants is also associated with non-enzymatic antioxidants. In mung
bean plants, HS at 42 ◦C leads to a decrease in the ASC content and GSH/GSSG ratio,
with a concomitant increase in oxidative markers; however, the supply of exogenous GSH
induces tolerance to high temperatures by improving the antioxidant systems [119]. Similar
results have been reported in tomato, where the decrease in GSH/GSSG ratio, which is
attributed to the impairment of GSH recycling, supports the idea that the maintenance of
GSSG under stress conditions is an indicator of high ROS accumulation [120,121].

4. Reactive Oxygen Species as Signaling Molecules in the Heat Stress Response

The heat-induced ROS accumulation is frequently considered in terms of oxidative
stress, cell damage, and death. However, ROS can act as signaling molecules crucial for the
acquisition of thermotolerance (Figure 1) [4,12,68,79,114–116,122,123]. Indeed, the amount
of H2O2 increases after the exposure to high temperatures, causing HSFs activation and
the accumulation of HSPs [124]. Consistently, in HS-exposed plants, inhibitors of H2O2
synthesis and ROS scavengers can prevent HSP expression [125]. Studies on mutants of
ROS biosynthesis corroborate the idea of ROS requirements for achieving thermotolerance.
Mutations in AtrbohB and AtrbohD, which participate in H2O2 production in the HSR, lead
to an increased heat sensitivity [73]. In addition to not accumulating H2O2, atrbohB, atrbohD,
and atrbohB/D double mutants fail to induce the expression of HSP17.7 and HSP21 [126].
H2O2 formed in the apoplast can be promptly sensed by membrane receptor kinases such as
HPCA1, which causes a calcium influx that activates MAP kinases and additional signaling
pathways [127].
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Figure 1. Mechanisms of ROS accumulation and signaling in heat stress response. After heat
stress, production, and accumulation of reactive oxygen species (ROS) occurs in both chloroplasts and
apoplast. 1O2 accumulation in the chloroplast, oxidizing β-carotene, produces β-cyclocitral, which acts
as a retrograde signal from chloroplast to nucleus, activating heat stress-responsive (HSR) genes. In
chloroplasts, damage to photosynthetic apparatus, as well as inhibition of tAPX, lead to accumulation
of H2O2, which moves to the nucleus through aquaporins, and/or ER, thus inducing HSR genes. The
chloroplast-localized GUN1, by the redox-dependent plastid to nucleus communication, is involved
in cell environment oxidation. ROS increase is also due to downregulation of CSD1, CSD2, and CCS
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by miR398, whose accumulation is dependent on HSFA1b and HSFA7b. Tocopherols produced in the
chloroplast participate in miR398 induction. H2O2 produced in the apoplast by NADPH oxidase can
diffuse in the cell via aquaporins, and/or sensed by membrane receptor HPCA1, which stimulates a
calcium influx, triggering the MAP kinases cascade and transcription of HSPs. Abbreviations: 1O2,

singlet oxygen; tAPX, thylakoidal ascorbate peroxidase; H2O2, hydrogen peroxide; ER; endoplasmic
reticulum; GUN1, genomes uncoupled1; CSD, Cu/Zn superoxide dismutase; CCS, Cu chaperone
for superoxide dismutase; HSF, heat shock factor; HPCA1, HYDROGEN-PEROXIDE-INDUCED
CALCIUM INCREASES1; MAP; mitogen activated protein; and HSP, heat shock protein. Created
with BioRender.com; accessed on 3 February 2023.

The downregulation of ROS scavenger enzymes also contributes to ROS accumulation
and the activation of HSFs, giving a positive feedback loop regulating thermotolerance.
During HS, HSFA1b and HSFA7b induce miR398, which downregulates CSD1, CSD2, and
CCS genes, encoding cytosolic and chloroplast Cu/Zn SODs and a copper chaperone that
delivers Cu for both SODs, respectively. Therefore, ROS accumulate and induce other HSF
genes, promoting heat stress tolerance. Consistently csd1, csd2, and ccd mutants and plants
over-expressing miRNA398 are more heat tolerant [112]. The lipid soluble antioxidant
tocopherols, synthesized in chloroplast during HS, positively regulate the biogenesis of
miRNAs, and this regulation involves the heat-induced accumulation of miRNA398. In
the biosynthetic tocopherol mutant vte2-1, the induction of miR398 and suppression of
CSD2 by heat are abolished; additionally, knocking down CSD2 in vte2-1 restores heat
tolerance, supporting the evidence that SODs inhibition and ROS accumulation increase
thermotolerance (Figure 1) [128].

Chloroplasts activate retrograde signaling to communicate environmental stress and
induce changes in the expression of nuclear-encoded genes, which bring metabolic and
molecular reprogramming for stress adaptation. Chloroplasts have been shown to play
an important role in heat-induced ROS accumulation and the subsequent expression of
nuclear heat-responsive genes [129]. ROS produced in chloroplasts can work as plastid
signals to activate the expression of genes coding for antioxidant enzymes and to fine-tune
the stress-responsive apparatus for a more effective adaptation to stresses [40].

Among ROS, 1O2 and H2O2 impact nuclear gene expression extensively. Singlet
oxygen can function as a retrograde signal to activate nuclear gene expression. Given
the very short half-life of 1O2 (200 ns) and its high reactivity, it can be located exclu-
sively inside chloroplasts. Thus, more stable second messengers derived from 1O2 within
the plastids are assumed to activate signaling pathways in controlling the expression of
nuclear genes [40,130–132]. The 1O2-induced pathway involves the accumulation of β-
cyclocitral, an oxidation product of β-carotene. β-cyclocitral could directly travel to the
nucleus and activate 1O2-dependent retrograde signaling; it is positively correlated with
heat tolerance because it is directly involved in the induction of responsive genes, such as
genes responding to oxidative stress, HSE-binding proteins, and various defense genes
(Figure 1) [125–127]. H2O2 derived from chloroplasts also acts as a specific signal for regu-
lating plant responses to stress. In Arabidopsis, the t-APX silencing, increasing H2O2 levels
in chloroplasts, affects the expression of a large set of genes associated with stress [133].
GUN1, a key player of plastid-to-nucleus retrograde signaling [134–136], has been proposed
to be involved in ROS accumulation occurring in response to HS. Indeed, unlike wt plants,
gun1 mutants do not accumulate O2

− and H2O2, failing to induce the transient oxidative
burst needed for HSR and resulting in more HS sensitivity [113] (Figure 1).

The direct transfer of H2O2 from chloroplasts to the nucleus has been proposed as a
signaling way to induce nuclear heat-associated gene expression and the close association
between the two compartments may provide the specificity needed for retrograde signal
transduction. So that H2O2 passes from the chloroplast to the nucleus, it must cross the
chloroplast double envelope, the perinuclear space, and the inner nuclear membrane;
this movement probably occurs by diffusion via water channels [137]. Stromules may
also promote chloroplasts-to-nucleus contacts, transferring H2O2 to the nucleus [138].
The close association between the endoplasmic reticulum (ER) with chloroplasts and
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nucleus has led to suppose that the ER may play a key role in mediating H2O2 retrograde
signaling in a double manner: amplifying the signal, generating more H2O2 by a luminal
ER oxidase, or attenuating it by activating antioxidant responses such as the ER glutathione
peroxidase [139] (Figure 1).

5. Heat Stress-Dependent Crosstalk between Signaling Networks of Reactive Oxygen
Species and Hormones

During HS, ROS signaling is also modulated by a wide interaction with hormone
signaling [140,141]. Indeed, ROS and hormones that are apart to cooperate as single
molecules are also connected by crucial signaling factors, such as calcium, cyclic nucleotides,
MAPKs, G-proteins, and various transcription factors or regulator molecules. This delicate
communication between ROS and hormones signaling organizes a suitable response that
permits the plant to overcome the stress condition (Figure 2) [35,142–145].
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Figure 2. Crosstalk between signaling networks of reactive oxygen species and hormones in
heat stress response. Under HS, ABA activates AREB/ABF transcription factors controlling ABA-
dependent gene expression, stimulating ROS production, or improving antioxidant machinery.
ABA-induced ERF74 also increases ROS production by RBOHs induction. The interaction of FCA
with ABI5 increases thermotolerance through the transcriptional regulation of PER1. BRs, by acti-
vating RBOHs, stimulate a transient H2O2 accumulation, which increases ABA levels resulting in
additional rises in H2O2. In BR-mediated heat tolerance, the regulator BZR1 improves the production
of ROS, which regulates the receptor-like kinase FERONIA. SA, CK, and ET enhance antioxidant
systems, increasing ROS scavenging. In addition, CK stimulate HSPs. ROS can act in concert with ET
in a self-intensifying feedback loop where ET stimulates H2O2 accumulation, which in turn improves
ET production. ERFs contribute to lower ROS accumulation, balancing redox homeostasis. (See more
details in the text). Abbreviations: ABA, abscisic acid; AREB/ABF, ABRE-binding/ABRE-binding
factors; ERF74, ethylene response factor 74; RBOH, respiratory burst oxidase homolog; FCA, flower-
ing control locus A; ABI5, ABA-INSENSITIVE 5; PER1, 1-Cys peroxiredoxin; BRs, brassinosteroids;
BZR1, brassinosteroid-regulated transcription factor 1; SA, salicylic acid; CK, cytokine; ET, ethylene;
and ERF, ethylene response factors. Created with BioRender.com.; accessed on 20 February 2023.
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Hormones induced by HS can modify ROS amounts, activating RBOHs or modifying
redox signaling, or ROS can act upstream the hormones. Moreover, ROS can play a role
in mediating the interaction between different hormones, thus improving HS tolerance.
These interactions lead to an amplification loop, controlling the gene expression and
HSR [142,143,146–148].

After HS, the increase in abscisic acid (ABA) levels activates the transcription factors,
such as AREB/ABFs, controlling the ABA-dependent gene expression that stimulates ROS
production or improves antioxidant machinery [35,149–152]. For instance, the interaction
of flowering control locus A, a plant-specific RNA-binding protein of the autonomous
flowering pathway, with ABA-INSENSITIVE 5 increases thermotolerance through the
transcriptional regulation of the PER1 gene encoding 1Cys-PRX [149]. The ABA-induced
ERF74 induces RBOHD transcription, increasing ROS production, and enhancing HS
tolerance [153] (Figure 2). The transcriptional co-activator MBF1c, as well as transcription
factors of DREB2A and AP2-EREBPs families, induced by both ROS and ABA, play key
roles in thermotolerance acquisition [103,154,155]. In the interaction between the regulative
pathways of ROS, ABA, and auxin, the ROS-scavenger enzyme APX6 is involved in the HS
protection of seeds during germination [156].

In the HSR of tomato plants, a crosstalk between ABA and brassinosteroids (BRs)
mediated by ROS occurs. BRs, by activating RBOHs, stimulate a transient H2O2 accumula-
tion, which increases the ABA levels and results in additional rises in H2O2 and enhanced
HS tolerance [146]. In BR-mediated tolerance to HS, the regulator BZR1 improves the
production of apoplastic H2O2 that regulates the receptor-like kinase FERONIA, resulting
in HS tolerance [157] (Figure 2).

During heat stress, salicylic acid (SA) also increases and protects PSII from the high
ROS levels [158,159]. The Arabidopsis mutants sid2, which are deficient in SA signaling,
accumulate elevated ROS levels and reveal increased HS sensitivity, showing that SA
has a crucial role in thermotolerance [154,155,160]. In tomatoes and barley, SA enhances
antioxidant systems, increasing ROS scavenging and heat tolerance [161,162]. Moreover,
treatment with SA improves the activity of antioxidant enzymes and by controlling ROS
level, it relieves the heat-dependent decline in pollen viability and floret fertility [163,164]
(Figure 2).

Ethylene (ET) production during HS has been related to the beginning of leaf senes-
cence and reduction in pollen growth and germination, spike fertility, and grain weight,
which are survival strategies to preserve the optimal progeny capacity under high tem-
peratures [165]. Under HS, ROS can act in concert with ET in a self-intensifying feedback
loop where ET stimulates H2O2 accumulation, which in turn improves ET production, initi-
ating leaf senescence or chlorosis [142,166]. ET can additionally control ROS metabolism
by altering antioxidant enzymes [167]. Rice seedlings treated with the ET precursor, 1-
aminocyclopropane-1-caroboxylic, recover the activities of CAT, APX, and POD and show
a decreased H2O2 accumulation and cell damage under HS [168]. Moreover, ET-induced
ERFs are involved in redox regulation, while oxidative stress induces ERFs [169]. In tobacco,
ERF3 contributes to lower ROS accumulation, enhancing abiotic stress tolerance [170], while
in Arabidopsis, ERF6 controls ROS signaling during HS. These data suggest that ERFs
control HS tolerance by modulating ROS homeostasis [171] (Figure 2).

Heat stress reduces the endogenous levels of cytokinins (CKs) [172]. However, the
treatment with CKs usually improves HS tolerance by the increase in antioxidant enzymes
and HSPs [173]; consistently, the inhibition of CKs degradation improves HS resistance,
principally by the enhancement of antioxidant enzymes [173–175] (Figure 2).

6. Heat Stress-Dependent Oxidation of Cellular Environment

The increase in temperature provokes an enhanced ROS production and accumula-
tion that temporarily oxidizes the cellular environment, triggering downstream signaling
cascades. Because of their high reactivity, when ROS escape antioxidant-mediated scav-
enging, they react with biomolecules causing lipid peroxidation, protein oxidation, and
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other protein modification, which often might serve as signaling factors that trigger the
effective defense response [176]. Thus, not only ROS accumulation, but also the HS-related
redox changes are closely associated with the HSR that supports thermotolerance. Indeed,
the inhibited expression of scavenger enzymes leads to an increase in the oxidative power
required to activate the HSFs in the initial steps of HSR [46]. Consistently, miRNA398,
which downregulates the CSD1, CSD2, and CCS genes, achieves its highest expression
within 2 h from HS; moreover, heat improves tolerance to subsequent high temperature
stress [77,177]. In Arabidopsis, a transient oxidative burst, occurring immediately after
HS and which is due to a reduction in APX and CAT activity, causes a transient oxidation
of the cellular environment, which helps trigger a signaling cascade that protects plants
from HS. Accordingly, after 3 h of physiological recovery from HS, both non-enzymatic
and enzymatic antioxidants significantly increase, lowering ROS accumulation and pre-
venting oxidative damage. On the other hand, gun1 mutants that fail to increase ROS
levels promptly exhibit impaired HSR and accumulate ROS and oxidative damage during
physiological recovery at the growth temperature. Thus, GUN1 seems to be required to
oxidize the cellular environment, participating in the acquisition of basal thermotolerance
through the redox-dependent plastid-to-nucleus communication [113].

A recent study on HS response, performed using the redox-sensitive green fluorescent
protein, roGFP2, clearly demonstrated that HS, by triggering large shifts in the glutathione
redox potentials of cells, causes a huge rise in the extent of oxidation of both cytosol and
nuclear compartments [105]. In this context, the analysis of transcript profiles indicates a
very specific redox-processing response to HS, since APX2 was the only increased antiox-
idant transcript; moreover, the enhanced expression of ZAT12 in the seedlings after HS
suggests altered oxidative stress signaling [105,178].

Cellular environment oxidation permits redox-dependent changes to proteins that
include conformational changes of proteins involved in HSR, as well as modifications to
transcription factors or associated proteins that can also trigger nuclear translocation [179].
Cysteine (Cys) residues of proteins may act as sensors of redox changes triggering different
post-translation modifications, which in turn modulate redox-dependent pathways until
a plant’s response to environmental insults is achieved [180,181]. Thiol residues could be
deprotonated into a thiolate residue (R-S-), which leads to successive oxidations to sulfenic,
sulfinic, and sulfonic acids [182]. Thiol groups can also form a disulfide bridge (S-S) or
react with reactive nitrogen species (RNS), resulting in S-nitrosylation. Depending on
their nature, most of these thiol modifications can be reversed by dedicated thiol reduction
systems (thioredoxin-Trx, glutaredoxins-GRX, and S-nitrosoglutathione reductase GSNOR).

Exposure to high temperatures usually leads to an increase in RNS, which are essential
for the acclimatization mechanism [183,184]. It has been demonstrated that the exoge-
nous application of nitric oxide (NO) to plants subjected to HS promotes the activation
of enzymatic and non-enzymatic defense systems to oxidative stress [122,185,186]. In
contrast, treatment with NO scavengers eliminates the beneficial effects caused by NO,
corroborating the idea that NO is involved in tolerance to high temperatures [185,187].
S-nitrosoglutathione reductase, GSNOR1, controls the turnover of GSNO under stress
conditions [188,189]. In the Arabidopsis thaliana thermotolerance-defective mutant, hot5
(sensitive to hot temperature 5), with HOT5 encoding GSNOR1, the loss of enzymatic
activity increases s-nitrosothiols and leads to a high heat sensitivity [190]. Thus, the absence
of GSNOR1 activity undeniably affects NO/GSNO levels, which might correlate with heat
sensitivity and thermotolerance [190,191].

7. Redox-Dependent Changes of Proteins Involved in the Heat Stress Response

ROS work efficiently in cell signaling through chemical reactions with specific target
protein residues that lead to protein modifications. The primary targets of ROS are proteins
containing amino acids with Cys residues. The redox changes that involve thiol-disulfide
switches bring about various effects, such as the induction of protein conformational
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changes, the alteration of protein–protein interactions, and changes in protein subcellular
localization [192].

In mild HS, any imbalance in the redox state of the chloroplast may lead to the inhibi-
tion of a specific redox-sensitive kinase (STN7), a transmembrane protein with catalytic
domains containing two conserved Cys residues. STN7 phosphorylates the light-harvesting
complex II (LHCII), which migrates to PSI and shifts the excitation energy to PSI. Thus, the
redox-dependent STN7 inhibition, which alters LHCII phosphorylation, does not permit
the formation of the PSI-LHCII complex with a consequent alteration in the thylakoid
ultrastructure and a strong depletion in the photosynthetic rates [193]. Interestingly, one of
the four phosphorylation sites in the C-terminal region of STN7 is phosphorylated by CK2,
which is a chloroplast nuclear casein kinase regulated by the redox signal [194].

Under heat stress, many proteins undergo redox-dependent conformational changes
that are associated with the acquisition of a new function (Table 1).

Table 1. List of redox-dependent conformational changes and functions of proteins under heat stress.

Protein Uniprot Code
Structure and Function

ReferencesPhysiological
Conditions Heat Stress

AtTrx-h3
(thioredoxin) Q42403

LMW complexes
disulfide

reductase activity.

HMW complexes
molecular
chaperone.

[195]

NTRC
(thioredoxin
reductase)

Q70G58
LMW complexes

disulfide reductase and foldase
chaperone.

HMW complexes holdase
chaperone. [196]

2-Cys Prx A
(peroxiredoxin) Q96291 LMW complexes

peroxidase activity.
HMW complexes

chaperone. [197]

GRXS17
(Monothiol

glutaredoxin)
Q9ZPH2

LMW complexes glutaredoxin
involved in the maturation of

Fe–S proteins.

HMW complexes
chaperone with holdase

activity.
[198]

AtNPR1
(Non-expressor of pathogenesis

related proteins 1)
P93002

Monomeric form positive
regulator of plant systemic

acquired response.

Oligomeric form
chaperone. [199]

An interesting example showing how changes in the protein oxidation state lead to a
switch of function during HS is represented by the Arabidopsis h-type thioredoxin (Trx),
AtTrx-h3. This protein forms several protein structures varying from low and oligomeric to
high molecular weight (HMW) complexes, performing the function of disulfide reductase
in the low molecular weight (LMW), but acting as a molecular chaperone in the HMW
complexes. The structures of AtTrx-h3 are regulated both by HS and the redox state.
Two active Cys residues in AtTrx-h3 are necessary for disulfide reductase activity, but not
for the chaperone function. The reduction of AtTrx changes the HMW structures into LMW,
while oxidation permits the formation of the HMW structure. It has been demonstrated
that AtTrx-h3 confers HS tolerance in Arabidopsis, mainly in the oxidized state, through its
chaperone function [195].

Another redox protein revealing an analogous regulation mode of AtTrx-h3 is the
C-type NADPH-dependent Trx reductase (NTRC), a member of the plant-specific NADPH-
dependent Trx reductase family, which comprises an N-terminal Trx reductase domain
and a C-terminal Trx domain. This protein works as an efficient electron donor to 2-Cys
peroxiredoxins [200,201]. The structure of NTRC shows different oligomeric conformations
in various plant species [202–204], acting as a disulfide reductase and a foldase and holdase
chaperone, depending on the protein structures. The LMW structures display greater
disulfide reductase and foldase chaperone activities, while HMW ones have stronger
activity as a holdase chaperone. Heat stress mediates the redox-dependent oligomeric
changes of NTRC, converting LMW proteins into HMW complexes and progressively
enhancing the holdase chaperone activity, which confers higher thermotolerance [196].
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The 2-Cys peroxiredoxins (Prx) belong to the Prxs family, which are peroxidases that
reduce H2O2, peroxynitrite, and alkyl hydroperoxides [197,205,206]. The overexpression of
2-Cys Prx in Festuca arundinacea, reducing oxidative damage under high temperature, con-
fers thermotolerance [207]. The 2-Cys Prx is essential in protecting the cellular environment
from oxidative stress, since under physiological conditions it forms LMW structures such
as dimers through disulfide bonds and removes H2O2. However, an increase in ROS under
HS leads to an overoxidation of the 2-Cys Prx, which, aggregating into HMW structures,
loses its predominant function of antioxidant enzyme and gains the chaperone one, which
is essential to mediate the proper folding of proteins in response to HS [197]. In this way,
Prx can act as a sort of “dam” to H2O2 flow. In stress conditions, Prx inactivation may be a
way to leave sufficient time for H2O2 to mediate stress signaling and to promote a variety
of redox-dependent processes [208,209].

Redox-dependent conformational changes associated with different functions in re-
sponse to HS also occur in the Arabidopsis glutaredoxin GRXS17: this member of the
thiol reductase families in Arabidopsis is a nucleocytosolic monothiol GRX, containing
an N-terminal thioredoxin domain and three conserved monocysteinic active sites that
coordinate three iron–sulfur (Fe-S) clusters in a glutathione-dependent manner. GRXS17
is involved in the maturation of cytosolic and nuclear Fe–S proteins. However, GRXS17
also shows foldase and redox-dependent holdase activities. After HS, this protein loses its
Fe–S clusters, forming disulfide bonds between Cys in the Trx domains, thus leading to the
formation of HMW structures, which shows holdase activity in vitro. Therefore, upon HS,
GRXS17 shows a redox-dependent chaperone activity, interacting with different proteins
and protecting them from heat damage [198]. Consistently, the expression of Arabidopsis
GRXS17 in maize confers thermotolerance due to an enhanced chaperone activity. Under
heat stress, the GRXS17-overexpressing maize lines show a reduced protein damage and
higher thermotolerance in the reproductive stages with an increase in grain production
when compared to non-transgenic lines [210].

The Arabidopsis non-expressor of pathogenesis-related protein 1 (AtNPR1), which
plays a significant role in plant systemic acquired immune responses [211], has also been
shown to have a redox-dependent chaperone activity that is required to protect plants from
HS. As a result of its structural switch into oligomeric form, the recombinant AtNPR1 works
as a protein chaperone. The structural changes and the chaperone activity are dependent
on its redox state since dithiothreitol treatment dissociates its structure to a monomer and
reduces its chaperone activity [199].

8. Redox-Dependent Changes of Proteins Impacting Gene Expression during Heat
Stress Response

As a result of HS, the glutathione redox potentials of Arabidopsis cell nuclei are greatly
changed, indicating nuclear oxidation [105]. Since transcript profiles of the control and
heat-treated seedlings showed significant differences in HSPs, mitochondrial proteins,
transcription factors, and other nuclear-localized components, the authors suggested that
nuclear oxidation plays a key role in both the genetic and epigenetic control of HSR [105].
Nuclear oxidation can be responsible for the epigenome changes occurring in heat-induced
priming [212], because many of the enzymes involved in histone and DNA methylation are
subject to redox regulation [213,214]. Furthermore, nuclear oxidation may be responsible
for the regulation of redox-sensitive transcription factors (Figure 3) [215].
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Figure 3. Redox-dependent changes of proteins impacting gene expression in response to heat stress.
Heat stress, triggering oxidation of cellular environment, causes redox changes in proteins involved
in the induction of heat stress response. The oxidation of HSFA8 and GAPC permits these proteins
to move into the nucleus: HSFA8 directly and GAPC by the interaction with NF-YC10 promote
the expression of heat stress-responsive (HSR) genes. S-nitrosylation of GT-1, triggered by ROS-
dependent NO accumulation, induces the transcription of HsfA2. Nuclear redox oxidation is sensed
by HSFA4A, which is stabilized and activated, inducing HSR genes. In the chloroplast, over-reduction
in the components of the thylakoid electron transport chain might provoke the redox-dependent
translocation of WHY1 in the nucleus, where the protein activates the transcription of HSP21.5A.
Abbreviations: HSF, heat shock factor; GAPC, glyceraldehyde-3-phosphate dehydrogenase, cytosolic;
NF-YC10, nuclear factor Y, subunit C10; and WHY1, Whirly1. Created with BioRender.com; accessed
on 3 February 2023.

It is known that HSFs sense the variation in temperature and in turn, modulate the
expression of HSPs and other stress-associated genes [216]. In vitro stress treatments
cause monomer-to-trimer transitions of HSFs, while the presence of the reducing agent
dithiothreitol reverses this action. HSFs have been proposed to participate in peroxide
sensing, as H2O2 can stabilize HSF trimers by reversible oxidation of Cys residues and by
forming Cys–Cys bonds [217,218]. HSFA1a, the master regulator of HSR [219,220], contains
one Cys residue located at the N-terminal portion of the trimerization domain [221]. N-
terminal deletions of HSFA1a negatively affect H2O2 sensing, suggesting that trimerizations
are induced by conformational changes [222]. However, the N-terminal deletion of HSFA1a
does not inhibit heat sensing. This shows that, despite a common dependency on oxidative
activity, the activation of this transcription factor is stress-specifically regulated [217]. The
ROS signal has been shown to induce two signaling pathways associated with NO: ROS
generated by RbohB and RbohD trigger NO accumulation [126] and the NO signal activates
CaM3, which then leads to DNA binding of HSFs [223]. Full activation of HSFA1 seems to
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involve many processes rising from several signaling pathways [224]. However, recent data
have shown that the binding of HSFA1a to its targets can be obtained independently of HS,
by altering the plant redox state through light-dependent chloroplast signaling [39]. On the
other hand, trimerization of HSFA4A is strictly dependent on the redox environment, since
the intramolecular interactions of HSFA4A are weakened when the three conserved Cys
residues are replaced with Ala [225,226]. In Arabidopsis, the MAPKs that phosphorylate
this HSF, namely MAPK3 and MAPK6, have also been shown to be activated by H2O2 [225].
These results suggest that HSFA4A can function as redox sensors in stress conditions.

Recently, it has been reported that NO bursts under HS induce S-nitrosylation at
Cys324 or Cys347 of the trihelix transcription factor GT-1, which promotes its binding to
the HSFA2 promoter (Figure 3). GT-1s loss of function disturbs HSFA2 activation and heat
tolerance, revealing that GT-1 is a requested mediator connecting signal perception to the
triggering of cellular heat responses [227].

In the HSR, ROS affects nuclear gene expression due to the nuclear translocation of
cytoplasmatic transcription factors or associated proteins, subjected to redox-dependent
conformational changes (Figure 3). Indeed, cytosol oxidation can trigger the movement of
redox-sensitive proteins into the nucleus [179].

HSFA8 shows redox-dependent translocation to nuclei, which is associated with the
oxidation of key Cys residues and the formation of disulfide bonds [228]. Mutagenesis
of the conserved residues, Cys24 and Cys269, blocks the translocation of HSFA8 to the
nucleus, suggesting that this HSF functions as a redox-sensing transcription factor within
the stress-responsive transcriptional network (Figure 3).

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is a glycolytic enzyme
that is also involved in plant responses to oxidative stress, which could result from abiotic
and biotic challenges [229]. One mechanism for the action of GAPC in HSR is stress-induced
nuclear translocation [230–232]. Under HS, cytosol oxidation triggers GAPC movement
to the nucleus, where it interacts with the transcription factor NF-YC10 to promote heat
tolerance through the expression of heat-inducible genes [233]. The overexpression of
GAPC improves heat tolerance and the effect is removed when NF-YC10 is lacking, heat-
induced nuclear accumulation of GAPC is repressed, or the GAPC-NF-YC10 interaction
is disrupted. Moreover, the overexpression of GAPC also improves the binding ability of
NF-YC10 to its target promoter (Figure 3) [233].

WHIRLY1 (WHY1) is a chloroplast and nucleus-localized plant-specific DNA- and
RNA-binding protein that carries out several cellular tasks [234,235]. In the chloroplast,
WHY1 mainly works in safeguarding the genome, but it also controls the photochemical
activity of PSI [236–238]. In the nucleus, WHY1 functions as a transcriptional activator
that can bind the elicitor response element of the pathogenesis-related gene PR-10 in
Arabidopsis [239,240], or the HvS40 promoter in barley, regulating plant senescence [237].
Recently, a clear association between WHY1 and HSR has been reported. In tomato, HS
induces WHY1 expression, and the protein binds the HSE in the promoter of the ER-
localized small heat shock protein, HSP21.5A, to activate its transcription (Figure 3). WHY1
overexpression increased thermotolerance; conversely, the inhibition of WHY1 expression
leads to an impaired HSR with reduced membrane stability and soluble sugar content and
increased ROS accumulation [241]. WHY1 has been proposed as a sensor of photosynthetic
apparatus redox changes and represents an ideal candidate for retrograde signaling. In
physiological conditions, WHY1 is closely associated with thylakoid membranes. The
over-reduction in one or more components of the thylakoid electron transport system, such
as the PQ pool/cytochrome b6f complex, may destabilize the oligomeric WHY1 structure
on the thylakoid membrane, leading to a release of monomeric proteins, which are then
translocated to the nucleus [242].

9. Conclusions

Progressively higher temperatures, which are intensified by global warming, may
have a strong impact on plant yield in the future. Thus, the study of molecular processes
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that allow plants to overcome climate change is essential to reduce its negative influence on
growth and productivity. Plants use multiple intracellular signaling pathways to sense and
respond to high temperature. The effects of heat stress are often correlated with an increase
in ROS production occurring in organelles as well as in the apoplast. Even though ROS
can potentially cause damage to plant cells, they may also act as signaling molecules and
trigger the adaptative response [44,47]. The different and antagonistic role of these reactive
molecules depends on a subtle balance between production and scavenging. Therefore, the
enhancement of antioxidants is a key strategy to confer heat stress tolerance [53]. However,
the study of antioxidant systems in HSR requires further investigation, since antioxidants
display a complex and intricate network, which depends on the characteristics of the plant
and heat stress, and on the different and sometime antagonistic behaviors of the various
antioxidant isoenzymes.

ROS accumulation has been shown to be a requirement for the acquisition of plant
thermotolerance. Thus, the research on the sites of ROS generation, the mechanisms
that regulate ROS transport, as well as how ROS signaling is interconnected in different
compartments is crucial for the comprehension of HS tolerance. The knowledge of the
complex dynamics of ROS networks in the different cell compartments can be strongly
enhanced using genetically encoded ROS and redox sensors.

Chloroplasts have been shown to play an important role in heat-induced ROS accu-
mulation and the subsequent expression of nuclear heat-responsive genes [129]. Recently,
it has been suggested that GUN1, a key player in plastid-to-nucleus retrograde signaling,
contributes to the acquisition of basal thermotolerance, being involved in ROS accumu-
lation and oxidation of the cellular environment [113], but, further research is needed to
determine the mechanisms involved in this signaling pathway.

Not only HS-induced ROS production, but also HS-related redox changes are strongly
linked with the HSR that confers thermotolerance [44,105]. In this context, Cys residues play
a significant role as sensors of redox changes, triggering different post-translation modifica-
tions, which in turn regulate redox-dependent paths, comprising conformational changes
of protein involved in HSR, as well as modifications to transcription factors or associated
proteins that can also cause nuclear translocation [179–181]. The massive protein regulation
capability may strongly affect adaptation to HS. Thus, the continuous advancement in pro-
teomic approaches that permits a more accurate recognition of potential modifications will
improve understanding of the significant signaling functions of redox changes occurring
in HSR. Moreover, since HS also leads to nuclear oxidation [105], determining the redox
regulation of nuclear proteins may help to identify the important mechanisms of genetic
and epigenetic regulation of thermotolerance.

The use of model systems and the study of HSR in a controlled environment are crucial
to elucidate the redox signaling network activated in response to high temperatures. How-
ever, improved knowledge about HSR has to come from experimental where environmental
changes need to be simulated as realistically as possible. Indeed, it should be considered
that under field conditions, HS is frequently accompanied by other types of stress, such as
drought, air humidity, or the presence of pathogens [243,244]. Recent studies reveal that
the response of plants to a combination of different abiotic and biotic stresses is unique and
cannot be directly extrapolated from simply analyzing each of the different stresses applied
individually [103,245–247]. Several literature studies have documented the effects of HS
combined with other stress factors [160,248–250]; nevertheless, comprehensive analyses
on the complex network between hormones, ROS, and redox signals in combined stress
occurring under complex environmental conditions deserve more attention. Knowledge of
how ROS and redox signals combine, and the identification of the numerous compartment-
specific redox pathways that are activated might be crucial to modify HSR as a function of
HS intensity and duration, and of plant characteristics, in order to help plants deal with
climate change.
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