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Abstract: In the current work, the influence of high-pressure homogenization (HPH) (200, 250,
and 300 MPa) on pH, Brix, turbidity, viscosity, particle size distribution (PSD), zeta potential, color,
polyphenol oxidase (PPO), peroxidase (POD), polyphenol profile and bioaccessibility of total phenolic
compounds was studied. The results show no change in the apple juice’s pH, TSS and density. In
contrast, other physiochemical properties of apple juice treated with HPH were significantly changed.
Besides total phenolic content (15% degradation) in the HPH-treated apple juice at 300 MPa, the PPO
and POD activities were reduced by a maximum of 70 and 35%, respectively. Furthermore, among
different digestion stages, various values corresponding to PSD and zeta potential were recorded; the
total phenolic content was gradually reduced from the mouth to the intestine stage. The polyphenol
bioaccessibility of HPH-treated apple juice was 17% higher compared to the untreated apple juice.

Keywords: apple juice; high-pressure homogenization; physiochemical properties; enzyme activity;
polyphenol profile; bioaccessibility

1. Introduction

A diet rich in fruit and vegetables containing bioactive compounds such as antioxi-
dants, vitamins and minerals improves human health [1]. In this regard, consuming at least
400 g of fruit and vegetables per day was recommended by World Health Organization [2].
One of the ways to provide valuable nutrients from fruit and vegetables is the consumption
of juices, which is becoming popular [3].

One of the world’s most commonly produced and consumed fruits are apples, with
75 million tones produced in 2018–2019 [3]. Apples are fruits that are widely available,
versatile in production and affordable, in addition to being highly nutritious and containing
a wide range of bioactive compounds. Based on nutritional value, some researchers
consider the whole fruit more valuable. By drinking juices, the health benefits of the fruit
can be effectively realized [4,5].

The high pH and sugar content of FJ forced the industry to approach suitable pro-
cessing methods to prevent the growth of unfavorable microorganisms and consequently
guarantee the shelf life and safety of the product [6,7]. In this context, heat treatment is
common to prolong FJ’s shelf-life at an industrial scale. Unfortunately, products processed
this way can cause undesirable biochemical and nutritional damage, affecting their sen-
sory properties [8,9]. Consequently, increasing attention is being paid to the development
of non-thermal methods for the stabilization of FJ. Non-thermal technological solutions
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are being investigated to obtain a nutritionally rich product that simultaneously has sen-
sory properties equal to those of fresh products while guaranteeing microbiological safety.
Among non-thermal food processing methods, technologies based on high pressure, such
as high-pressure homogenization (HPH), are worthy of highlighting [10,11].

High-pressure homogenization consists of forcing the fluid through a valve with a very
narrow, adjustable gap, which generates high pressure and a surge of flow. This process
leads to a reduction in particle size and mechanical disintegration of microorganisms [12].
The HPH process also improves juice characteristics such as homogeneity and stability. With
the development of technology and the upgrading of industrial homogenizers, pressure
parameters and process efficiency have significantly advanced.

Applying the HPH method to FJ production aims to eliminate microorganisms, re-
duce enzyme activity, and improve the product’s functional characteristics [13]. Some
literature reports have shown varying effects of HPH on the bioactive compound pro-
file of processed foods [14–16]. Compared to the classical pasteurization method, HPH
maintains more bioactive components [17,18]. Many authors have shown a positive effect
of HPH on increasing the availability of bioactive compounds such as polyphenols or
carotenoids [19–21].

Recent studies have described the effects of HPH on FJ such as blackcurrant, peach,
pomegranate and mango juices, or vegetables juices, e.g., tomato, carrot [18,22–26]. There
are several reports of HPH-treated apple juices [27–29], but this paper is designed to analyze
and summarize current scientific knowledge on the effects of HPH on apple juice quality
and polyphenol bioaccessibility. It will advance the knowledge of this modern method of
non-thermal food processing and develop the rather under-researched area of the method’s
impact on apple juice’s nutritional and health benefits.

2. Materials and Methods
2.1. Preparation of Apple Juice and High-Pressure Homogenization (HPH) Treatment

The apple fruit (Golden delicious var.) was washed, peeled, extracted via juice extrac-
tor (Joyong Electric Appliance Co., Jinan, China), and kept at 4 ◦C.

The apple juice was processed in the homogenization valve of the HPH system (JN-
02HC series, Guangzhou, China) equipped with a circulating cooling system (HL-01AS,
CN). The HPH treatment was carried out at a pressure of 200, 250, 300 MPa, and 2.1 L/h at
room temperature. The HPH-treated apple juice was packed in 200 mL glass bottles and
stored at 4 ◦C for further analysis [30].

2.2. pH, Brix, Turbidity, Viscosity, Particle Size Distribution (PSD) and Zeta Potential

Total soluble solids (TSSs), particle size distribution (PSD) and pH values were mea-
sured using a digital refractometer (WZB 45, CN), a Mastersizer 2000 (Malvern Instruments,
Malvern, UK) and a portable pH meter (Testo 205, DE) at room temperature, respectively.
The HPH-treated and untreated apple juices were diluted 20 times and 1 time.

A Zetasizer Nano-ZS (Malvern Instruments, UK) and a portable Turbidimeter (Model
2100P, CN) were used to determine the zeta potential and turbidity at 25 ◦C, respec-
tively [30].

2.3. Color

The changes in the color of HPH-treated and control were determined using a Color
Quest XT colorimeter (Hunter Associates Laboratory, Washington, VA, USA) and were re-
ported as L *, a *, and b *-values. Moreover, the total color differential (∆E) was determined
using the following equation.

∆E = ((L − L0)
2 + (a − a0)

2 + (b − b0)
2)0.5 (1)

L0, a0 and b0 were related to the color parameters of the untreated apple juice.
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2.4. Polyphenol Oxidase (PPO) and Peroxidase (POD) Enzyme Activities

Terefe et al. (2010) [31], with slight modifications as follows, was used for enzyme
activity determination. The extraction solution consisted of a 0.2 M sodium phosphate
buffer (pH = 6.5) containing 1 M NaCl, 4% (w/v) polyvinylpolypyrrolidone (PVPP) and 1%
(v/v) Triton X-100. The apple juice and extraction mixture (4.5 mL: 4.5 mL) were shaken
using a vortex (IKA, Staufen, Germany) for 1 min and centrifuged (Rotina 380R, Hettich
Instruments, Tuttlingen, Germany) at 11,000 × g for 30 min at 4 ◦C. The supernatant was
centrifuged under the same conditions and used for subsequent analysis.

For the PPO assay, 300 µL of the supernatant was added to 3 mL of 0.05 M phos-
phate buffer (pH = 6.5) containing 0.07 M of catechol. The absorbance was measured
at λ = 420 nm and 25 ◦C for 10 min using a UV–visible spectrophotometer (6705 UV–vis
Spectrophotometer, Jenway, Eaton Socon, UK).

For the POD assay, 50 µL of the supernatant was added to 3 mL of 0.05 M phosphate
buffer (pH = 6.5). The reaction was started by adding 50 µL of 1% p-phenylenediamine
(w/v) in 0.05 M phosphate buffer (pH = 6.5) and 50 µL of 1.5% hydrogen peroxide (v/v). The
absorbance was measured at λ = 485 nm and 25 ◦C for 10 min. Blank samples for PPO and
POD assays were prepared using the same components, but the supernatant was replaced
with a 0.05 M phosphate buffer (pH = 6.5).

The residual activity for PPO and POD was calculated according to Equation (1):

RA (%) = A/A0 × 100 (2)

where A is the activity of the treated juice and A0 is the activity of the control.

2.5. Polyphenol Profile

The supernatant used to determine individual polyphenols was prepared as follows:
five milliliters of 80% (v/v) methanol containing 0.1% (v/v) of HCl was added to 5 mL of
apple juice. The samples were treated with ultrasound for 5 min (45 kHz, 200 W, 25 ◦C,
MKD Ultrasonic, Warsaw, Poland), then centrifuged (Rotina 380R, Hettich Instruments,
Tuttlingen, Germany) at 3670 × g for 5 min at 4 ◦C, and supernatant was transferred to a
25-mL flask. The extraction was repeated four times and the supernatant was filtered (pore
size 0.45 µm, Macherey-Nagel, Duren, Germany).

The polyphenol profile was determined using the method proposed by Tsao et al.
(2003) [32], which was previously validated. Polyphenols were identified based on pur-
chased standards from Sigma-Aldrich (St. Louis, MO, USA). A Sunfire C18, 5 µm,
4.6 mm × 250 mm analytical column with a Sunfire C18 Sentry guard cartridge, 5 µm,
4.6 mm × 20 mm (Waters) with a photodiode detector (Waters 2996, USA) was used. The
column temperature was 25 ◦C. Samples were eluted using a gradient of 6% (v/v) acetic
acid (solvent A) and acetonitrile–HPLC grade (solvent B), as follows: from 0 to 45 min,
100% (A); then 45–60 min, 85% (A) and 15% (B); 60–65 min, 70% (A) and 30% (B); then
65–70 min, 50% (A) and 50% (B); 70–73 min, 100% (B) and finally 73–75 min, 100% (A). The
separation of the 10 µL samples was performed within 75 min at a flow rate of 1.0 mL/min.
The concentration of polyphenols in the juice was calculated on the basis of the standard
curve at different concentrations of standards of individual polyphenols, and the results
were expressed as mg/L.

2.6. Bioaccessibility

According to a methodology reported by Liu, et al. (2016) [33], HPH-treated and
untreated apple juice were subjected to in vitro digestion, including the mouth, stomach
and small intestine stages. In each phase of the digestion, solution was collected to measure
the PSD, zeta potential and total phenolic content (TPC). The bioaccessibility of TPC was
calculated according to the equation:

Bioaccessibility (%) =
Mmc

Mrd
(3)
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Mmc and Mrd were the TPC in the micelle fraction (mg) and the raw digest (mg).

2.7. Statistical Analysis

All analyses were carried out in triplicate. The results were expressed as a mean
value ± standard deviation (S.D.) and analyzed using STATISTICA 10 software (StatSoft,
Tulsa, OK, USA) with one-way analysis of the variance (ANOVA). Statistically significant
differences between these values were assayed using Tukey’s test at a confidence level of
α = 0.05.

3. Results
3.1. Physicochemical Properties

The influence of HPH treatment on the physicochemical properties of apple juice is
shown in Table 1. The increase in the pressure of HPH processing did not change pH,
TSS and density. No changes were found in the pH of orange juice treated with HPH [34].
Furthermore, Yildiz Gulcin et al. (2019) reported that with increasing pressure, no change
in the TSS of the HPH-treated peach juice was noted [18]. Nevertheless, the viscosity of
apple juice after HPH treatment was lower at 200 and 300 MPa compared to the control.
At the same time, there was an increase in the viscosity of HPH-processed apple juice
at 250 MPa. The results were attributed to the fact that the pressure at 200 MPa did not
affect the molecular structure. When the pressure was elevated from 200 MPa to 250 MPa,
high pressure promoted the dissolution and expansion of molecules, thus resulting in
a higher viscosity in the HPH-treated apple juice [35]. Nevertheless, with the pressure
continuously increasing, the homogenization effect of HPH processing played a dominant
role in apple juice, thereby damaging the interaction between pectin molecules [35]. In
addition, the PSD of apple juice treated with HPH (Figure 1) exhibited a consistent trend
with the viscosity of HPH-treated apple juice, which further confirmed the results for
the viscosity of the HPH-treated apple juice. The turbidity in the apple juice processed
with HPH was higher than that of the control, which was explained by the increase in
suspension in the apple juice caused by the homogenization effect [36]. On the contrary,
the zeta potential of HPH-treated apple juice was gradually enhanced, with the pressure
increasing, which was attributed to the destruction of the original structure of pectin at a
high homogenization effect. Yang Ni et al. (2019) also found that when the pressure was
above 70 MPa, the cloudy ginkgo beverages’ zeta potential gradually declined as a pressure
function [37].
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Figure 1. Influence of HPH processing on the particle size distribution of apple juice. 
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Table 1. The physicochemical properties of apple juice treated via HPH treatment.

CS 200 MPa 250 MPa 300 MPa

pH 3.08 ± 0.01 a 3.08 ± 0.01 a 3.06 ± 0.00 a 3.08 ± 0.01 a

1 TSS 13.25 ± 0.07 a 13.35 ± 0.07 a 13.30 ± 0.00 a 13.25 ± 0.07 a

Density 10.33 ± 0.00 a 10.31 ± 0.01 a 10.39 ± 0.00 c 10.37 ± 0.00 b

Viscosity (m Pa.s) 1.99 ± 0.21 a 1.93 ± 0.02 a 2.31 ± 0.06 a 1.85 ± 0.62 a

Turbidity (NTU) 93.93 ± 1.17 a 133.33 ± 1.87 b 119.40 ± 2.40 c 178.93 ± 0.11 d

2 PSD (µm) 38.73 ± 1.15 b 24.24 ± 1.79 a 28.25 ± 1.79 a 22.98 ± 4.31 a

Zeta potential
(mv) −18.90 ± 0.00 a −16.15 ± 0.10 b −15.50 ± 0.60 bc −14.50 ± 0.60 c

L 45.42 ± 0.79 b 42.27 ± 0.13 a 45.21 ± 0.16 b 40.30 ± 1.24 a

a 7.84 ± 0.10 a 8.72 ± 0.07 b 7.42 ± 0.15 a 9.01 ± 0.40 b

b 25.67 ± 0.42 b 24.97 ± 0.03 ab 25.51 ± 0.21 b 24.16 ± 0.79 a

∆E - 3.35 3.26 5.33
1 TSS: total soluble solids, 2 PSD: particle size distribution. Data represent the mean ± standard deviation of three
replicates. Values with different letters (a–c) in the same row indicates evidently different by the pressure of HPH
(p < 0.05).

The color changes of HPH-treated and control samples are displayed in Table 1. The L
and b values of apple juice after HPH treatment at 200 and 300 MPa were lower than those
of the untreated apple juice, while the a-value of the HPH-treated apple juice demonstrated
a higher value. However, when the pressure was 250 MPa, the L, a and b values of apple
juice treated with HPH did not significantly change compared to the control. The reduction
in the L and b values of HPH-treated apple juice may be due to the decrease in PSD,
resulting in the decline of light diffraction. The decrease in the L and b values of orange
juice after HPH processing was also reported by Rita-María et al. (2019) [34] and Chandi
et al. (2020) [35]. The increase in the a-value of HPH-treated apple juice demonstrated
that the apple juice became more red after HPH processing. Furthermore, the ∆E values
of apple juice treated with HPH were higher than 3, and the ∆E value first reduced and
then increased as the pressure increased from 200 MPa to 300 MPa. The results indicate
that HPH treatment causes higher color changes and other physicochemical properties due
to increase in the pressure [31,38].

3.2. Enzyme Activity and Polyphenol Profile

The effect of HPH treatment on the PPO and POD activity is shown in Table 2. The
PPO activity of HPH-treated apple juice at 200 MPa did not change compared to the control
juice. In contrast, the residual activity of PPO in the HPH-treated apple juice gradually
declined when the pressure increased from 200 MPa to 250 MPa. The highest reduction
(70%) in the HPH-treated apple juice was noted at 300 MPa. Sauceda-G’alvez et al. (2021)
demonstrated that the PPO activity of apple juice treated with HPH at 300 MPa was
undetected [36]. Szczepańska et al. (2021) achieved 21.5% reduction of PPO in apple juice
treated at 200 MPa [29]. The POD activity in the HPH-treated apple juice was reduced with
increasing pressure and was lower than that of the control. Meanwhile, the lowest residual
activity of POD was 65.8%. The reduction in the PPO and POD activity may be attributed
to the damage to the enzyme structure caused by the high pressure [39]. Compared to the
residual activity of PPO, POD showed higher residual activity in the HPH-treated apple
juice, indicating that POD was more tolerant to pressure than PPO [40].
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Table 2. The enzyme activity and polyphenol contents of apple juice after being treated using HPH
treatment.

CS 200 MPa 250 MPa 300 MPa

Residual activity (%)

PPO 100.00 ± 4.11 c 100.00 ± 0.51 c 49.26 ± 1.85 b 29.97 ± 1.36 a

POD 100.00 ± 0.98 c 98.37 ± 2.90 c 81.79 ± 1.10 b 65.82 ± 2.44 a

Polyphenol content (mg/L)

Phloridzin 6.56 ± 0.62 b 5.68 ± 0.18 b 3.26 ± 0.05 a 2.42 ± 0.08 a

Epicatechin 17.12 ± 1.34 c 13.80 ± 0.37 b 12.77 ± 0.04 b 8.98 ± 0.69 a

Chlorogenic acid 269.57 ± 4.67 c 256.67 ± 4.58 b 244.34 ± 2.18 a 238.23 ± 3.55 a

Caffeic acid 4.44 ± 0.03 d 4.24 ± 0.00 c 4.07 ± 0.02 b 3.75 ± 0.00 a

Gallic acid 5.34 ± 0.12 d 5.03 ± 0.02 c 4.66 ± 0.02 b 4.24 ± 0.01 a

Total phenolic
compounds 303.03 ± 2.80 d 285.42 ± 4.79 c 269.11 ± 2.21 b 257.61 ± 4.15 a

Data presented as the mean +/− SD (standard deviation). Different letters represent the significant difference
among means (p < 0.05).

The polyphenol profile in the apple juice after HPH treatment is investigated in Table 2.
The results show that the polyphenol contents in the HPH-treated apple juice gradually
decreased with increased pressure and were lower than in the control juice. The phloridzin,
epicatechin, chlorogenic acid, caffeic acid, gallic acid, and total phenolic compounds in
the apple juice treated with HPH at 300 MPa were reduced by 63%, 48%, 12%, 16%, 22%,
and 18%, respectively. The reduction may be explained by the degradation of polyphenols
induced by high pressure and cavitation effect [38]. In addition, a slight decrease in total
phenolic content in HPH-treated apple juice at 100 MPa was reported by Chandi et al.
(2020) [30]. HPH could effectively reduce the PPO and POD activity of apple juice, which
can be used as an important factor for extending the shelf-life of HPH treated apple juices.
On the other hand, HPH processing causes the decline of polyphenol contents in apple
juice, which significantly affects the nutritional properties.

3.3. Influence of HPH on Bioaccessibility of Polyphenols and Physical Parameters of Apple Juice
during Simulated Digestion

The changes in PSD, zeta potential and TPC content in the apple juice under simulated
digestion are shown in Table 3. In the mouth stage, the PSD of HPH-treated and untreated
apple juice was larger than that of the control sample, which may be explained by the
unfolding of the macromolecule chain caused by enzymes in the mouth. In the stomach
stage, the PSD of HPH (200 MPa)-treated and untreated apple juice reduced compared to
the mouth stage, while the PSD of apple juice treated with HPH at 250 MPa and 300 MPa
enhanced. This is because high temperature promoted more components to flow out of the
cell, resulting in longer digestion [41]. In the intestine stage, the PSD of both HPH-treated
and untreated apple juice was reduced, demonstrating that these macromolecules were
catalyzed into low-molecular-weight compounds by some enzymes in the intestine [42].

For zeta potential, the zeta potentials of HPH-treated and untreated apple juice were
significantly changed when the digestion stage was from the mouth stage to the intestine
stage. In the mouth stage, the zeta potential of apple juice treated with HPH at 200 MPa
was enhanced, whereas the zeta potential of apple juice treated with HPH at 250 MPa
and 300 MPa was reduced. When the digestion stage was in the stomach stage, the zeta
potentials of both HPH-treated and untreated apple juice considerably increased. On the
contrary, in the intestine stage, the zeta potentials of both HPH-treated and untreated apple
juice were considerably reduced. Zeta potential has a positive correction with the pH
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value of apple juice [32]. The pH required for various enzymes is different at each stage
of digestion [43]. Therefore, the zeta potential of HPH-treated and untreated apple juice
demonstrated significant changes.

Table 3. The PSD, zeta potential, and TPC of apple juice treated using HPH treatment during
simulated digestion.

CS 200 MPa 250 MPa 300 MPa

1 PSD

Control 22.37 ± 0.00 ab 19.02 ± 4.17 ab 19.09 ± 1.79 ab 20.42 ± 3.23 ab

Mouth 34.55 ± 6.91 ab 28.51 ± 0.85 ab 32.58 ± 6.89 ab 36.21 ± 10.61 ab

Stomach 29.40 ± 0.00 b 28.43 ± 6.55 ab 44.73 ± 2.93 ab 37.69 ± 2.80 ab

Intestine 23.33 ± 5.66 ab 8.53 ± 2.16 a 17.17 ± 0.00 ab 30.72 ± 29.18 ab

Zeta potential (mv)

Control −20.45 ± 2.62 a −19.60 ± 1.72 abc −16.20 ± 3.96 cd −16.80 ± 1.27 bcd

Mouth −20.05 ± 0.92 ab −18.35 ± 0.78 abcd −19.30 ± 0.14 abc −18.00 ± 0.14 abcd

Stomach −9.82 ± 0.13 e −12.10 ± 1.70 e −12.55 ± 0.21 e −11.65 ± 0.64 e

Intestine −17.30 ± 0.71 abcd −15.70 ± 0.85 d −19.30 ± 0.57 abc −18.40 ± 0.14 abcd

2 TPC (mg/mL)

Control 1.34 ± 0.00 hj 1.49 ± 0.07 k 0.78 ± 0.00 d 1.37 ± 0.06 j

Mouth 1.29 ± 0.00 ih 1.28 ± 0.02 i 1.52 ± 0.00 k 1.12 ± 0.03 h

Stomach 0.68 ± 0.00 c 0.97 ± 0.01 g 0.84 ± 0.00 ef 0.87 ± 0.00 f

Intestine 0.86 ± 0.03 f 0.82 ± 0.03 def 0.80 ± 0.01 de 0.82 ± 0.01 def

Micelle 0.32 ± 0.01 a 0.46 ± 0.02 b 0.41 ± 0.01 b 0.45 ± 0.01 b

1 PSD: particle size distribution, 2 TPC: total phenolic content. Data presented as the mean +/− SD (standard
deviation). Different letters represent the significant difference amongmeans (p < 0.05).

The content of total polyphenols decreased at each subsequent stage of apple juice
digestion. This is due to the activity of digestive enzymes and the drastically changing pH
in the simulated digestive tract. The recovery of polyphenols at the stage of digestion in
intestinal conditions was slightly higher in CS (64%) and the juice after HPH at 300 MPa
(60%) compared to juices after HPH at 250 MPa (53%) and 200 MPa (55%). There were
significantly higher recoveries of total polyphenols at the micelle stage in HPH samples
(27–32%) compared to controls (24%). The use of HPH resulted in a decrease in the
average particle size of apple juices. Therefore, polyphenols could be better extracted and
absorbed into the micelles to a greater extent [43]. This phenomenon may also affect the
bioaccessibility of polyphenols in HPH-treated apple juice.

Bioaccessibility of total polyphenols from apple juice was determined as the ratio of
their concentration in the micelle fraction to their concentration in the raw digest (Figure 2).
Apple juices subjected to HPH treatment at three pressure parameters were characterized
by higher (by 17%) bioaccessibility of total polyphenols compared to the control sample.
Bioaccessibility of the analyzed compounds in control was 36.8%, while HPH samples
reached 51.3–55.8%. The HPH treatment can damage the plant cell walls, thus increasing
the extraction of phytochemicals inside the cells into the supernatant [44].
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4. Conclusions

The physiochemical properties, enzyme activity and polyphenol profile of HPH-
treated and untreated apple juice were investigated. No changes in apple juice’s pH, TSS
and density were noted after an increase in the pressure of HPH processing. While the
viscosity of apple juice after HPH (200 and 300 MPa treatments) was lower compared to
the control, an increase in the viscosity of HPH-processed apple juice at 250 MPa was
reported. In addition, a consistent trend between viscosity and PSD of apple juice treated
with HPH was noted. The increase in the pressure gradually enhanced the zeta potential of
HPH-treated apple juice. On the contrary, the PPO, POD activity and polyphenol profile
of HPH-treated apple juice gradually reduced as the pressure increased. The L * and
b * values after HPH treatment at 200 and 300 MPa were lower than the corresponding
value for the CS, while the a *-value of the HPH-treated apple juice was higher. However,
significant differences in L, a and b values of apple juice treated at 250 MPa were not
observed when compared with CS. During the digestion period, the PSD of HPH-treated
apple juice demonstrated an increase and decrease trend, while the TPC gradually reduced.
The PSD during simulated digestion had a positive correlation with the pH. The polyphenol
bioaccessibility of apple juice via HPH treatment increased by 17%. The obtained results
can be used for the prediction of future trends in functional food production, especially for
improving the bioaccessibility of nutritional compounds from fruit and vegetable products.
Future works should be focused on the application of higher pressures for preservation of
juices using HPH, because pressure up to 300 MPa is insufficient considering the microbial
ability of fruit juices during storage time.
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