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Abstract: Obesity is a condition that leads to increased health problems associated with metabolic
disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have
demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of
plant origin that can be incorporated as functional food ingredients. This review presents recent
developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential
application of food-derived polyphenols as agents against obesity has been summarized. Literature
evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms
of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes,
modulate neurohormones/peptides involved in food intake, and their ability to improve the growth
of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of
polyphenols by gut microbes produces different metabolites with enhanced biological properties.
Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional
foods for treating obesity. Upcoming investigations need to explore novel techniques, such as
nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at
the target sites in the body.
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1. Introduction

Obesity results from the excessive accumulation of body fat due to an imbalance
between energy intake and expenditure. Obesity is a risk factor for several other chronic
disorders, including type 2 diabetes mellitus, cardiovascular diseases, stroke, dementia,
osteoarthritis, and breast, colon, and prostate cancers [1,2]. It can contribute to a decline
in life quality and expectancy and may also lead to many other psychological problems.
Modifying lifestyle is considered the most appropriate approach to reducing obesity [1].
In particular, adjusting an individual’s diet to include healthier foods is vital in weight
management. Globally, obesity is constantly growing in prevalence and significance, posing
a threat to health. Once just a problem of wealthy nations, obesity now impacts more
countries at all economic levels, bringing with it a wave of ill health and loss of productivity
among the population. The worldwide prevalence of the disease has doubled since the
beginning of 1980 [3]. Today, obesity is considered one of the most serious public health
concerns, with the latest figures from the World Health Organization’s database showing
that about one in ten young people, ages 5–17, are overweight or obese, while the condition
is even severe among middle-aged people [3]. Bariatric surgery and synthetic drugs (such
as orlistat and naltrexone/bupropion, glucagon-like peptide-1 receptor agonists) have
been accepted as therapeutic strategies for obesity. However, these treatment methods
have been associated with unpleasant side effects that limit their use [4]. As a result of
these concerns, other alternative approaches are needed to help fill this gap and reduce
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the impact of obesity among the population. This challenge has led to more research on
obesity, including assessing the effect of polyphenols on disease. Polyphenols are vital
phytonutrients of plant origin that can be incorporated as functional ingredients in foods
to offer an effective natural therapy against obesity. There have been efforts to discover
alternative obesity treatments from dietary polyphenols [1,2]. Although several other
papers have been on this subject, the current article reviewed the most current knowledge
on the relationship between plant-derived polyphenols and obesity. The cellular, animal,
and human data supporting the anti-obesity potential of phenolic compounds have been
summarized. The information presented in the review is unique in revealing the potential
role of polyphenols in weight management and their safety-related issues. The article offers
the most comprehensive evidence, combining the incorporation of polyphenols into foods,
safety aspects, bioavailability, and related research limitations in preclinical and clinical
studies in an attempt to provide a lead for more studies regarding foods targeting obesity.
However, this article has some weaknesses as described in Figure 1.
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2. Existing Treatment for Obesity and Their Safety Limitations

The existing methods of obesity management include surgical procedures, admin-
istration of synthetic drugs, and diet and exercise. The combination of diet and exercise
is considered the safest and most appropriate method for weight management. Bariatric
surgery refers to various surgical procedures that alter the anatomy of the gastrointestinal
tract [4]. Even though it is an effective method of obesity treatment, the cost of bariatric
surgery is high, and its post-surgery care is a burden to most patients [4]. In addition, the
procedure is associated with various risks of developing acute kidney injury, marginal
ulcers, and gallstones [4].

On the other hand, drug therapy is an adjunct to diet and exercise in people who
require more advanced intervention. The current anti-obesity drugs aim to reduce food
intake by either curbing appetite or suppressing the craving for food. Conventional anti-
obesity drugs exert anorectic action due to their effects on the levels of monoamines in
various brain nuclei [5]. However, in addition to their anorexic effects, these drugs have
been linked to altered brain functions associated with sexual behavior, hormonal secretion,
mood, and sleep, among other neuro-related effects [5]. In addition to associated neuro
influences, some of these compounds, such as orlistat, have been linked with gastroin-
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testinal and cardiovascular side effects such as steatorrhoea, fecal incontinence, flatulence,
and malabsorption of fat-soluble vitamins, making their use limited [5]. To overcome the
challenges arising from the use of orlistat, a new pancreatic lipase inhibitor, cetilistat, was
developed [6]. Cetilistat has been found to show considerable potential in the treatment
of obesity; nonetheless, evidence from in vivo studies indicates that the gastrointestinal
effects can persist even with the use of cetilistat [6].

There is also ongoing research on developing anti-obesity treatments based on the two
incretin hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like
peptide-1 (GLP-1). Treating diseases by administering agonists of GIP and GLP-1 exploits
their physiological effects on the body [7]. These compounds may demonstrate anti-obesity
effects by engaging endogenous hormones involved in energy balance and metabolism [7],
although they, too, have several limitations (Table 1). Consequently, there is a substantial
unmet need to find effective and safer anti-obesity management methods; research is
still needed on natural plant metabolites such as polyphenols to help understand their
anti-obesity efficacy

Table 1. Safety of anti-obesity drugs in clinical studies.

Drug Country Participants Dose Reported Adverse
Effect References

Common Drugs
For short-term use

Diethylpropion Brazil N = 69 50 mg per day for 6 months Dry mouth and
insomnia [8]

Mazindol USA N = 85 1–3 mg per day for 6 weeks.

Dry mouth, nausea,
decreased appetite,

fatigue, heart rate, and
constipation

[9]

Phendimetrazine USA N = 13 140–210 mg per day for 7-days No observable adverse
effects [10]

Phentermine Korea N = 74 30 mg per day for 12 weeks Dry mouth and
insomnia [11]

For long-term use

Orlistat Japan N = 100 60 mg three times daily for
24 weeks

Oily spotting and flatus
with discharge [12]

Topiramate ER Canada, Europe and
South Africa N = 646 192 mg per day for 24 weeks.

Paresthesia and central
nervous system-related

effects.
[13]

Lorcaserin USA N = 604 10 mg per day for 12 months
Headache,

nasopharyngitis,
nausea, and back pain

[14]

Sibutramine USA N = 61 20 mg once daily for 12 weeks No adverse effect [15]

Naltrexone/Bupropion
ER USA N = 1650

Naltrexone 32 mg per day plus
bupropion 360 mg per day

56 weeks

Headache, constipation,
nausea, dizziness,
vomiting, and dry

mouth

[16]

GLP-1 receptor agonists
For short-term use

Exenatide China N = 681 2 mg per day for 10 weeks Nausea, dyslipidemia,
and vomiting [17]

Lixisenatide France N = 484 20µg per day for 24 weeks Acute pancreatitis [18]
For long-term use

Liraglutide,

Australia, Belgium,
the UK, the USA,

Russia, Israel, and
Germany

- 30 mg per day for 52 weeks
Gastrointestinal

symptoms, primarily
nausea

[19]

Albiglutide USA N = 155 30 mg per week for 52 weeks Diarrhea, nausea, and
vomiting [20]

Dulaglutide Not reported N = 807 1.5 mg or 0.75 mg per day for
52 weeks

Nausea, diarrhea, and
vomiting [21]

3. Diversity of Polyphenols in Diet and Their Biological Significance

Polyphenols are compounds with several hydroxyl groups on an aromatic ring. Most
of these compounds can be found in several plant foods, including tea leaves, cereals,
legumes, and fruits, while some are mainly associated with specific foods (e.g., isoflavones
in soya, phloridzin in apples, flavanones in citrus, etc.). They can be grouped into two
broad categories: flavonoid-type and non-flavonoid-types with distinct structures (Figure 2).
These groups are discussed below.
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3.1. Flavonoid-Type Phenolic Compounds

Flavonoid-type phenolic compounds are further grouped into subclasses of flavanols,
flavonols, isoflavones, flavanones, anthocyanins, and proanthocyanidins. Flavonols are the
groups of polyphenols containing a 3-hydroxyflavone base (3-hydroxy-2-phenylchromen-
4-one) on their structure. They are distinguished from other polyphenols by hydroxy
modification at distinct positions of the phenol residue [22]. Foods with specified amounts
of these compounds but lacking other active ingredients have demonstrated strong anti-
obesity effects [23]. Green tea rich in flavonols may reduce obesity through their thermo-
genic effect and increased fat oxidation [23]; they can also inhibit enzymes involved in fat
synthesis [23]. Flavones have a basic structure consisting of a 2-phenyl-benzo-γ-pyrone
skeleton formed by two phenyl rings (A and B) linked with a heterocyclic pyrone ring [22].
They are said to have relatively higher bioavailability in the body compared to flavonols,
probably because of degradation by gut microbiota and greater accessibility for absorption
in the intestine [22]. Flavones such as ellagitannins and granatin B present in the edible
flowers of Punica granatum L. were reported to exert a potent anti-obesity potential when
consumed [24]. The large numbers of hydroxyl groups on the flavone molecule are re-
sponsible for their α-glucosidase, α-amylase, and lipase inhibitory activities, which is the
anti-obesity mechanism of their action [24].

Isoflavones are differentiated from other flavonoids with their planar ring system
containing benzenoid B ring attached to carbon number three (C3). Isoflavone-rich foods
such as lentils, black soybean, chickpea, peanut, and common beans may demonstrate anti-
obesity effects and suppressive ability against oxidation and inflammation associated with
obesity [25]. Anthocyanins may include and are not limited to delphinidin 3-O-rutinoside,
malvidin, cyanidin 3-O-rutinoside, and cyanidin 3-O-glucoside. Food products rich in these
compounds, such as wine, berries, and beans, have beneficial effects on obesity [25]. Antho-
cyanins effectively improve the lipid profile by significantly reducing serum triglyceride
and cholesterol levels but increasing high-density lipoprotein-cholesterol concentration
in obese conditions [25]. Finally, flavonols such as (+)-catechin, (−)-epicatechin, epigal-
locatechin, and some polymeric procyanidins can be found mostly in fruits, tea, wine
and chocolate. They contain a B-ring attached to carbon number two (C2), even though
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they lack a carbonyl group in their carbon number four (C4) position or double bonds
between carbon number two (C2) and number three (C3). Catechin-rich tea suppressed the
expression of miR-335 in white adipose tissue [26]. At the same time, proanthocyanin–rich
grape seed extracts administered to rats significantly improved obesity parameters [27],
proving their efficacy as anti-obesity agents.

3.2. Non-Flavonoid-Type Phenolic Compounds in Foods

Non-flavonoid polyphenols are diverse in foods. They are categorized into phenolic
acids, lignans, and stilbenes. Phenolic acids are widely distributed in foods and can be
found in high concentrations in grains, wine and berries. They may include and are not
limited to caffeic acid, caftaric acid, ferulic acid, chlorogenic acid, and benzoic acid. Many
physicochemical factors such as polarity, plant matrix, digestibility by gastrointestinal
enzymes, and molecular mass can affect their bio-accessibility and bioavailability. Foods
with high phenolic acid content have beneficial effects against obesity, primarily via modu-
lating gut microbiota composition [22]. On the other hand, lignans consist of compounds
with 1,4-diarylbutane in their structure. They include pinoresinol, secoisolariciresinol, sy-
ringaresinol, matairesinol, and lariciresinol diphenolic. These compounds are mainly found
in fruits, vegetables, coffee, tea, and cereal products. When consumed, lignans express
anti-obesity activity by inhibiting the expression of adipogenic factors and lipid metabolism-
regulating factors during adipocyte differentiation [28]. They are also said to be involved in
inducing G0/G1 cell cycle arrest, inhibiting mitotic clonal expansion during the early stage
of adipogenesis [28]. The bioavailability of lignans requires biotransformation reactions
involving demethylation and dehydroxylation, which are directly dependent on intestinal
bacterial metabolism [22]. Moreover, stilbenoids may be found in red grapes, cranber-
ries, strawberries, and peanuts [22]. Resveratrol and its derivatives are the most known
stilbenoids in the diet and probably the most significant and widely studied stilbenoids.
Their metabolized form, such as dihydroresveratrol and 3,4′-dihydroxy-trans-stilbene (from
trans-resveratrol), are responsible for their anti-obesity effects.

4. Integrating Polyphenols as Bioactive Ingredients in Foods: Foods for Weight Loss

Phenolic compounds are broadly present in the plant kingdom and are arguably the
most abundant and essential group of secondary metabolites in plants. Phenols from edible
vegetables, cereals, legumes, and fruits are the most consumed dietary polyphenols. Con-
suming these foods or their products can potentially benefit patients suffering from obesity
in disease management. The strategies to control body weight by incorporating active
compounds capable of limiting the bioavailability of fats, stimulating energy expenditure,
and modifying the composition of the gut microbiota into food products is envisaged as an
appropriate method to find alternative treatment for obesity from natural products. There
is a growing trend of incorporating bioactive polyphenols with anti-obesity effects into
foods to treat and prevent obesity and other diseases [29]. Using food enrichment, encapsu-
lation, and formulation technologies can deliver active ingredients such as polyphenols in
processed foods and improve the effectiveness of such foods against obesity [29]. Manipu-
lating products by adding plant bioactive metabolites has become a promising approach
for controlling or treating obesity. Such efforts have been successful in producing products
such as fruit smoothies with high concentrations of added fruit polyphenols [30], functional
bread enriched with fruit polyphenols [31], application of microencapsulation for the safe
delivery of green tea polyphenols in foods [32], infant food products such as fruit-based
food (from blueberry, cranberry, chokecherry-rich polyphenols) for preventing/treating
obesity [33], and drinking yogurt with added fruit polyphenols [33]. In addition to in-
hibiting obesity development, polyphenol-enriched foods have been stated to prevent
obesity-associated disorders. Kiss et al. produced noodles fortified with polyphenol-rich
buckwheat and amaranth powders [34]. The antioxidant potential of the fortified product
was found to be higher than the control [34]. Mayneris-Perxachs et al. also demonstrated
that the supplementation of hesperidin and naringenin in biscuits positively influenced
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metabolic syndrome in obese rats [35]. They observed reduced body weight, total body fat,
total cholesterol, and oxidative stress [35]. Incorporating polyphenols has positive effects
in improving the anti-obesity metabolic properties of foods, and consuming such foods has
protective effects against the development and progression of obesity. These benefits have
been described in Table 2.

Table 2. Polyphenol-enriched food products targeting obesity.

Polyphenol-
Rich

Extract

Enriched
Product

Experimental
Model

Main
Observation References

A mixture of
polyphenol-rich

extracts from
green tea, grape

seed, and
baobab fruit

White bread Clinical trial
Improved

insulin
sensitivity

[36]

Catechins,
chlorogenic
acids, and

hydroxytyrosol

Cooked ham In vivo

Decreased fat
accumulation

(23.08%
reduction)

[37]

Extracts of
pomegranate

peels and
pomegranate
peels (rich in
ellagitannins,

gallic acid, and
ellagic acid)

Cookies In-vitro

Inhibited
α-glucosidase,
α-amylase, and
lipase activities

[38]

Green tea extract
(containing
catechins)

Bread Clinical trial
Improved body
weight, waist
circumference

[39]

Green tea
polyphenols Bread In vivo

Significantly
suppressed body

weight gain
[40]

Proanthocyanidins
from carob fruit

extract
Meat In vivo

Decreased
accumulation of

liver fats
[41]

Polymerized-
polyphenol
extract from
oolong tea

Oolong tea Clinical trial
Improved body

lipid
accumulation

[42]

The table describes the polyphenol-enriched food products developed to target obesity in either experimental
animal or human clinical trials. The effect of the foods on obesity parameters was evaluated following the intake
of polyphenol-enriched.

5. Molecular Target and Mode of Action for Antiobesity of Polyphenols

The mechanisms through which polyphenols can inhibit obesity include inhibiting
digestive enzymes (mainly alpha-glucosidase, pancreatic lipase, fatty acid synthase, and
alpha-amylase), stimulating energy expenditure, suppressing appetite, regulating lipid
synthesis, and modulation of gut microbiota (Figure 3). These mechanisms may occur
individually or in certain combinations, as described below.
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5.1. Polyphenols Influence Neuropeptides/Hormones Involved in Food Intake and Satiety

There is increasing evidence showing that dietary polyphenols are beneficial in reduc-
ing obesity by acting on various neurohormones in the brain involved in food intake and
satiety. In vitro and in vivo studies reveal that polyphenols have potential roles in neurohor-
mones that modulate food intake and energy regulation in obesity. Insulin is an important
hormone that regulates blood glucose levels in the body; it is adipocytes’ primary hormonal
signal for energy storage [43]. The causal links between obesity and insulin are complex
and controversial, and research has not been able to establish these links fully. However,
insulin hypersecretion by the pancreas has been implicated in obesity development and
pathogenesis [43]. Studies have been conducted to assess the relationship between insulin
and obesity development. For instance, a study indicated that adults who hypersecreted
insulin in response to an intravenous glucose tolerance test showed excessive weight gain
over a 15-year follow-up period [44]. Thus, insulin is an essential neurohormone in the
pathogenesis of obesity, and therefore, reports on the effects of polyphenols on insulin
underscore their potential role in obesity. Long-term intracerebroventricular infusion of
resveratrol normalized hyperglycemia and improved hyperinsulinemia in obese mice [45].
Down-regulation of the insulin-like growth factor pathway in medulloblastoma cells was
observed upon administration of curcumin [46]. The study suggested that curcumin con-
tains polyphenol metabolites which are influential in the central nervous system’s effects
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in regulating neurohormones such as insulin [46]. Hormone leptin also plays a crucial
role in obesity. Adipose tissue is one of the main organs producing several adipokines,
such as leptin regulating energy metabolism. Leptin inhibits neuropeptide Y (NPY), which
is orexigenic and stimulates proopiomelanocortin which activates anorexigenic factors
inhibiting food intake [47]. The daily consumption of 200 mg/kg of resveratrol restored
leptin sensitivity in obese rats and reduced their overall body weight [48]. In addition to
their effects on insulin and leptin, polyphenols have been shown to exert anti-obesity by
directly modulating neuropeptides in food intake, as anthocyanins were reported to inhibit
neuropeptide Y, suppressing obesity in high-fat diet-fed rats [49].

5.2. Polyphenols Inhibit Pro-Obesity Enzymes

Ingested fats are metabolized and absorbed in the blood through the duodenum.
Lipids exist in the body as triglyceride, an ester compound synthesized from a single
molecule of glycerol and three fatty acids. Triglycerides cannot be absorbed into the blood
in their native form; they must be hydrolyzed into simpler components (monoacylglycerol
and free fatty acids) which can easily be absorbed and transported [50]. Human pancreatic
lipase is the main enzyme that breaks down dietary fats in the human digestive system [50].
Therefore, an essential target for the treatment of obesity includes the development of
pancreatic lipase inhibitors. Polyphenol-rich extracts from a range of plants have been
studied for their ability to inhibit pancreatic lipase activity in vitro and in vivo [50]. Buch-
holz et al. reported that several factors determine the inhibitory effect of polyphenols
against pancreatic lipase [50]. First, the potential inhibitory ability depends on the number
and position of phenolic hydroxyl groups; polyphenols with a higher number of phenolic
hydroxyl groups possess a more significant inhibitory effect against pancreatic lipase [50].
Second, non-esterified polyphenols such as (+)-catechin and (−)-epicatechin have been
found to possess a lower inhibitory activity than esterified ones [50]. Third, the degree of
polymerization of polyphenols influences their ability to inhibit lipase. The investigation of
phenolic acids demonstrated that hydroxybenzoic acids inhibit the activity of lipase less
powerfully than hydroxycinnamic acids, probably due to their differences in the degree of
polymerization [50]. Finally, Buchholz and Melzig deduced that polyphenols with methoxy
groups in the molecule are less potent than those with hydroxyl groups. Polyphenols inhibit
pancreatic lipase by binding to the protein moiety [50]. Therefore, the protein-binding
affinity of polyphenols is vital in the lipase-inhibitory activity of these compounds [51];
possibly the reason polyphenols with different structures have different lipase-binding
affinities. Nonetheless, even though polyphenols may prevent the digestion of lipids by
lipase enzymes, it has been reported that as the inhibitory activity of polyphenols proceeds,
the lipase enzyme activity would often be compensated by increased secretion of these
enzymes in the gut [52]. This phenomenon was observed in a study of condensed tannins
in rats [52]. Supplementary Table S1 summarizes research on lipase inhibitory activities of
polyphenols and polyphenol-rich extracts.

In most cases, obesity occurs when fat synthesis exceeds fat oxidation. In the body, fat
accumulation is tightly maintained through lipogenesis and lipolysis. While lipogenesis
converts simple sugars and other substrates to fatty acids and eventually triglycerides,
lipolysis hydrolyses triglycerides to generate free fatty acids and mono- or diacylglycerol
or free glycerol. The enzyme fatty acid synthase plays a central role in animal de novo
lipogenesis. The enzyme catalyzes the conversion of acetyl-CoA and malonyl-CoA to
palmitate (a 16-carbon saturated fatty acid). This process is one of the steps involved in the
synthesis of endogenous lipids in the body and may lead to the development of obesity
if it becomes excessive. Polyphenols can inhibit the enzyme fatty acid synthase activity
and block the lipogenic pathway in vivo. Bee bread polyphenols significantly reduced the
obesity index by inhibiting fatty acid synthase activity in the high-fat diet-induced obese
rats [53]. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase and
was reported to prevent the enzyme’s activity in prostate cancer cells, thereby reducing
endogenous lipid synthesis [54]. Chokeberry-derived polyphenols suppressed fatty acid
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synthase activity in 3T3-L1 cells, significantly decreasing body weight and serum triglyc-
eride [55]. Additional polyphenols studied for their ability to inhibit fatty acid synthase
are summarized in Supplementary Table S2. Screening for fatty acid synthase inhibitors
from diverse plant polyphenols could be an important area of research in obesity treatment.
Other enzymes that can be significantly involved in obesity development are alpha-amylase
and alpha-glucosidase, which hydrolyze starch and carbohydrates, respectively.

5.3. Polyphenols Suppress Lipogenesis of the Adipose Tissue via Obesity-Related
Transcription Factors

Obesity is often associated with several disorders, including excessive growth of
white adipose tissue [26]. Adipocytes are synthesized from multipotent mesenchymal
precursor cells that commit to preadipocytes and then either remain inactive or further
differentiate to become mature adipocytes [56]. The process of differentiation is tightly
controlled by multiple transcription factors, including miRNA and extracellular hormones
such as insulin [56]. The miRNAs are short nucleotides, endogenous non-coding RNAs
regulating various biological processes such as adipogenesis and fat metabolism in the
body [26]. Of particular relevance, many miRNAs, including miR-335, 103, and 143, are
often upregulated during adipogenesis [26,56]. Therefore, substances that can prevent
the upregulation of miRNAs may substantially inhibit obesity development. An animal
model experiment reported that polyphenols from green tea (especially epigallocatechin
gallate) suppressed the expression of miR-335 in white adipose tissue [26]. Since miRNA
is a link between weight gain and impaired metabolism in adipose tissue, the study
demonstrated that the suppression of miR-335 by polyphenols significantly prevented
weight gain and reversed virtually all metabolic complications induced by obesity in
mouse white adipose [26]. Besides miRNA inhibition, the beneficial effects of polyphenols
in suppressing lipogenesis in adipose tissue have also been linked to their effects on
adenosine monophosphate (AMP)-activated protein kinase (AMPK) [57]. AMPK is an
important regulator of energy balance in the body and is one of the molecular targets for
drugs used to treat obesity [58]. Activation of AMPK protects against diet-induced obesity
due to increased body energy expenditure resulting from the high oxygen consumption rate
of white adipose tissue (the process is referred to as beiging) [58]. Thus, targeting AMPK
activation in adipose tissue can offer a therapeutic strategy for managing obesity. In a study
of the anti-obesity activity of green tea polyphenols, Rocha et al. reported a repression of de
novo lipogenesis in adipose tissue in diet-induced obese rats, which was accompanied by
AMPK activation [57]. Another research showed that gallotannin derivatives from mango
suppressed adipogenesis by converting white adipocytes into beige adipocytes in 3T3-L1
adipocytes through the AMPK pathway [59]. Targeting lipogenesis by polyphenols is an
effective strategy for managing obesity.

5.4. Polyphenols Modulate Thermogenesis and Mitochondrial Biogenesis

Mitochondria functions to produce energy via oxidative phosphorylation and are also
involved in various cellular roles in the body, including apoptosis, calcium balance, and the
production of free radicles [60]. Due to these multiple functions, mitochondrial dysfunction
can directly or indirectly trigger the origin of numerous diseases, such as obesity and
diabetes [60]. Previous studies have demonstrated that obesity development can be linked
to decreased mitochondrial respiration, mitophagy signaling, increased production of free
radicles, and apoptosis [61]. Therefore, therapeutic strategies directed toward restoring
mitochondrial function are promising methods in the treatment of obesity. Peroxisome
proliferator-activated receptor-gamma coactivator 1 (PGC-1) consisting of family members,
PGC-1α, PGC-1β, and PRC (PGC-1-related coactivator) is one of the key regulators of
mitochondrial functions [62]. The PGC-1α coactivators, for instance, regulate the expres-
sion of mitochondrial transcription factor A (TFAM), which controls mitochondrial DNA
replication and transcription [62]. These activities are managed through phosphorylation,
methylation, and acetylation processes. Reversible acetylation of PGC-1α regulated by sir-
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tuin 1 (SIRT1) has been shown to substantially alter mitochondria’s transcriptional activity,
leading to various health problems, and excessive weight gain is one of them [60,62].

Recently, it has been shown that markers of mitochondrial biogenesis are upregulated
in polyphenol-treated mice (Supplementary Figure S1). An in vivo study also revealed
that resveratrol, increasing SIRT1 activity, modulated PGC-1a functions and impacted the
regulation of energy balance [63]. The study also showed that resveratrol potently induced
mitochondrial activity by not only activating PGC-1a but also increasing oxidative Type-I
muscle fibers [63]. These effects triggered by resveratrol were crucial in enhancing the
animals’ resistance to diet-induced obesity and tolerating insulin resistance [63]. On the
other hand, thermogenesis is a process in which heat is produced in the body, mainly due
to basal metabolism. Most animals regulate thermal homeostasis via brown adipose tissue.
Thus, brown adipose tissue has been identified as a critical site for energy expenditure in the
form of thermogenesis. In low temperatures, sympathetic nerves are stimulated to activate
brown adipose tissue via β3-adrenoreceptors to facilitate thermoregulation [60]. Addi-
tionally, thermogenesis in brown adipose tissue can be stimulated by diet-induced stress,
which is crucial in obesity [60]. Numerous reports have investigated how thermogenesis
regulation via brown adipose tissue plays a protective role against obesity [64,65] and the
potential effects of polyphenols in this process [66,67]. Vanillic acid reduces body weight
gain and maintains body temperature by promoting thermogenesis and mitochondrial bio-
genesis of brown adipose tissue [66]. According to the report, vanillic acid-activated brown
adipose tissue thermogenesis promoted inguinal white adipose tissue browning, thereby
inhibiting obesity development [66]. Epigallocatechin-3-gallate feeding of mice decreased
body weight gain and plasma and liver lipids [67]. According to the study, the treated
mice exhibited higher body temperature and increased mtDNA content in brown adipose
tissue, indicating increased thermogenesis and mitochondrial biogenesis [67]. Therefore,
the research on the effects of polyphenols on thermogenesis and mitochondrial biogene-
sis may enhance understanding of the importance of these compounds in the body and
provide hope for developing functional foods to prevent or treat obesity. Supplementary
Table S3 summarizes studies on the roles of polyphenols in inducing thermogenesis and
mitochondrial biogenesis.

5.5. Gut Microbiota Modulation

Human gut microbiota (GM) is a complex ecosystem. Gut microbiota performs critical
roles in diet processing, eventually influencing several physiological functions in the host
organism. These functions include harvesting energy from indigestible food, altering fatty
acid oxidation, controlling satiety, lipogenesis, production of bile acid, and affecting innate
immunity [68]. Thus, gut microbiota dysbiosis can cause the progression of various chronic
conditions related to these activities. Diet represents an essential factor in regulating the
symbiotic relationship of mammalian gut microbiota since it provides the energy and
substrates for the life and growth of the organisms. The interaction between dietary
polyphenols and gut microbiota has been well documented [68]. There is a two-way
interaction between polyphenols and the gut microbe that affect human metabolism and
could reduce the risk of obesity: gut microbiota enzymatically biotransforms polyphenol
structure producing the metabolized forms of the compounds (discussed in Section 5),
while polyphenols can potentially change gut microbiota composition by inhibiting the
growth of pathogenic bacteria but enhancing the growth of beneficial microbes. Thus,
gut microbiota can regulate the bioavailability of the unabsorbed polyphenols, which
reciprocally modulate their functions [69].

The mechanisms through which phenolic compounds modulate the gut microbiota
is a subject that requires further elucidation. The heterogeneity of the polyphenols, their
food sources, their coexistence with other bioactive compounds within a regular diet,
and the complexity of the human gut microbiome make it challenging to understand
how polyphenols modulate the microbial composition of the human gut. However, the
mechanisms may involve both direct and indirect interactions. Phenolic compounds
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can simultaneously stimulate beneficial bacteria growth but inhibit pathogenic bacterial
proliferation through their bactericidal or bacteriostatic effects in the gut [70]. The imbalance
between Firmicutes and Bacteriodetes has been associated with obesity development and
insulin resistance [70]. It has been found that a decreased ratio of Firmicutes/Bacteroidetes
(F/B) can help prevent the development and progression of obesity [69]. In a study of
catechin-rich tea infusion, a significant decrease in Firmicutes and increases in the number
of Bacteroidetes and Proteobacteria were observed, which correlated to overall reduced
body weight in a mouse model of high-fat-diet-induced obesity [69]. The role of foods
in enhancing the beneficial microbes and reducing pathogenic ones at a species level
is of particular importance. Feeding C57BL/6J mice with a high-fat diet supplemented
with three types of tea (green tea, oolong tea, and black tea) infusions for 13 weeks was
found to increase diversity and positive change in the microbial community in the gut,
which consequently decreased the accumulation of adipose tissue in the mice [71]. This
study revealed that phenolic acids, flavonols, and alkaloids from the three types of tea
modulated the composition of gut microbiota such that Alistipes, Rikenella, and Akkermansia
were increased, thereby preventing obesity development [71]. Additionally, one of the
key species of beneficial bacteria in the gut is the mucin-degrading species of bacteria,
Akkermansia muciniphila. Recently, Akkermansia muciniphila has received increasing attention
because of its ability to improve body weight and protect against various features of
metabolic syndrome [72]. Polyphenol-rich cranberry extract administration was found to
revert an essential shift in the gut microbiota of mice by triggering an increase in the relative
abundance of Akkermansia in high-fat/high-sucrose-fed rats [72]. Thus, plant foods rich in
polyphenols can modulate microbiota composition, forming a baseline that might offer a
dietary intervention strategy for obesity treatment. Supplementary Table S4 summarizes
the studies on the effects of polyphenols on gut microbiota composition in obesity.

6. A Comprehensive Review of Cellular, Animal, and Human Models Investigating
the Potential of Polyphenol-Rich Extracts against Obesity
6.1. Studies on the Anti-Obesity Effects of Polyphenol-Rich Extracts Performed in Cell
and Animal Models

Studies on cell model: After in vitro, ex vivo studies are the second step in establishing
the effects of plant phytochemicals on health. Plant extracts’ in vitro anti-obesity potential
is often assessed by evaluating their inhibitory activities against pancreatic lipase, alpha-
glucosidase, alpha-amylase, and fatty acid synthase enzymes (discussed above). However,
to understand the initial molecular mechanism undergoing obesity in ex vivo/in vitro, the
cell culture model (mostly, 3T3-L1 cell line) has been used as one of the most reliable models
for evaluating the cell differentiation of preadipocytes into adipocytes. Accumulation of fat
and the differentiation of adipocytes are often related to obesity development. Soeng et al.
found that rambutan seed extract (rich in polyphenols) decreased triglyceride levels and
inhibited glucose-6-phosphate dehydrogenase (G6PDH), which promotes adipogenesis,
thereby reducing obesity in ex vivo in the 3T3-L1 cell line [73]. Treatment with black
soybean anthocyanins at a concentration of 12.5–50 µg/mL prevented obesity development
by inhibiting the proliferation of both preconfluent preadipocytes and mature postconfluent
adipocytes in 3T3-L1 cells [74]. Pinent and colleagues discovered that grape-seed-derived
procyanidins treatment inhibited adipogenesis in the 3T3-L1 cell, mainly at the induction
of differentiation [75]. Chokeberry polyphenols suppressed fatty acid synthase activity
in 3T3-L1 cells [55]. The study found that by inhibiting the enzymes, polyphenol-rich
Chokeberry significantly decreased the animal body weight and serum triglyceride [55].

Studies on animal models: The anti-obesity potential of polyphenols-rich plant extracts
have not been demonstrated in vitro and ex vivo studies alone; their anti-obesity properties
have also been shown in animal models as in vivo evidence. Even though the anti-obesity
mechanisms of action depend on the extract and the animal model used, studies agree
on general anti-obesity events that occur with polyphenol intake. Most studies report
the reduction of animal body weight, fat tissue size, and downregulation of pro-obesity
markers when animals such as mice are fed a mixture of polyphenol-rich extract and a
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high-fat diet. Furthermore, there is agreement that the intake of polyphenol-rich extracts
improves serum triglycerides and reduces total cholesterol and LDL-cholesterol in plasma.
Cellular and animal studies on the potential effects of polyphenol-rich extracts on obesity
were summarized in Table 3.

Table 3. Cellular and animal studies on the potential effects of polyphenols and polyphenol-rich
extracts on obesity.

Polyphenol Model Treatment Dose Key Observation References

Polyphenols-rich
blueberry extract Mice

Mice were provided with
15.6 mg/kg BW per day for

12 days

Inhibited body weight gain
and reverted lipid

metabolism to normal.
[76]

Rambutan seeds extract
(containing alkaloid,

terpenoid, triterpenoid, and
flavonoids)

3T3-L1 cell line
Cells were treated with

varying concentrations of the
extracts (10 and 50 µg/mL)

Decreased triglyceride levels.
Inhibited

glucose-6-phosphate
dehydrogenase (G6PDH)

which promote adipogenesis

[73]

Procyanidin-rich grape seed
extract (GSPE) 3T3-L1

Cells were treated with
140 mg/L GSPE (dissolved in
water) for 24 hr on days 0, 2,

or 4.

Reduced by 32% triglyceride
content in cells treated at day
zero. Downregulated genes
responsible for preadipocyte
differentiation but elevated

preadipocyte factor-1 (Pref-1).

[75]

Polyphenol-rich
cranberry extracts Mice

Mice were provided with
0.75% (w/w) of

polyphenol-cranberry-rich
extract per day for 16 weeks.

Elevated energy expenditure
and brown adipose tissue

thermogenesis.
[77]

Polyphenol-rich
totum-63 extract Mice

Mice were fed with a high-fat
diet for 12 weeks, followed by

supplementation with
Totum-63 (2.7% w/w) for

4 weeks.

Decreased body weight and
fat mass. Increased

expression of insulin receptor
β and insulin-induced

phosphorylation of PKB in
skeletal muscle, white

adipose tissue (WAT), and
brown adipose tissue (BAT),

thereby inducing
thermogenesis.

[78]

Polyphenol-rich extracts from
Antirhea borbonica, Doratoxylon

apetalum and Gouania
mauritiana

3T3-L1

Cells were treated with
polyphenol-rich from the

respective extract (0–200 µM
GAE) for 24, 48, and 72 h

Inhibited obesity-induced
inflammation and oxidative

stress
[79]

Anthocyanin-rich
blueberry extract Mice.

Mice were fed with
50–200 mg/kg per day for

8 weeks

High doses of 200 mg/kg
reduced body weight by
19.4%, while 50 and 100

mg/kg doses did not
significantly affect body

weight.

[80]

Cyanidin 3-O-β-D-glucoside
(C3G)-rich blackberries Rats Rats were given 10% (w/w) of

C3G-rich blackberry Reduced overall body weight [81]

Acacia-rich polyphenols
(containing catechin-like

flavan-3-ols, such as
robinetinidol and fisetinidol)

Mice

Mice were provided with a
high-fat diet supplemented

with 2.5–5.0% (w/w) of acacia
polyphenol extract for

7 weeks.

Decreased body weight and
also elevated the mRNA

expression of energy
expenditure-related genes

[82]

Anthocyanins-rich black
soybean extract 3T3-L1 cells

Cells were treated with
anthocyanins-rich black

soybean extract (at a
concentration of
12.5–50 µg/mL)

Inhibited the proliferation of
both preconfluent

preadipocytes and mature
postconfluent adipocytes

[74]

BW, body weight; IL-6, Interleukin 6; TNF, tumor necrosis factor-alpha; AMPK: adenosine monophosphate-
activated protein kinase; (iWAT/eWAT, inguinal/epididymal white adipose tissue; PKB, protein kinase B.

6.2. Studies on the Anti-Obesity Effect of Polyphenol-Rich Plant Extracts Performed in Humans

The impact of polyphenols supplementation should be tested on human subjects before
consumption. The US Food and Drug Administration only considers human clinical trials
as strong evidence about a health claim of a bioactive compound. Despite the increased
research on polyphenols as anti-obesity agents, only a few clinical trials have effectively
evaluated the efficacy of these compounds on obesity. A number of polyphenol-rich plant
extracts have been investigated for their ability to reduce obesity development in human
clinical trials. Grape, orange, and citrus fruits are increasingly being investigated for their
anti-obesity effects. Despite most studies being carried out in vitro and in vivo, some
clinical trials have reported grape, orange, and citrus fruits as anti-obesity effects. Dallas
et al. described a significant improvement in obesity parameters when a commercial drink



Antioxidants 2023, 12, 416 13 of 36

consisting of a mixture of polyphenol-rich citrus extract, orange, grapefruit, sweet orange,
and guarana was investigated for their anti-obesity effects [83]. The 95 obese participants
who consumed two capsules of citrus polyphenol extract containing orange, grapefruit,
sweet orange, and guarana for 12 weeks had reduced body weight and abdominal fat [83].
The summary of the anti-obesity effects of polyphenol-rich extracts has been summarized
in Table 4.

Table 4. Anti-obesity effects of polyphenol-rich extracts in clinical trials.

Polyphenol Subject Country Study Objective Intervention Key Observations References

Polyphenol-rich
green tea extract

N = 100, Women,
age: 16–60 years
BMI: >27 kg/m2

Taiwan
To examine the

effect of green tea
extract on obesity.

The subjects
consumed green tea
containing (491 mg

of catechins
containing 302 mg
EGCG per day) for

12 weeks.

0.3% reduction in
body weight (Equiv.

0.15 kg) after
12 weeks of
treatment.

Significantly
reduced triglyceride

levels.

[84]

Polyphenol-rich
chocolate

(contained mainly
epicatechin)

N = 1017, Men and
women aged: 20 to

85 years
USA

To evaluate the
effect of chocolate

rich in phenolic
compounds on

body mass index.

Subjects ate
chocolate, with a

mean intake of 2.0
(2.5) times/week
and exercised 3.6
(3.0) times/week.

Improved BMI. [85]

Yerba Mate (Ilex
Paraguariensis) (rich
in (quercetin rutin,

chlorogenic and
caffeic acids)

N = 15 BMI < 35
and ≥ 25 kg/m2

and waist-hip ratio
(WHR) ≥ 0.90 for
men or ≥ 0.85 for

women

Korea

To investigate the
efficacy of Yerba

Mate
supplementation
against obesity.

The subjects were
given 13 g/day of

Yerba Mate capsules
for 12 weeks.

Decreased BMI
(p = 0.036), body

mass fat (p = 0.030),
and waist-hip ratio

(p = 0.004).

[86]

Soya isoflavones

N = 100,
postmenopausal

women age: 50–70
years BMI 28–40

kg/m2

Canada

To assess the
combined effect of
exercise and soy
isoflavones on

obesity.

Subjects consumed
a 70 mg/day dose
of isoflavones for

12 months.

Decreased trunk fat
mass and increased

lean body mass.
[87]

Mixture of
polyphenols

N = 573, 277 men,
296 women, age:

66.2–68.3 years BMI
> 30 kg/m2

Spain

To assess the
associations

between total
polyphenol and

obesity parameters
among the elderly
after a long period

of polyphenol
intake (measured by

overall urinary
polyphenol level).

Participants known
to consume foods

rich in polyphenols
were recruited and

followed up for
5 years. Spot urine

samples were
collected and

analyzed for total
polyphenols, and
obesity indicators
were measured.

Increased
consumption of

dietary polyphenols
was associated with
improved BMI after

5 years of
consumption.

[88]

Citrus polyphenolic
extract of

red-orange,
grapefruit, and

orange
(Sinetrol-XPur)

N = 95, 55 women
and 40 men, age:
22–45 years BMI
26–29.9 kg/m2

France

To investigate
appropriate

polyphenolic-rich
combinations that
would help reduce

body fat,
inflammation, and
oxidative stress in

overweight
subjects.

Subjects consumed
two capsules of

citrus polyphenolic
extract containing
orange, grapefruit,
sweet orange, and
guarana daily for

12 weeks.

Reduced abdominal
fat and overall body

weight.
[83]

Polyphenol-rich
green tea extract

N = 35, Men and
women, mean, age

42.5 ± 1.7 years
BMI: 36.1 ± 1.3

kg/m2

USA

To compare the
effects of green tea
polyphenols with
controls on body
weight and safety

parameters in obese
subjects.

Subjects took either
four cups of

decaffeinated green
tea beverage or two

capsules of green
tea extract

containing either
28 mg or 870 mg of

catechins (GC, GCG,
EC, ECG, EGC, and

EGCG) daily for
8 weeks.

Decreased body
weight. Improved
LDL-cholesterol

level

[89]

Licorice flavonoid
oil

N = 22, men and
women, age: 20–53

years BMI: 25.0–36.0
kg/m2

USA

To investigate the
effect of licorice

flavonoid oil
supplementation on

obesity-related
health markers.

Subjects consumed
three capsules of
licorice flavonoid

oil, 300 mg per day
for 8 weeks.

Inhibited the total
cholesterol level.
Decreased total

triglycerides.

[90]

LDL, low-density lipoprotein; HDL, high-density lipoprotein, LFO, licorice flavonoid oil; BMI, body mass index;
GC, gallocatechin; GCG, gallocatechin-3-gallate; EC, epicatechin; ECG, epicatechin-3-gallate; EGC, epigallocate-
chin; EGCG, epigallocatechin-3-gallate.
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6.3. Anti-Obesity Effects of Commonly Studied Polyphenols-Rich Foods

Recently, research has highlighted the bioactive roles of polyphenols against obesity.
Numerous foods, consisting of grains, fruits and vegetables, have been studied for their anti-
obesity effects. However, current research has paid particular attention to food materials
known to contain a certain amount of polyphenols, enough to exert anti-obesogenic effects
when consumed. The attention has been put particularly on green tea, berry fruits, citrus
fruits, coffee, cocoa, and ginger polyphenols, with an effort to advance their extraction,
characterization, and understanding of their health benefits (Figure 4).
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Green tea polyphenols: Green tea is one of the most popular worldwide beverages.
Green tea extract contains diverse polyphenolic contents and is particularly abundant
in catechins with various health effects. Polyphenol-rich green tea extract is one of the
most studied for its health activities. Catechins are the most abundant polyphenols with
known biological activities in tea. Catechins are present from 15%–20% by weight in green
tea. Epigallocatechin gallate (EGCG), a kind of catechin, exerts an inhibitory effect on
acetyl-CoA carboxylase, thereby preventing obesity development [91]. Polyphenol-rich
green tea extracts have been widely studied for their anti-obesity effects. The potential
mechanism of how green tea catechin induces anti-obesity effects involves changes in
fatty acid oxidation and metabolism. For example, under the influence of the sympathetic
nerve, norepinephrine (NE) stimulates lipolysis in peripheral tissues, including adipose,
liver, and skeletal muscle, releasing free fatty acids into circulation while at the same time
up-regulating hepatic lipid metabolism [92]. Studies in rodents have shown that green tea
polyphenols could prevent obesity by stimulating lipolysis in peripheral tissues (adipose,
liver, and skeletal muscle), releasing a free hypothesis [93,94]. Randomized, controlled
intervention trials have also confirmed that consuming tea rich in polyphenols exerts
beneficial effects against obesity via these mechanisms [95]. However, the anti-obesity
effects of green tea polyphenols is described as a cumulative process that occurs over time
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in humans [92]. Auvichayapat et al. evaluated the effects of green tea catechin (GTC)
ingestion (141 mg GTC + 87 mg caffeine) as part of a weight loss program among Thai
men and women [96]. During the 8th and 12th weeks of the study period, Auvichayapat
et al. reported that loss in body weight was significantly increased by supplementation. A
183.38 kJ/day difference in resting energy expenditure was observed, while the difference
was 0.02 for the respiratory quotient. Thus, the researchers concluded that green tea could
reduce body weight by enhancing energy expenditure and increasing fat oxidation [96].

Berry fruit polyphenols: In recent years, demand for fresh berry fruits and berry products
has dramatically increased, which largely fuels the cultivation and production of berry
fruits. Raspberries, blueberries, mulberries, lingonberries, blackberries, black chokeberries,
elderberries, cranberries, and strawberries are vast reservoirs of polyphenols and other
bioactive metabolites. Their anti-obesity potentials remain significantly attractive. Jiang and
colleagues comprehensively reviewed the effects of berry fruits as anti-obesity foods [97].
Polyphenols, including anthocyanins (mainly glycerides of cyanidin, delphinidin, petu-
nidin and malvidin), flavonols (rutin and quercetin), phenolic acids, and procyanidins
have been identified in berries [97]. From the perspective of actual clinical experiments,
the anti-obesity of freeze-dried blueberry powder was performed on 32 men and women
with BMI between 32 and 45 kg/m2 [98]. The study subjects consumed 22.5 g of blueberry
powder twice daily for 6 weeks; the supplement contained 32.49 mg/g of total phenolics;
14.84 mg/g of anthocyanins. The supplementation improved body weight and insulin
sensitivity at the end of the study period [98]. A mixture of cranberry and strawberry
polyphenol extracts was evaluated for the ability to reduce obesity among 116 subjects
(BMI ≥ 25 kg/m2) [99]. The extracts contained 20.04 mg/120 mL of proanthocyanidins and
28.206 mg/120 mL of phenolic acids, and the subject consumed 120 mL of beverage daily
for 6 weeks. The supplementation improved insulin sensitivity and other obesity parame-
ters [99]. Moreover, 38 subjects (22 women and 16 men) consumed 45 g lyophilized berries
100 mg extract thrice daily for 2 months [100]. The supplement consisted of 60 mg/100 mg
of total polyphenols, with 20 mg/100 mg of anthocyanins (cyanidin 3-galactoside (64.5%)
and cyanidin 3-arabinoside (28.9%). The supplement was able to restore to improve tested
parameters [100]. The anti-obesity mechanism of berry fruits may be due to the regulation
of lipid metabolism, including suppressing lipogenesis and improving fatty acid oxidation.
Additionally, the ingestion of berry fruits such as mulberry has also been reported to
prevent obesity by enhancing the growth of beneficial gut microbes [101].

Citrus polyphenols: Polyphenols from citrus have been evaluated as one of the attempts
to prevent and treat obesity. Experimental results are not entirely consistent; however,
most of the published papers attribute the anti-obesity effects of citrus polyphenols to
their impact in reducing adipose tissue, increasing biochemical reactions related to fat
oxidation as well as improving the serum lipid profile. Citrus fruits, consisting mainly of
flavonoids as the primary polyphenols, are the most studied citrus products [102]. Among
the flavonoids in citrus are flavanones, flavones, flavonols, and anthocyanins. Hesperidin,
narirutin, naringin, and eriocitrin are the most known flavanones in citrus fruits [102].
Other phenolic compounds, including p-coumaric, ferulic, caffeic and sinapic acids, can
also be found in these foods in significant amounts. Although not often studied for their
health effects, bitter orange is a good source of flavonoids that could exert anti-obesity
effects. Eight-week-administration of bitter orange (Citrus aurantium Linné) in high-fat
diet-induced obese mice resulted in a significant decrease in body weight, adipose tissue
weight and serum cholesterol [103]. Moreover, in further in vitro study, sinetrol (citrus-
based polyphenolic dietary supplement) inhibited cAMP-phosphodiesterase in cell models
and human clinical studies [104], whereas lemon peel polyphenols enhanced peroxisomal
β-oxidation through up-regulation of mRNA levels of PPAR α and acyl-CoA oxidase in
in-vivo mice model study [105]. Thus, regulation of lipid metabolism, energy expenditure
and adipogenesis has been described as significant mechanisms of anti-obesity effects by
citrus polyphenol extracts.
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Coffee and cocoa polyphenols: Cocoa comprises over 380 known bioactive components,
10 of which are considered psychoactive compounds. In their original form, cocoa beans
are inedible due to their high concentration of polyphenols, which often contribute to
the unfavorable bitter flavor [106]. However, processed cocoa products, such as choco-
late, contain reduced total polyphenolic content, a decrease from 100% to about 10% in
levels [106]. Three groups of polyphenols, namely catechins, anthocyanidins, and proan-
thocyanidins, are known to be the dominant compounds in cocoa. Of the total polyphenols,
catechins constitute 37%, anthocyanidins comprise 4%, and proanthocyanidins about 58%.
(−)-epicatechin is the most abundant, constituting 35% of the total catechins in cocoa beans,
while (+)-catechin, (+)-gallocatechin, and (−)-epigallocatechin are only present in trace
amounts [107]. Cocoa beans and cocoa-based products have been consumed over decades.
Attempts have been made to evaluate the anti-obesity effect of cocoa beans and other
cocoa-derived products in the past years. Golomb et al. conducted a cross-sectional study
to investigate the impact of chocolate (cocoa-based product) intake on the body weight
of 1018 subjects [85]. The researchers noted that chocolate consumption decreased the
subjects’ BMI and overall body weight [85]. Ferrazzano et al. [108] discovered that mice
fed with a cocoa-enriched diet had reduced body weight, mostly due to decreased adipose
tissue synthesis. The researchers concluded that the polyphenols contained in cocoa might
have significantly contributed to anti-obesity effects by decreasing fat synthesis. Cocoa and
chocolate consumption may also have beneficial effects on satiety, which may help prevent
weight gain [107].

On the other hand, coffee is the second most consumed beverage in the world, after
tea. Its health benefits have been largely associated with its main component, caffeine.
However, coffee contains many other bioactive compounds, approximately 2000 different
chemicals. The primary polyphenols in coffee are chlorogenic acid and its derivatives,
which account for 3% w/w of the roasted coffee powder. A single cup of coffee is estimated
to contain 20–675 mg of chlorogenic acid. The anti-obesity effect of coffee has been studied,
especially for at least 10 years. The findings have shown that coffee polyphenols are
effective anti-obesity agents. For example, 44 patients with non-alcoholic fatty liver disease
were enrolled in a double-blind, placebo-controlled clinical trial and then administered
green coffee bean extract (1 g/day) for 8 weeks [109]. Supplementation with green coffee
bean extract improved the levels of triglyceride, total cholesterol, free fatty acids, and
fasting blood sugar [109]. A study conducted among 93,179 individuals showed that coffee
intake of up to four cups/day lowered the risk of obesity with an odds ratio (ORs) of
0.82–0.86, compared with non-coffee drinkers [110]; however, this study failed to specify
metabolites which were responsible for the observed effects.

Ginger polyphenols: Ginger (Zingiber officinale) is a popular spice and vegetable used
as a traditional medicine in many countries to treat various diseases. It has three primary
phenolic compounds, namely: gingerols, zingerone, and shogaols. Gingerols contribute
to the pungent taste of ginger. The beneficial effect of ginger on obesity prevention and
treatment has been recently considered, and some promising results from experimental
animals have been published [111,112]. It is reported that polyphenols in ginger could
influence many vital parameters of obesity through mechanisms such as stimulating en-
hanced thermogenesis and energy expenditure, suppressing appetite, stimulating lipolysis,
and inhibiting intestinal absorption of dietary fat [112,113]. However, most of these results
are preliminaries since they have yet to be confirmed in clinical trials. Ginger extracts sup-
pressed the expression of genes related to adipogenesistor γ (PPAR-γ) and adipocytes in an
animal model [112]. When obese rats were fed with ginger extracts, serum metabolites were
significantly restored, and glucose tolerance was improved [112]. In a clinical trial, a ran-
domized, double-blind, placebo-controlled was performed using steamed ginger ethanolic
extract (SGE) containing a high 6-shogaol content [114]. Following the supplementation
period, mean body weight, body mass index, and body fat level were significantly lower in
the SGE group than in the placebo group [114], confirming polyphenolrich ginger extract
as anti-obesity agents.
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Olive polyphenols: Recently, among the most known polyphenols sources are olive
products. The high polyphenol content in these products has aroused growing interest,
and studies have been carried out to determine their potential therapeutic ability. For
olive oil, the most studied olive product, the major polyphenols associated with its health
benefits include oleuropein aglycone, hydroxytyrosol, oleacein, and oleocanthal [115].
Therefore, the health functions and sensory attributes of olive oil depend not only on the
content of free fatty acids but also on its levels of polyphenols. Indeed, polyphenols are
responsible for the taste of olives. Nonetheless, factors such as cultivar, environmental
conditions, cultivation practices, and fruit ripening stage affect the levels of polyphenols
in olive oil [115]. Polyphenols derived from olive oil have been reported to modulate
obesity. A clinical study involving the intake of 330 mL of olive oil leaf tea 3 times daily
during mealtime for 12 weeks demonstrated the efficacy of olive leaf against obesity
development [116]. After the intervention, serum triglycerides and low-density lipoprotein
cholesterol levels decreased significantly in the oil-leaf tea-treated group (n = 28). Thus,
olive products have been found to have lipid-lowering effects.

7. Bioavailability of Polyphenols, Metabolism by Gut Microbes, Post Absorption Fate,
and Eventual Effect on Obesity

For polyphenols to exert health benefits, they must be absorbed by the human body.
Most polyphenols are absorbed through an active transport mechanism that depends on
the presence of sodium-dependent glucose transporter 1 (SLGT1), a protein entrenched
along the epithelium cell walls [117]. Once absorbed, polyphenols and their metabolites
reach tissues and influence the activities of a target tissue/organs related to a disease,
thereby improving health. However, the ability of phenolic compounds to be absorbed
into the body depends on their bioavailability, which is affected by several factors. The
bioavailability of polyphenols can be influenced by the presence of other food components,
such as lipids, carbohydrates and proteins when consumed simultaneously [117,118]. For
instance, a clinical trial in humans demonstrated that the bioavailability of chlorogenic
acids derived from coffee could be reduced by a matrix consisting of coffee and milk (when
coffee and milk are consumed simultaneously [119]. In contrast, some food matrices, such
as natural almond skin, can enhance the accessibility of polyphenols, while polyphenol-rich
cinnamon extract can be incorporated into defatted soy flour containing high protein to
improve polyphenol bioavailability [118]. In addition to the effects from the surrounding
food components, the hydrophobicity of polyphenols can also significantly affect their
absorption along the gut. Hydrophobic polyphenols have relatively low solubility in water,
gastric fluids, and small intestine fluids; they often precipitate in these fluids, reducing the
amount available for absorption [117]. Moreover, the presence of gut microbial enzymes
that hydrolyze phenolic compounds into more minor metabolites significantly affects
their bioavailability [117].

Polyphenol metabolism along the gut involves a series of stages. It is believed that
phenolic compounds derived from diets are frequently conjugated as glycosides, which
change to aglycones when metabolized by gut microbiota [68]. The gut microbiota hy-
drolyses these polyphenol glycosides and esters, reduces their nonaromatic alkenes, and
cleaves their overall skeletons [68]. The result is the generation of less complex products,
such as phenolic acids and hydroxycinnamates. Only 5–10% of polyphenols can be di-
rectly absorbed in the small intestine, while the remaining (90–95%) reach the colon, where
microbial enzymes degrade them before their absorption [68,69]. Some of the bacteria re-
lated to the degradation of polyphenols include Lactobacillus spp., Enterococcus casseliflavus,
Flavonifractor plautii, Slackia equolifaciens, Eubacterium ramulus, Eggerthella lenta, and Bifidobac-
terium spp. [25]. Eubacterium metabolizes flavonoids, while Bifidobacterium and Lactobacillus
species are involved in releasing hydroxycinnamic acids from the parent compound in the
colon [25]. Meanwhile, Bacteroidetes and Firmicutes are the major groups involved in the
colonic metabolism of undigested food remnants, including unabsorbed polyphenols [69].
The gut microbiota contains large quantities of various enzymes that modify food compo-
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nents before they are used in the body or released as waste. Enzymes such as glycosidases,
amidases, and esterases catalyze various reactions, including decarboxylation, oxidation,
reduction, demethylation, isomerization, and ring cleavage, leading to the production of
several types of catabolites of dietary polyphenols [120]. In the mouth, the mastication
process takes place; polyphenols interact with digestive enzymes, which destroy their struc-
ture as digestion begins. In the stomach, the compounds are released from the food matrix,
and the polymeric polyphenols and their glycosidic bond are hydrolyzed by acids [121].
However, most of the polyphenol glycosides resist acid hydrolysis in the stomach and reach
the small intestine intact. Once they arrive in the small intestine, enzymatic deglycosylation
of polyphenols and absorption of about 5–10% polyphenols take place [121].

Absorbed polyphenol products, through the bloodstream, rapidly reach the liver,
where they are further hydrolyzed by phase II metabolism before they are eventually
excreted outside the body via urine. At the same time, the unabsorbed polyphenols,
mostly flavonoids linked to a rhamnose moiety, organic acids, lipids, and polymers, and
those bound to dietary fiber and protein, as well as hydroxycinnamic acids esterified to
sugars, reach the colon for further digestion; they cannot be directly absorbed in the small
intestine. In the colon, gut microbiota hydrolyses the unabsorbed polyphenols to give rise
to small phenolic acids and aromatic catabolites [120,121]. These polyphenol by-products
are absorbed into the blood and arrive in the liver, where they are further metabolized
before being released in urine; however, some of the unabsorbed metabolites from the
parent polyphenols are eliminated via feces [120,121]. Figure 5 offers a detailed summary
of the polyphenol metabolic process along the human gut.
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Figure 5. Metabolism fate of polyphenols by the human gut microbiota. In the mouth, the structure
of polyphenols is broken down by enzymes, releasing the compounds from the food matrix. In the
stomach, the polymeric polyphenols and their glycosidic bonds are hydrolyzed as the digestion pro-
cess continues. Once they reach the small intestine, polyphenols undergo enzymatic deglycosylation,
and absorption of some digested compounds (5–10%) takes place. The absorbed phenolic compounds
enter the circulation and reach the liver, where they are metabolized further into smaller metabolites.
At the same time, in the large intestine, gut microbiota hydrolyses unabsorbed polyphenols, making
them available for absorption into the blood stream. Eventually, polyphenols metabolites are released
from the body either through fecal matter or urine excretion.
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There is a huge body of literature evidence reporting on the biological functions of
polyphenol metabolites generated by gut microbiota-mediated biotransformation [25]. The
microbial enzymes may eliminate glycosides, glucuronides, and sulfates from unabsorbed
polyphenols producing aglycons, which are further digested into ring-fission products
depending on the type of polyphenol involved. Flavonols such as quercetin-3-O-glucoside
are hydrolyzed into their metabolite-derivative products by gut microbiota at their A and
B rings. Enterococcus casseliflavus hydrolyses sugar moieties of quercetin-3-O-glucoside
to release the aglycone quercetin and products such as lactate, acetate, and ethanol [25].
In contrast, Eubacterium ramulus and Clostridium strains metabolize quercetin, forming
short-chain fatty acids (acetate, propionate, and butyrate) and other products [25]. Short-
chain fatty acids are crucial metabolites in reducing obesity. The anti-obesity benefits
associated with short-chain fatty acids have been reported (Table 5).

Table 5. Studies elucidating the anti-obesity effects of short-chain fatty acids (SCFA) in animal and
human models.

Model Experimental
Procedure Observation References

Mice

Mice were fed with a
high-fat diet

supplemented with
sodium acetate,

sodium propionate,
sodium butyrate or

their mixture (ratio at
3:1:1)

Caused changes in
the bacterial

community: reduced
the proportion of

Firmicutes and
increased

Bacteroidetes.

[122]

Human

Participants received
a daily dietary

supplement of 24 g
inulin (source of
SCFA) for two

investigation days,
with at least 5 days of

washout

Improved β-cell
function with

increased insulin
secretion. No effects

on plasma
triglycerides, or free

glycerol.

[123]

Mice

The mice were fed
diets containing
sodium acetate,

sodium propionate or
sodium butyrate at

5% (w/w).

Induced reduction in
body weight and

stimulated insulin
sensitivity.

[124]

Mice

Animals were fed a
high-fat diet

supplemented with
5% acetate or

propionate (in the
presence of 5%

cellulose).

SCFA lowered
hepatic triglycerides

and improved insulin
sensitivity.

[125]

Human

Participants (n = 441)
were recruited and
examined for their

fecal SCFA, and
related markers of

obesity were
analyzed.

Higher SCFA in fecal
excretion was

associated with gut
modulation effects.

[126]

The bacteria, Clostridium coccoides, Bifidobacterium spp., Eggerthella lenta, Adlercreutzia
equolifaciens, Slackia equolifaciens, and Flavonifractor plautii through hydrolysis of ester bonds,
carbon-ring cleavage, or dihydroxylation metabolizes flavonols and proanthocyanidins
into various forms of phenolic acids [25]. The degradation pathway of flavanones is
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similar to flavonols. The first step in the hydrolysis of naringin, a flavanone, involves a
deglycosylation reaction which produces a naringenin [22]. The naringenin is biotrans-
formed into phloroglucinol and 3-(3,4-dihydroxyphenyl) propionic acid via the cleavage
of the C-ring [22]. The Isoflavone group is biotransformed into their aglycones by β-
glucosidase released by gut microbiota. The aglycones can either be absorbed completely
or further hydrolyzed into their metabolite forms; for example, daidzein can be con-
verted to O-demethylangolensin (O-DMA) and equol; genistein into p-ethylphenol and
4-hydroxyphenyl-2-propionic acid [22]. Flavanols are hydrolyzed into several O-sulfated,
O-glucuronidated, and O-methylated forms by gut microbiota. Epigallocatechin gallate,
a flavanol, is biotransformed by Eubacterium sp. strain into 1-(3′,5′-dihydroxyphenyl)-
3-(2”,4”,6”-trihydroxyphenyl)propan-2-ol [127]. It is reported that phenolic acids such
as ferulic acid can be bound to each other through linkages (8-O-4- or 5–5-linkages),
forming dimers [22]. The gut microbes hydrolyze the 8-O-4 into monomeric ferulic acid,
which is eventually biotransformed into 3-(3′,4′-dihydroxyphenyl) propionic acid, 3′,4′-
dihydroxyphenyl acetic acid, 3-phenylpropionic acid, and benzoic acid [22]. Finally, as
already been mentioned earlier in this article, stilbenes such as resveratrol trans-resveratrol
are metabolized by gut microbiota, forming dihydroresveratrol, 3,4′-dihydroxy-trans-
stilbene, and 3,4′-dihydroxybibenzyl.

The smaller forms of polyphenols are believed to reflect precisely the physiological
effects of their parent compounds [120]. The microbiota-gut-brain axis is considered
a neuroendocrine system that plays a vital role in activities controlled by the central
nervous system [128]. In addition to modulating gut bacterial composition, the polyphenol
metabolites can modulate brain biochemistry or directly act as neurotransmitters through
the microbiota-gut-brain axis, thereby affecting body physiological activities of the brain,
including those related to stress response, appetite, inflammatory injury, and obesity [128].
Figure 6 is a description of various structures of polyphenols and their metabolic products.
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Figure 6. Flavonoids and nonflavonoid-type phenolic compounds that are metabolized by the gut
bacteria. (A) C-ring cleavage of flavonoids. (B) Nonflavonoid-type phenolic compounds metabolized
by the gut bacteria. Reproduced from Ozdal et al. [22]. Last accessed on 2 July 2022.

In their metabolized forms, the bioavailability of polyphenols is improved, and they
can effectively reach the target site of the disease and exert health benefits. In fact, the
anti-obesity ability of most polyphenols is based on the properties of their end product
of metabolism. Thus, most of the products of polyphenol metabolism by gut microbial
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have been reported to possess anti-obesity effects. Products from epicatechin metabolism
such as 1,3,5-Trimethoxybenzene have been shown to inhibit adipocyte differentiation,
while dihydroxyphenylpropionic acid and 3,4-dihydroxybenzoic acid, metabolic products
of flavan-3-ols possess pancreatic inhibitory effects (see Table 6).

Table 6. Metabolites from the digestion of polyphenols by intestinal microbiota and their reported
anti-obesity effects.

Polyphenol Gut Bacteria Involved Model Main Metabolite Major Observation References

Epicatechin

Eubacterium sp.,
Bifidobacterium sp.,

Lactobacillus, anaerobic
cocci, and, Fusobacterium

spp.

In vitro study (human
feces)

5-(3,4-
dihydroxyphenyl)-γ-

valeric
acid,3-(3-

hydroxyphenyl)propionic
acid,4-hydroxyphenyl

acetic acid

- [129]

Quercetin Eubacterium ramulus,
Eggerthella sp. Animal study (urine) 4-ethylphenol, Benzoic

acid,4-ethylbenzoic acid
Inhibitory effects on
α-amylase enzyme [130]

Epicatechin - Animal study (urine) 1,3,5-
Trimethoxybenzene

Inhibit adipocyte
differentiation [130,131]

Quercetin Bacteroides In vitro study (humans
feces)

Hydroxyphenylacetic
acid derivatives

Gut microbiota
modulation [132]

Rutin Bacteroides In vitro study (humans
feces)

3,4-
dihydroxyphenylacetic

acid

Gut microbiota
modulation [132]

Isoflavone

Streptococcus intermedius,
Bifidobacterium spp.,
Bacteroides ovatus,

Streptococcus intermedius,
Escherichia coli

In vitro study (human
urine)

Dihydrodaidzein
(DHD),

tetrahydrodaidzein
(THD), equol, and

O-DMA

- [25]

Flavan-3-ols Clostridium coccoides,
Bifidobacterium spp.

In vitro study (human
feces)

Dihydroxyphenylpropionic
(dihydrocaffeic) acid

and
3,4-dihydroxybenzoic
(protocatechuic) acid

(PCA)

Inhibit pancreatic lipase
activities [25,133]

Genistin, No specific bacteria
reported

In vitro study (human
and animal feces)

4-hydroxyphenyl-2-
propionic acid and

1,3,5-trihydroxybenzene
- [134]

Anthocyanin Lactobacillus spp. In vitro study (human
feces)

Gallic acid, syringic acid
and p-coumaric acid

Inhibition of
preadipocytes growth [135,136]

Ellagic acid Gordonibacter
urolithinfaciens

In vitro study (human
feces) Urolithins

Inducing thermogenesis
in brown adipose tissue

(BAT) and inducing
browning of white

adipose tissue (WAT).

[137,138]

Ellagitannins Gordonibacter
urolithinfaciens

In vitro study (human
feces) Urolithins

Inducing thermogenesis
in brown adipose tissue

(BAT) and inducing
browning of white

adipose tissue (WAT

[139]

Naringenin No specific bacteria
reported In vitro study (rat feces) Phenylacetic acid,

protocatechuic acid - [140]

Chlorogenic acid No specific bacteria
reported

In vitro study (human
feces)

3-(3-hydroxyphenyl)-
propionic

acid
- [141]

Resveratrol
Slackia equolifaciens,

Adlercreutzia
equolifaciens

In vivo and in vitro
(human feces)

Dihydroresveratrol, and
lunularin - [25,142]

Baicalin No specific bacteria
reported

In vitro study (human
feces)

Baicalein and oroxylin
A

Enhances pAKT,
PGC-1α and UCP1 [143,144]

Apigenin No specific bacteria
reported Animal study (urine)

P-hydroxyphenyl acetic
acid,

P-hydroxycinnamic
acid, P-hydroxybenzoic

acid

Inhibition of
adipogenesis [145,146]

8. Improving the Bioavailability and Delivery of Polyphenols in the Body

The bioavailability of most phenolic compounds is closely related to their chemical
structure. Most polyphenols exist as esters, glycosides or polymers, which are not readily
available in the body in this native form. Gut intestinal transformations of polyphenols
produce bioavailable and active phenolic metabolites that can easily be absorbed into the
body. In their metabolized condition, these compounds can reach tissues and the brain,
where they exert various biological effects. However, it is essential to emphasize that the
low bioavailability of polyphenols is one of the critical drawbacks in their utilization as
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functional ingredients to improve health. It is recognized that microbes in the gut are the
main metabolizers of insoluble and unabsorbed polyphenols. However, it is also perceived
that gut bacteria may not freely circulate along the gastrointestinal tract (GIT) without
encountering harsh environments that may kill them [147]. Hence, the degradation of
polyphenols may not be entirely possible in all regions of the GIT, further complicating
their bioavailability. Thus, to overcome this challenge, there have been proposals to safely
deliver readily-available plant active ingredients into the body using methods exploiting
physiological changes in the GIT, such as osmotic control, to improve the functions of
these compounds [147].

Overall different strategies can be employed to enhance the bioavailability of bioactive
compounds: (i) nano-delivery systems, which demonstrate potential for the protection of
these compounds during food processing or digestion process; (ii) absorption enhancer
materials which facilitate bioactive compounds’ membrane permeation; and (iii) excipient
foods with the ability to improve nutraceuticals’ biological activity [148]. Several micro-
and nano-encapsulation systems have been proposed to deliver individual polyphenols
or their mixtures to enhance their solubility, instability, and poor permeability in the body.
Nevertheless, overall knowledge of this technology needs to be improved. The properties
of micro- and nanoparticles, including their shape, surface, and stability, are thought to
strongly affect active compounds’ in vitro and in vivo fate to improve functionality [147].
In the literature, polyphenols-microencapsulation has been applied to enhance the bioavail-
ability of polyphenolic compounds (Supplementary Table S5). Flavonoids are anti-obesity
agents with therapeutic ability based on oral absorption and the properties of their end
product of metabolism. However, most flavonoids have a low dissolution rate from solid
oral forms and cleavage in the gut lumen. Thus, a diverse range of cellulose derivatives
with gastro-resistant swelling effects and controlled release properties, such as cross-linked
carboxymethylcellulose and cellulose acetate trimellitate, have been used to improve their
functionality to deliver flavonoids in vivo and in vitro extract [149]. Microencapsulation
technology has also been used in processed foods to deliver cocoa hull polyphenols into
bakery products [150] and green tea polyphenols in functional bread [32]. Figure 7 describes
the proposed encapsulation process of polyphenols.
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polyphenols in the body. Emulsions are thermodynamically unstable colloidal dispersions
typically assembled from two or more immiscible fluids. Nowadays, emulsions can be
utilized to encapsulate polyphenols to enhance their bioavailability; oil-in-water is the most
commonly used emulsion to encapsulate polyphenols such as quercetin [117]. Quercetin
has been incorporated into perilla oil-in-water emulsions as a black bean protein-quercetin
complex that acts as an emulsifier [117]. Polyphenols such as curcumin, resveratrol, and
quercetin were loaded on different nanoemulsion-based delivery systems to improve the
efficacy of their lipophilic nature [151]. On the other hand, liposomes have also been used
as delivery systems for polyphenols; they can protect polyphenols against hydrolysis by
enzymes and acids in the stomach; thus, polyphenols can reach their target tissues [117].
The interiors of hydrogels contain a porous three-dimensional polymer network that
can hold about 90% of water; thus, hydrogels have been used to enhance the stability
and bioavailability of polyphenols. A study showed that injectable hydrogels based on
curcumin could improve the effectiveness of this polyphenol against cancer cells [152]. In
general, modern encapsulation systems are currently leading to a new era of developing
diet-based medicine. As the demand for polyphenol-based nutritional supplements and
edibles grows, the utilization of encapsulation systems also grows.

9. Effects of Processing on Polyphenol Content of Foods and Ultimate Impact on
Anti-Obesity Potential of the Final Product

Food processing can influence the metabolites in foods (their content and bioavail-
ability). Effects of traditional technologies such as thermal processing and fermentation
on the polyphenols content of food have been evaluated, and the eventual impact on
the anti-obesity potential of the final products has been established [153–155]. In the lit-
erature, fermentation of tea leaves using L. paracasei subsp. paracasei NTU 101 was able
to enhance the content of polyphenols such as EGC (107.9 versus 159.6 µg/mL), EGCG
(482.4 versus 968.3 µg/mL), and chlorogenic acid (38.5 versus 46.9 µg/mL) compared
to the unfermented [153]. The final product of the fermented tea leaves showed better
anti-obesity efficacy compared to the unfermented tea [153]. Thermal processing signifi-
cantly improved the polyphenolic components of sorghum, thereby enhancing their lipase
inhibitory ability [154,155]. Heat treatment, microwave processing, and fermentation can
improve the levels of polyphenols in foods by triggering the release of bound phenolic
content into the food matrix. Nevertheless, in some cases, heat treatment and excessive
microwave processing may degrade phenolic acids, thus, reducing their amounts in the
final products [154,155]. Similarly, fermentation can also result in the loss of polyphenol
content in foods; microorganisms used as starter cultures may use polyphenols in foods as
a source of nutrients for their growth or even bioconvert them into other compounds [154].
As a result, studies have often reported conflicting results concerning the effects of pro-
cessing techniques on polyphenols. Aloo et al. reported that traditional seed processing
methods, such as germination, can significantly improve the polyphenolic content of
foods such as buckwheat and red cabbage sprouts. The sprouts were reported to possess
better inhibitory activity against lipase and alpha-glucosidase enzymes as compared to
non-sprouted seeds [156]. On the other hand, emerging technologies such as ultrasound
processing, high hydrostatic pressure, pulsed electric field, ultrasound, ohmic heating,
high-pressure carbon dioxide processing, and irradiation are being investigated as alterna-
tives to traditional methods for obtaining promising products with improved polyphenol
contents. Compared to conventional ones, these novel technologies tend to retain most
of the polyphenols and organoleptic characteristics of the final products elsewhere [154].
Thus, processing technologies have great potential to produce food products with improved
polyphenol contents and anti-obesity activities. A rather in-depth analysis of the effects of
these technologies on the polyphenol content of food has been discussed elsewhere [154].
In the future, the development of functional foods for the prevention and/or treatment
of obesity will take advantage of processing techniques to improve the health potential
of foods.
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10. Drawbacks of Polyphenols as Phytonutrients in Foods: Benefits versus Risks

Although studies have confirmed the health benefits of polyphenols, findings from
in vitro cell models, in vivo animal models, and human clinical assessments remain incon-
clusive. Even though experimental studies have provided extremely valuable information
on the beneficial effects of dietary polyphenols, great care is required when interpreting
the information obtained from these assessments. First of all, a critical problem that often
compromises these studies is the safety of polyphenols. While plant bioactive compounds
are generally considered safe because of their long consumption history, it is becoming
increasingly apparent that some could have adverse health effects in vulnerable groups
or when consumed at higher concentrations [157]. Studies on the safety of polyphenols
have discovered that polyphenol consumption may be safe or unsafe depending on factors,
mainly intake level and duration. Evidence indicates that taking some polyphenols for an
extended period at high doses may lead to severe toxic effects. Yamakoshi et al. described
a lack of adverse effects when 2–4 g/kg proanthocyanin–rich grape seed extracts were
administered to rats [27]. However, in the study, Yamakoshi et al. discovered lethal doses
of proanthocyanin–rich grape seed extracts at above 4 g/kg consumed for 14 days [27].
Grape seed polyphenolic extract (GSPE) was also safe in a 90-day subchronic toxicity
study involving an animal model, with treatment doses ranging from 200 mg/kg/day to
215 mg/kg/day [158]. Above the amount, however, GSPE triggered adverse effects upon
its consumption [158]. The recommended intake of isoflavones is 50 mg per day [159].
It was reported that the total plasma isoflavone levels range between 0.055 µmol/L and
5 µmol/L, and the daily intake from most Western diets is estimated at 0.2–5 mg/day [159].
These levels of intake are regarded as safe. However, a high intake of isoflavones, above
the levels (0.2–5 mg per day), has been associated with reduced fertility and increased
anti-luteinizing hormone effects [159]. Similarly, while the anti-obesity activity of catechin
and its derivatives is well known, there is an increasing body of evidence that links high
levels of these compounds with pro-oxidative effects due to their reaction with peroxide in
the body [157].

Therefore, it is eminent that despite their reported positive health impacts, polyphenols
may also pose a significant health risk. Meanwhile, considering the safety of phenolic
compounds, as with most substances, the dose and duration of intake distinguish a poison
from a remedy. Also, it is essential to recognize that the usage of these compounds depends
on their benefits versus risks [157]. Thus, even though the risk of consuming high doses of
polyphenols from foods is generally low, the underlying long-term effects of consuming
small amounts in the body must be considered. It is crucial to note that without a complete
understanding of the benefits versus risks of polyphenol intake, their addition to foods
cannot be adequately justified. Thus, food producers should perform proper assessments
before undertaking supplementation trials of polyphenolic compounds to uncover their
safe levels. Currently, only a limited number of reports from human clinical trials are
available describing the safety of polyphenols with anti-obesity effects (Table 7).

Table 7. Studies investigating the safety of polyphenols in human clinical trials.

Polyphenol Subject Description Dosage Side Effect References

Resveratrol (RV) 40 healthy volunteers aged
18–80 years

Participants took oral
resveratrol (single doses of

0.5, 1, 2.5, or 5 g) per day for
1 week.

An intake of up to one dose of
5 g of resveratrol was safe,
with only minor adverse

events in some cases.

[160]

Sinetrol-XPur (polyphenolic
citrus dry extract)

95 healthy overweight
volunteers (55 women and 40
men), age: 22–45 years, BMI:

26–29.9 kg/m2

Subjects consumed two
capsules of citrus

polyphenolic extract
containing orange, grapefruit,

sweet orange, and guarana
for 12 weeks

Mild effect, such as a slight
increase in cardiac rate, was

observed
[83]



Antioxidants 2023, 12, 416 25 of 36

Table 7. Cont.

Polyphenol Subject Description Dosage Side Effect References

Resveratrol 24 overweight patients,
median age: 66.5 years

Participants took 5.0 g
resveratrol per day for

4 months

Serious adverse effects,
including nausea, diarrhea,

vomiting, and fatigue
[161]

Resveratrol 62 participants (men and
women)

Participants consumed
250 mg daily for 3 months

Improved glycemic control
with no observable side

effects
[162]

Epicatechin age:18–50 years BMI:
19–30 kg/m2

Subjects consumed 250 mg of
cocoa flavanols; 40 mg of
epicatechin for 14 days

Improved body weight
parameters with no adverse

events observed
[163]

Ellagitannin
64 overweight individuals,

age: 40–70 years, BMI: 25–32
kg/m2

Subjects consumed 710 mg
per day of a pomegranate

ellagitannin-enriched
polyphenol extract.

No serious adverse events on
the subject upon the intake [164]

Polyphenon E
40 healthy participants with

Fitzpatrick skin types II or III,
age: ≥18 year

Participants took 800 mg
polyphenol E once per day

for 2 weeks

Adverse events, including
stomach upset, nausea,

heartburn, stomach pain,
dizziness, headache, and

muscle pain, were observed
during the 4-week treatment

period

[165]

Polyphenols-rich green tea
17 healthy volunteers, age: 41
± 9 years BMI 26.7 ± 3.3

kg/m2,

Participants consumed tea
containing 119 mg

polyphenols (epicatechin,
5 mg; epigallocatechin, 47 mg;

epigallocatechingallate,
25 mg; epicatechingallate,

14 mg; gallocatechingallate,
8 mg; catechingallate, 3 mg;

catechin, 1 mg; gallocatechin,
9 mg; and ellagic acid, 7 mg)
and 19 mg caffeine per day

for 3 weeks

The daily consumption of
green tea polyphenols, even
at high dose levels, was safe.
No effects on cardiovascular

risk biomarkers screened

[166]

Curcumin
10 healthy male volunteers
aged 20–26 years. Weight:

50–75 kg

Participants consumed
beverages formulated with

2 g of curcumin

Improved serum
concentration without any

toxic effect observed
[167]

EGCG and α-glucosyl
hesperidin (gH)

60 healthy males and females
aged: 30–75 years

Subjects were given green tea,
178 mg gH and 146 mg EGCG

per day for 12 weeks

The amount of EGCG and gH
consumed effectively reduced
body weight with no adverse

effects

[168]

Juçara fruit polyphenols
35 adults known to be obese

(men and women) aged 31–59
years. BMI: 30–39.9 kg/m2

Subjects consumed 5 g of
pulp powder per day for

6 weeks

No toxic effects were
observed. Authors’
conclusion: safe for

consumption

[169]

Hibiscus and lemon verbena
polyphenols

54 overweight subjects, age:
30–75 years BMI:
25–34.9 kg m−2

500 mg of Lippia citriodora
(35%) and Hibiscus sabdariffa
(65%) per day for 2 months
was taken by the studied

subjects

No toxic effects were reported [170]

Green tea (containing majorly,
catechins)

35 subjects with obesity and
metabolic syndrome

Subjects consumed green tea
(four cups/day) or green tea
extract (two capsules/day)

for 8 weeks.

Improved obesity-related
parameters without any

observable side effect
[89]

Lippia Citriodora and Hibiscus
Sabdariffa extract (Lc-Hs)

33 Volunteers (male and
female), age: 18–65 years,

BMI: 25–34.9 kg/m2

Oral administration of two
capsules/day, each capsule

containing 250 mg for 60 days

The supplementation with
the Lc-Hs extract decreased

appetite sensation; no toxicity
was observed upon

consumption

[171]

High dose of resveratrol
24 obese but healthy

volunteers (men), age: 18–70
years, BMI >30 kg/m2

Subjects consumed
500 mg/day of resveratrol for

4 weeks

Improved key obesity
indicators (total and lean
body mass, total body fat

mass, or visceral and
abdominal subcutaneous fat).

No adverse effects were
observed.

[172]

Catechin-enriched green tea

33 obese subjects (18 men, 15
women), age: 20–65 years,

waist circumference: ≥80 cm
(women) or 90 cm (men)

Subjects drank a 350-mL
bottle of beverage after

lunchtime within 30 min
daily for 12 weeks.

Adverse events such as
changes in stools, abdominal

discomfort, and appetite were
associated with

catechin-enriched green tea
consumption

[173]

Acacia bark-derived
proanthocyanidins

Participants took
proanthocyanidins derived

from acacia bark (245 mg/day
for 12 weeks)

No side effects or adverse
events were observed upon

the consumption
[174]

Gallic acid
105 healthy subjects age:
18–60 years, BMI: 25–35

kg/m2

Subjects took a 300 mg/1.2 g
NT-GA combination or

600 mg/2.4 g/day NT-GA for
24 weeks.

NT-GA consumption was
well tolerated but was

ineffective in causing weight
loss or limiting food intake

[175]

RV, Resveratrol; GA, gallic acid; EGCG, epigallocatechin gallate; BMI, body mass index; NT is an herbal supple-
ment derived from a water extract of rhubarb, ginger, astragalus, red sage, and turmeric.
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To demonstrate the bioactivity of naturally occurring compounds in foods, it is essen-
tial to define a logical chain of events that may affect their bioavailability, chemistry, and
physiology. Thus, another essential aspect that should be considered when evaluating the
bioactivities of polyphenols and polyphenol-rich foods is the effect of processing on the
structure and bioavailability of initially present polyphenols in foods. Most polyphenols are
heat-labile compounds and susceptible to light, pH variation, and enzymatic degradation.
For example, the exposure of anthocyanins to high temperatures during food processing
may degrade these compounds into other products (phenolic acids and phloroglucinalde-
hyde) [176]. The oven-baking processing can cause a degradation of chlorogenic acid [177],
while boiling can significantly degrade quercetin in onions and tomatoes [178]. Hence,
retaining the original phenolic compounds in fortified foods is complex and may require
novel processing techniques, such as high hydrostatic pressure and irradiation, which are
quite expensive [4].

Furthermore, polyphenol incorporation in processed foods may lead to a potential
negative influence on the sensory properties (color, texture, and flavor) of food products if
processing conditions are not controlled. Since most of these compounds are sensitive to
heat and other environmental factors, they may react with other food components or be
oxidized to form different products, such as quinones which may negatively affect food
acceptability among consumers [179]. For instance, Aloo et al., and Shen et al., reported
that an unusual dark color affecting the palatability of hemp-based foods is attributed to
polymerization and oxidation reactions of indigenous hemp’s polyphenolic compounds
and chlorophyll during processing [180,181]. So, prolonged exposure to these conditions
can significantly impact polyphenols or polyphenol-rich foods, even though this effect
is often ignored. This transformation process may also affect the biological functions of
polyphenols, rendering them ineffective, or may even change their chemistry leading to
harmful effects. Finally, the two-way interaction between gut microbiota and polyphenols
leads to the biotransformation of these compounds. This process may either positively or
negatively affect their bioavailability since it affects the relative abundance of beneficial
gut microbiota [22].

11. Research Limitations

Findings have demonstrated that polyphenols can also play a pivotal role in health.
However, for several reasons, it has been challenging to establish the benefits of polyphenol
consumption in humans fully. First, the polyphenol content of foods is so diverse and varies.
In some cases, there is inadequate information regarding their levels of particular foods;
thus, it is difficult to understand their total intake fully. Despite many mechanistic studies
using pure compounds or natural plant extracts to elucidate the amount of polyphenols
in food products, research has only offered limited information related to the polyphenol
content, bioavailability, and extent of absorption in foods [182]. Some of these studies have
also reported varying levels of polyphenols in some foods, making it challenging to add
regulatory recommendations to functional food labels [183]. Conclusions on the exact level
of polyphenols in regular diets remain a subject for studies. Therefore, unlike synthetic
drugs, currently, there is no legislation or laws regulating polyphenol supplementation
and consumption.

Second, in vitro and in vivo studies have demonstrated that dietary supplementation
with plant products rich in polyphenols is a potentially viable nutritional method for the
prevention of obesity. Nevertheless, the full potential of some of these foods in humans
remains partially known since most of the outcomes from studies display variability and
inconsistencies in clinical trials of different subjects [184]. For example, it was reported that
almost all studies conducted with Asian subjects had revealed a positive outcome on the
anti-obesity effects of tea extract [184]. However, clinical trials using Caucasian subjects
provided mixed outcomes on the effectiveness of tea extract on obesity [184]. Therefore,
human trials have often shown inconsistent results, making it difficult to make accurate
conclusions on the efficacy of polyphenols against diseases. Factors such as different study



Antioxidants 2023, 12, 416 27 of 36

designs, length of study, doses used, and choice of subjects (based on age, gender, and
ethnicity) may cause this variation [2].

Third, in clinical trials, some polyphenols often fail to produce the results observed
in either in vitro/ex vivo or in vivo studies. While the cause of this is not fully known,
it is speculated that either change in mechanisms of action, the mode through which the
compound is taken, or factors related to absorption may affect the efficacy of polyphenols
in clinical trials [2]. Moreover, reports on the safety of the same polyphenol may also vary
between in vitro, in vivo, and human clinical trials. Poulsen and colleagues indicated that
while data obtained from rodent models discourage consuming high doses of resveratrol,
results from human clinical trials support the safety of resveratrol consumption even at
higher doses [172]. The lack of agreement between the findings from the cell, animal, and
human trials raises doubts about the justification of polyphenols as a human nutritional
supplement or an ingredient in food-targeting disorders [172].

Fourth, studies have often ignored the significance of the relationship between polyphe-
nol doses and the duration of intake in human trials. Clinical trials need to evaluate the
links between different doses of polyphenols and the duration of intake. This relationship
might offer vital evidence to understand the effect of polyphenols on body weight within
a specific period to avoid downstream effects resulting from an overdose due to long
consumption. Another important aspect of dose that often compromises in vitro experi-
mental models is the concentrations applied. The doses used in in vitro studies should be
designed to reflect real life. However, while the tested concentrations in the in vitro studies
commonly range from low µmol/L to mmol/L, the concentrations of plasma metabolites,
after a normal dietary intake, hardly exceed nmol/L [185]. Thus, high doses used in vitro
can “force” a conclusion on the outcome, which may not reflect in the in vivo or clinical trial
results. Finally, it has been revealed that fortified foods might be more energy-dense rather
than nutrient-dense [183]. This may offset any potential anti-obesogenic effects of phenolic
compounds and potentially result in weight gain [183]. Thus, despite numerous studies
highlighting their potential benefits, research has also shown ambiguous links between
polyphenol fortification and obesity, making it difficult to recommend them effectively for
food fortification [183].

12. Perspectives

Polyphenols are essential ingredients in the food industry. Given the global rise in
demand for functional foods, diversifying into these ingredients can add some resilience to
the increasing impact of obesity as a nutritional approach. The following highlighted gaps
need to be addressed to enhance understanding of the health benefits of polyphenols.

i. In the study of plant phyto-ingredients, human and animal experiments are the
most relevant in clinical nutrition but possess certain limitations. In the research on
the health functions of plant metabolites, the two models have sometimes shown
differences in the outcome. In most cases, the differences in the genetic composition
between humans and mice are the causes of this variation [160]. Given these
potential inconsistencies and to enable the public to make informed choices on
polyphenol consumption, future research is needed to be more robust in clinical
trials using human subjects to assess the anti-obesity effectiveness of polyphenols
instead of relying on in vitro or animal findings for conclusions;

ii. The biological activity of polyphenols can be affected by various factors. The length
of intake and mode of intake of polyphenols are key determinants of polyphenols’
biological activity [182]. However, most current studies have largely ignored the
significance of the correlation between polyphenol intake and the length of intake.
Furthermore, as already been mentioned, polyphenols doses administered during
clinical trials are often higher than in the common diet [182]. However, only a few
human studies have considered this factor in drawing a scientific substantiation
for the relative claimed effects of polyphenols. In future research, it is essential to



Antioxidants 2023, 12, 416 28 of 36

assess the relevance of these factors in the anti-obesity potential of polyphenol-rich
foods to offer a verifiable claim on the health effects of polyphenols;

iii. Although trials have shown a correlation between polyphenol consumption and
a reduction in risk factors for chronic diseases, discrepancies in explaining their
positive effects have been found due to their low content in most daily diets as well
as bioavailability. More studies are needed to find safe and effective methods to
incorporate polyphenols in foods to improve their levels consumed in diets and to
enhance the bioavailability to realize similar outcomes observed in in vitro, in vivo,
and clinical trials studies. Nanocarriers are a potential technology for polyphenol
encapsulation that could enhance their bioavailability, solubility and stability at their
target sites in the body. In the current settings, most nanotechnology reports have
addressed diseases such as cancer, but none of the studies have been reported for
polyphenols targeting obesity. Future research needs to evaluate the effectiveness of
encapsulated polyphenols against obesity development, both in animal and human
trials, not just in vitro;

iv. The translation of food composition into intakes of a specific dietary compound is
often achieved using food composition databases. However, for polyphenols, the
approach needs to be revised since the currently available databases contain limited
information regarding the diversity and concentration of phenolic compounds
in plant foods. These limitations arise mainly because, unlike most nutrients,
there has been a narrow systematic approach to comprehensively characterize
and quantify the diverse polyphenols in plant foods using standardized analytical
methods. Moreover, much of the available information has been assembled solely
from heterogeneous sources, in which the original food sampling and description
are still being investigated. Furthermore, the complexity arises due to the uneven
distribution of polyphenolic compounds in different parts of plants and the loss of
specific polyphenols during food processing. For example, in apples, quercetin is
mainly found in the peel; however, peeled fruit contains no quercetin. Similarly,
most polyphenols in wheat grain are located primarily in the outer layers and are
usually lost during the refining process of the flour. Further research is required to
expand our current knowledge regarding alternative dietary assessment methods
that could help overcome these challenges;

v. Finally, to establish firm evidence for the health effects of dietary polyphenol con-
sumption, it is essential to have quantitative information regarding their dietary
intake on food labels. This is particularly essential for enriched foods or foods that
are known to contain high amounts of these compounds. The usefulness of such
information is that consumers can have a planned dietary intake based on specific
foods. Thus, similar to other known nutrients and drugs, in the future, food records
and labels for polyphenols need to be developed to allow consumers to quickly
assess total intake and required precautionary measures accurately.

13. Concluding Remarks

Evidence from cellular, animal and human studies indicates that consuming polyphe-
nols in diet or as a supplement enhances protection against obesity. Anti-obesity activities of
polyphenols may occur through mechanisms including enzyme inhibition, suppression of
neuro-hormones related to food intake and satiety, and induction of mitochondrial biogen-
esis. Since polyphenols demonstrate great anti-obesity potential, screening for polyphenol-
rich foods with anti-obesity effects but fewer adverse reactions in humans will likely offer a
novel and effective therapeutic strategy to fight obesity. A comprehensive safety evaluation
is needed to ascertain consumer safety of polyphenols consumption in foods. Rigorous
assessment of these compounds in human trials will provide evidence-based results that
will facilitate the incorporation of natural phenolic compounds in functional foods or as
supplements to help fight the growing problem of obesity.
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