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Abstract: Neurodegenerative diseases are characterized by mitochondrial dysfunction leading to
abnormal levels of reactive oxygen species (ROS), making the use of ROS-scavenging nanomaterials
a promising therapeutic approach. Here, we combined the unique ROS-scavenging properties of
cerium-based nanomaterials with the lipid self-assembling nanoparticles (SANP) technology. We
optimized the preparation of cerium-doped SANP (Ce-SANP) and characterized the formulations
in terms of both physiochemical and biological properties. Ce-SANP exhibited good colloidal
properties and were able to mimic the activity of two ROS-scavenging enzymes, namely peroxidase
and super oxide dismutase. Under ischemia-like conditions, Ce-SANP could rescue neuronal cells
from mitochondrial suffering by reducing ROS production and preventing ATP level reduction.
Furthermore, Ce-SANP prevented mitochondrial Ca2+ homeostasis dysfunction, partially restoring
mitochondrial Ca2+ handling. Taken together, these results highlight the potential of the anti-oxidant
Ce-SANP platform technology to manage ROS levels and mitochondrial function for the treatment of
neurodegenerative diseases.

Keywords: lipid nanoparticles; ROS-scavenging; mitochondrial disfunction; cerium oxide; neurons;
hypoxia

1. Introduction

Neurodegenerative diseases induce a progressive loss of function and degeneration of
neurons which ultimately leads to death. Common neurodegenerative diseases include
amyotrophic lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s
disease [1]. A conspicuous neurodegeneration is also present in stroke, a neurological event
caused by a compromised blood supply to the brain which leads to oxygen and glucose
deficiencies in specific brain areas. Current therapeutic options for stroke treatment are
limited to clot removal by alteplase, moderate hypothermia and mechanical thrombec-
tomy [2]. Therefore, the development of new treatment options for ischemic stroke is an
important need of modern medicine. In general, the number of patients affected by this
specific neurological event and other neurodegenerative diseases is expected to increase
in the next decades due to an increase in the aging population, which poses a serious
economic burden on the healthcare system [3]. For example, while nowadays ~15 million
people suffer from Alzheimer’s disease worldwide, it is anticipated that this number will
grow to 20 million cases in Europe and in the United States by 2050 [4]. There is currently
no cure for neurodegenerative diseases and the available treatments are only palliative,
which makes the development of effective therapeutics of paramount importance.
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Oxidative stress is ubiquitous across neurological diseases and plays a key role in
their development [5]. It is typically triggered by an abnormal accumulation of reactive
oxygen species (ROS) such as super-oxide anions (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radicals (HO•) which can induce severe cellular damage [6]. Neuronal cells
are highly susceptible to ROS due to the presence of high concentrations of redox active
metals and oxidation-sensitive polyunsaturated fatty acids, as well as to the relative low
expression of anti-oxidant enzymes [7]. This has prompted the development of therapeutic
approaches based on the use of inorganic nanomaterials with ROS-scavenging proper-
ties [8]. In this context, cerium-based nanoparticles are particularly interesting since the
surface cerium atoms can undergo oxidation from Ce3+ to Ce4+ in the presence of ROS,
mimicking the activity of ROS-scavenging enzymes, such as super oxide dismutase (SOD)
and peroxidase [9].

A wide variety of cerium-based nanomaterials has been developed over the years for
applications in drug delivery and biosensing. Example includes cerium oxide nanoparticles,
which have been synthesized in various shapes and sizes and have been shown to possess
oxidase-, peroxidase-, catalase-, SOD-, phosphatase-, and haloperoxidase-like activity [10].
Cerium phosphate nanoparticles can also exhibit peroxidase-like activity [11] and have
enhanced peroxidase- and catalase-like activity when combined with cerium oxide in
nanocomposite structures [12]. Cerium fluoride nanoparticles are another class of cerium-
based nanomaterials with peroxidase-like activity and the ability to exert an anti-oxidant
effect in vitro in the presence of hydrogen peroxide [13]. Given their favorable properties,
cerium-based nanoparticles have been successfully proposed for the treatment of various
neurodegenerative diseases, including ischemic and hemorrhagic stroke, Parkinson-like
disease, Alzheimer’s disease, and amyotrophic lateral sclerosis [14].

Alternative approaches for the treatment of neurodegenerative diseases rely on gene
therapy to regulate the expression of target genes or proteins and to correct pathological
mutations [15]. Examples include the use of oligonucleotides, such as anti-sense oligonu-
cleotides or small interfering RNA (siRNA), which are able to prevent the production of
pathological proteins involved in the progression of neurodegenerative diseases [15–17].
However, in vivo delivery of oligonucleotides poses several hurdles associated with poor
cellular uptake, off-target effects, and nuclease degradation. This has led to the emer-
gence of vectors for oligonucleotide delivery such as lipid nanoparticles and polymeric
nanoparticles [18]. Our group has pioneered the development of hybrid self-assembling
nanoparticles (SANP) for the delivery of bisphosphonates [19,20] and nucleic acids [21]
to the brain. SANP have an inorganic calcium phosphate (CaP) core enclosed by a lipid
shell, whose composition can be tailored to achieve nanoparticle accumulation in specific
organs. Lipid SANP formulations exhibit excellent biocompatibility, high nucleic acid en-
capsulation efficiency and intracellular delivery, and can be prepared by simple component
mixing at room temperature without the need of complex manufacturing procedures [21].
The lipid SANP technology has been successfully used to deliver drugs and miRNA or
siRNA to the central nervous system to treat brain tumors, while the use of SANP for
neurodegenerative diseases is still unexplored.

Given the complex pathology of neurodegenerative diseases, a multi-functional
nanoparticle platform with anti-oxidant activity and the ability to deliver specific drugs
may be a promising therapeutic strategy. Here, we combined the unique ROS scavenging
properties of cerium-based nanomaterials with the lipid SANP technology to produce
multi-functional nanoparticles for the treatment of neurodegenerative diseases. We devel-
oped a straightforward coprecipitation method to obtain cerium-doped CaP nanoparticles,
which were combined with cationic liposomes to yield cerium-SANP (Ce-SANP). The
nanoparticles were characterized in terms of colloidal properties, surface charge, stability
against aggregation in serum albumin, and enzymatic activity. We then tested their ability
to rescue PC12-derived neuronal cells and primary cortical neurons from chemical hypoxia
and re-oxygenation (CH/Rx) and oxygen and glucose deprivation followed by reoxygena-
tion (OGD/Rx), two models of brain ischemia which induce oxidative stress. The Ce-SANP
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exhibited favorable colloidal properties, good stability against aggregation in the presence
of serum proteins, as well as peroxidase- and SOD-like activity. They were able to rescue
neuronal cells from ROS-induced cell death in a dose-dependent manner and to prevent a
reduction in ATP levels and mitochondrial Ca2+ homeostasis dysfunction.

2. Materials and Methods
2.1. Materials

Sodium chloride (NaCl), calcium chloride (CaCl2), sodium phosphate dibasic (Na2HPO4),
cerium (III) nitrate, sodium citrate tribasic dihydrate (C6H5Na3O7•2H2O), ammonia so-
lution (28–30%), and the SOD assay kit (cat. n. 19,160) were obtained from Merck
Life Science S.r.l. (Milan, Italy). 1,2-dioleoyl-3-trimethylammonium-propane chloride
(DOTAP) was kindly donated by Lipoid GmbH (Ludwigshafen, Germany) while N-
palmitoyl-sphingosine-1-{succinyl[methoxy(polyethylene glycol)2000]} (Cer16-PEG2000)
was purchased from Avanti Polar Lipids (Alabaster, USA). The 3,3′,5,5′-Tetramethylbenzidine
(TMB) substrate solution (cat. n. N301) and the Stop solution (cat. n. N600) were purchased
from ThermoFisher Scientific (Rodano, Italy) while regenerated cellulose (RC) syringe
filters with a 0.2 µm pore size were purchased from Exacta + Optech Labcenter SpA (San
Prospero, Italy).

2.2. Methods
2.2.1. Ce-CaP Nanoparticle Synthesis

The inorganic cerium-CaP nanoparticles were prepared by a coprecipitation method.
Briefly, 1 mL of an aqueous solution containing 30 mM Na2HPO4 was added dropwise
while vortex stirring at 1400 rpm to 1 mL of an aqueous solution containing 25 mM
CaCl2, 150 mM cerium (III) nitrate, and 100 mM sodium citrate tribasic; 250 µL of 1.4 M
NH4OH solution was then added dropwise while vortex stirring at 1400 rpm. The obtained
nanoparticle suspension was incubated at 37 ◦C for 5 min, stored at 4 ◦C overnight, and
filtered through a 0.22 µm pore-sized RC membrane. The cerium-CaP nanoparticles were
stored at 4 ◦C until further use.

2.2.2. Liposome Formulation

Liposomes (DOTAP:Cer16-PEG2000 94:6 mol%) were prepared via the thin film hydra-
tion method followed by extrusion. The lipids were dissolved in a chloroform:methanol
mixture (2:1 v/v) and transferred in a 50 mL round bottom flask in the appropriate mix-
ing ratios. The organic solvent mixture was removed by rotary evaporation (Laborata
4010 digital, Heidolph, Schwabach, Germany) and the obtained lipid film was hydrated
with deionized water for 2 h at 65 ◦C to a lipid concentration of 2.5 mg/mL. The vesi-
cle suspension was extruded through pore-sized polycarbonate membranes (Nucleopore
Track-Etched 25 mm membrane, Whatman, Brentford, UK) with varying pore sizes by
using a thermobarrel extruder (Lipex Extruder, Evonik, Essen, Germany) at 65 ◦C. More
specifically, the vesicle suspension was forced through 400 nm membranes (3 passages),
200 nm membranes (3 passages), and 100 nm membranes (5 passages).

2.2.3. Ce-SANP Nanoparticle Formulation

Ce-SANP were prepared by simple mixing the components (inorganic nanoparticles
and liposomes) at room temperature in a 1:1 v/v ratio followed by incubation for 25 min.

2.2.4. Nanoparticle Physico-Chemical Characterization

The formulations were characterized in terms of colloidal dimensions, polydispersity
index (PDI), surface charge, and stability against aggregation in water by using dynamic
light scattering (DLS) (Zetasizer Nano Z, Malvern, UK). Prior to the measurements, samples
were diluted to 1% in filtered deionized water. For each formulation, the z-average diameter,
PDI, and zeta potential were calculated as mean ± standard deviation of measurements
from N ≥ 2 independent batches.
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2.2.5. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy (SEM-EDX)

Microstructural and chemical analyses of the nanomaterials were were performed
at the scanning electron microscopy lab of the Dept. of Earth Sciences, Environment
and Resources, Federico II University, Napoli—Italy. A Field Emission Scanning Elec-
tron Microscope equipped with an Energy Dispersive Spectrometer (FESEM/EDS; Zeiss
Merlin VP Compact coupled with Oxford Instruments Microanalysis Unit; Carl-Zeiss-
Strasse, Oberkochen, Germany) was used for observations and spot analyses. Data
sets were obtained using an INCA X-stream pulse processor (Oberkochen, Germany)
(15-kV primary beam voltage, 50–100 A filament current, variable spot size, from 30,000 to
200,000×magnification, 20 mm working distance, and 50 s real-time counting) by means
of INCA Energy software 5.05 (XPP array and pulse pile-up corrections). Optimization of
signals was carried out using cobalt (FWHM peak height of the strobed zero = 60–65 eV)
as a reference. Smithsonian Institute and MAC (Micro-Analysis Consultants Ltd., Saint
Ives, UK) standard materials were used for element calibration: Cerium Phosphate (Ce),
diopside (Ca), apatite (P). Accuracies about EDS chemical analyses are reported in [22].

2.2.6. Peroxidase Assay

To assess the peroxidase-like activity of Ce-CaP NPs and Ce-SANP, 50 µL of the TMB
substrate solution was added to each well of a clear 96-well plate and mixed with 50 µL of
an aqueous suspension of Ce-CaP NPs or Ce-SANP at various concentrations. The reaction
mixture was incubated for 1 min and was stopped by the addition of 50 µL of stop solution
(0.16 M sulfuric acid). The absorbance was measured on a spectrophotometer (Thermo
Scientific™ Multiskan™ GO Microplate Spectrophotometer) at 451 nm.

2.2.7. Superoxide Dismutase (SOD) Assay

The SOD-like activity of Ce-CaP NPs and Ce-SANP was assessed with an SOD assay
kit (cat. n. 19,160) following the manufacturer’s instructions. Briefly, 10 µL of an aqueous
suspension of Ce-CaP NPs or Ce-SANP at various concentrations was added to 100 µL of
an aqueous solution containing the substrate, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) to each well of a clear 96-well
plate. A total of 10 µL of a xanthine oxidase solution (obtained by diluting 15 µL of xanthine
oxidase solution in 2.5 mL of dilution buffer) was then added to each well and the plate
was incubated at 37 ◦C for 20 min. The absorbance was then measured at 440 nm by using
a GloMax® Discover Microplate Reader (Promega Instruments). As a control, 10 µL of DI
water was added to wells containing the WST-1 solution and the enzyme solution (Blank 1,
full conversion of the WST-1 substrate) or to wells containing the WST-1 solution and the
dilution buffer (Blank 2, no conversion). The SOD activity was calculated by using the
following formula:

SOD activity % =
(ABlank1 − ABlank2)− ASample

ABlank1 − ABlank2
× 100,

where ABlank1, ABlank2, and ASample are the measured absorbance values of wells containing
the Blank 1, the Blank 2 or the Ce-CaP NPs/Ce-SANP, respectively.

2.2.8. Biological Characterization of Ce-SANP on Mitochondrial Function

Use of Experimental Animals
All the experiments were performed in accordance with the guidelines of the Declara-

tion of Helsinki and with the procedures described in experimental protocols approved
by the Ethical Committee of “Federico II” University of Naples, Naples, Italy (protocol
119, May 2022), and by the Italian Ministry of Health (D. Lgs. March 4th 2014 from Italian
Ministry of Health and DIR 2010/63 from UE).
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2.2.9. Cell Culture

Primary Cultures of Rat Cortical Neurons
Cortical neurons were obtained from the brains of 14/16-day-old Wistar rat embryos,

dissected and cultured as previously reported [23]. Cytosine-β-D-Arabino-furanoside
(Ara-C) (10 µM) was added at 3 days in vitro (DIV) to prevent the growth of non-neuronal
cells. For the experiments, cortical neurons were used at 7–10 DIV. In consideration of the
experimental procedures, the characterization of these neuronal cultures showed that at
day 7, cell purity was ~98%.

Clonal Cells
Rat pheochromocytoma (PC12) cells were cultured and differentiated with nerve

growth factor (NGF, 50 ng/mL) as previously described [24].

2.2.10. Chemical Hypoxia and Reoxygenation

Chemical hypoxia was obtained by adding to the PC12 cells 5 µg/mL oligomycin
(an oxidative phosphorylation, OXYPHOS, inhibitor) plus 2 mM 2-deoxy-D-glucose (a
glycolysis inhibitor) in a glucose-free medium for 45 min. Reoxygenation was performed
by incubating cells in a culture medium containing normal levels of glucose for 3 h [25].
These conditions reproduced a typical hypoxia occurring during brain ischemia.

2.2.11. Oxygen and Glucose Deprivation Followed by Reoxygenation (OGD/Rx)

Ischemic insult was reproduced in vitro by exposing neurons to 3 h of oxygen and
glucose deprivation (OGD) performed in a glucose-free medium previously saturated
with 95% N2 and 5% CO2. Hypoxic conditions were maintained using a hypoxia chamber
(temperature 37 ◦C, atmosphere 5% CO2 and 95% N2). At the end of incubation, the glucose-
free medium was replaced with a culture medium containing normal levels of O2 and
glucose; thus, reoxygenation was achieved by returning neurons to normoxic conditions
(5% CO2 and 95% air, temperature 37 ◦C) for 24 h [23].

2.2.12. Analysis of Mitochondrial activity

Mitochondrial activity was assessed by the 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide (MTT) assay. After treatments, primary cortical neurons and neuronal
PC12 cells were incubated with MTT for 1 h at 37 ◦C. Then, samples were collected in
dimethyl sulfoxide (DMSO) and measured spectrophotometrically at 540 nm. Data were
expressed as a percentage of cell viability compared to control cultures.

2.2.13. Measurement of ROS on Single-Cell

Neurons were seeded on glass coverslips and exposed to hypoxic conditions in the absence
or presence of Ce-SANP. Then, neurons were incubated with 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA, 17.5 µM) as previously described [26]. Using the same imaging
system described in [Ca2+]i measurement, each coverslip was exposed at 485 nm excitation
for 10 s and the emitted light was passed through a 530 nm barrier filter. ROS level was
expressed as DCF fluorescence in arbitrary units.

2.2.14. Quantification of ATP Level

ATP content was measured by a commercial bioluminescent assay (ATP biolumi-
nescent assay kit, Merck) as previously described [27]. After treatments, ATP was ex-
tracted by boiling samples for 1 min in a solution containing 100 mM TRIS, 4 mM EDTA,
pH 7.75. Bioluminescence measurements were carried out on 100 µL of each sample
mixed with 100 µL of luciferin-luciferase solution using a standard luminometer. ATP
content was calculated using a standard curve obtained by serial dilution of 2 µM ATP
standard solution.
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2.2.15. [Ca2+]i Measurement

[Ca2+]i was measured by single-cell computer-assisted video-imaging. Briefly, primary
cortical neurons and PC12 cells, seeded on glass coverslips, were loaded with 10 µM Fura-2
acetoxymethyl ester (Fura-2AM) for 30 min at 37 ◦C in normal Krebs solution containing
the following (in mM): 5.5 KCl, 160 NaCl, 1.2 MgCl2, 1.5 CaCl2, 10 glucose, and 10 Hepes–
NaOH, pH 7.4. Then, coverslips were placed into a perfusion chamber mounted onto
a Zeiss Axiovert 200 microscope (Carl Zeiss, Germany) connected to MicroMax 512BFT
cooled CCD camera (Princeton Instruments, Trenton, NJ, USA) and a LAMBDA 10-2 filter
wheeler (Sutter Instruments, Novato, CA, USA). After excitation at 340 and 380 nm, the
fluorescence intensity of Fura-2 was collected and [Ca2+]i was measured every 3 s by
Grynkiewicz’s equation [28], whose parameters were determined for individual cells, as
previously described [29]. [Ca2+]i was expressed in the nanomolar range by using Meta-
Morph/MetaFluor Imaging System software (Universal Imaging, West Chester, PA) and
applying the equation: [Ca2+]i = KD F0 (R − Rmin)/FS (Rmax − R), where KD is the
apparent equilibrium dissociation constant for Fura-2 at 225 nM. The amount of Ca2+

extruded in the cytoplasm upon FCCP (1µM) exposure is widely considered as the index of
the mitochondrial Ca2+ efflux.

2.2.16. Statistical Analysis

Data are expressed as mean ± S.E.M. The statistical analysis was performed with an
unpaired one-way analysis of variance followed by the Newman–Keuls test. Statistical
significance was accepted at the 95% confidence level (p < 0.05).

3. Results and Discussion
3.1. Synthesis of Cerium-CaP Nanoparticles (Ce-CaP NPs)

Calcium phosphate nanoparticles (CaP NPs) have been widely investigated for drug
delivery applications due to their high biocompatibility, pH-dependent dissolution behavior
and ability to complex various payloads, including proteins and nucleic acids [30]. CaP
NPs can also be doped with other metal ions such as iron, gadolinium, or europium for,
e.g., magnetic resonance imaging applications [30]. In order to obtain lipid SANP with
ROS-scavenging properties, we first modified their CaP core with cerium ions by adapting
a well-established protocol for CaP nanoparticles synthesis. This protocol entails the mixing
of two aqueous solutions containing the calcium and phosphate precursors at basic pH [21].
In this work, hybrid cerium-CaP nanoparticles (Ce-CaP NPs) were prepared by mixing
an aqueous solution containing Ce (NO3)3, CaCl2 and trisodium citrate with an aqueous
solution containing Na2HPO4 followed by incubation at 37 ◦C and filtration (Figure 1a).
The sodium citrate was added as a stabilizer due to its ability to control the crystallization of
both CaP [31] and cerium oxide [32] nanoparticles, while an excess of Ce3+ with respect to
PO4

3− was used to ensure the formation of cerium oxide alongside cerium phosphate [12].
The obtained Ce-CaP NPs were characterized in terms of their colloidal dimensions via

dynamic light scattering (DLS) and exhibited a z-average diameter of 136.50± 2.26 nm and a
polydispersity index (PDI) of 0.16± 0.02 (Figure 1b). We also carried out DLS measurements
to characterize their colloidal stability against aggregation over 49 days at 4 ◦C. The Ce-CaP
NPs had good colloidal stability in water over 21 days, with negligible differences in the
z-average diameter, while a gradual increase in the PDI was detected (Figure 1c). We,
therefore, investigated the possibility to lyophilize these formulations and we observed
minimal variations in the z-average diameter and PDI following the reconstitution of the
lyophilized formulations (Figure 1d), thus suggesting that lyophilization may be a viable
strategy to extend their shelf life.

3.2. SEM-EDS Analysis of Ce-CaP Nanoparticles

We next performed SEM-EDX analysis to gain further insights into the structural
and compositional features of the Ce-CaP NPs, which exhibited a spherical shape and
sizes ranging between 25 and 130 nm (Figure 2a). The discrepancies in the nanoparticle
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size measured by SEM and DLS may be ascribed to aggregation phenomena occurring in
water, in analogy to what has been observed for titanium oxide nanoparticles [33]. EDS
analysis revealed that Ce-CaP NPs comprise cerium at 92.5 ± 0.4%, calcium at 2.3 ± 0.1%,
and phosphorus at 5.2 ± 0.4% (Figure 2b), which may suggest the coexistence of cerium
phosphate and cerium oxide. It has been previously hypothesized that upon the dissolution
of the precursor salts, Ce3+ and PO4

3− form cerium phosphate while the excess Ce3+ ions
reacts with dissolved oxygen to form cerium oxide [12].
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3.3. Characterization of Ce-CaP Nanoparticles: Enzyme-Like Activity

Previous studies have demonstrated the ability of cerium oxide nanoparticles to mimic
the activity of ROS-scavenging enzymes such as peroxidase and SOD, potentially due to
a continuous redox cycle of Ce3+ and Ce4+ and the presence of oxygen vacancies at the
surface of the nanoparticles [34]. In order to investigate whether the Ce-CaP NPs exhibited
peroxidase-like activity, we used a colorimetric assay based on the redox reaction between
3,3′,5,5′-Tetramethylbenzidine (TMB) and H2O2 (Figure 3a) [11]. In the presence of Ce-
CaP NPs and H2O2, a blue-colored, cationic radical derivative of TMB with characteristic
absorption peaks at 370 and 653 nm (Figure 3b, blue trace) was obtained; no absorption
peaks could be detected when only TMB and H2O2 were present (Figure 3b, grey trace).
The reaction could be stopped by the addition of a solution containing 0.16 M sulfuric
acid (“stop solution”), which converted the cationic radical TMB derivative into a yellow
diamine compound with a characteristic absorption peak at 451 nm (Figure 3b, yellow
trace) [35]. The addition of Ce-CaP NPs at various concentrations to a TMB substrate
solution resulted in an increase in the absorbance at 451 nm, which corresponded to higher
concentrations of the diamine derivative of TMB (Figure 3c). These findings indicated that
the Ce-CaP NPs could work as peroxidase mimics.
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Figure 3. Peroxidase-like activity of Ce-CaP NPs. (a) Schematic of the redox reaction between TMB,
H2O2, and peroxidase. (b) Absorption spectra of samples containing the TMB substrate solution only
(grey trace), TMB substrate solution and Ce-CaP NPs at a concentration of 56 µg/mL (blue trace), or
TMB substrate solution, Ce-CaP NPs at a concentration of 56 µg/mL, and 0.16 M sulfuric acid (stop
solution, yellow trace). (c) Absorbance of the reaction product measured at 451 nm with varying
concentrations of the Ce-CaP NPs. Ce-CaP NPs were added to the TMB substrate solution and the
reaction was stopped after 1 min with the addition of a stop solution. Data points are represented as
mean ± s.d. (N = 3 independent batches, n = 3 technical replicates). The inset shows the color change
due to TMB oxidation with increasing concentration of Ce-CaP NPs.

We next probed the SOD-like activity of Ce-CaP NPs with a colorimetric assay based
on the oxidation of a water-soluble tetrazolium salt, which is converted into a formazan dye
with an absorption peak at 450 nm by superoxide anions generated by xanthine oxidase.
In the presence of SOD, the superoxide anion is converted into hydrogen peroxide and
oxygen, leading to a decrease in the concentration of the dye (Figure 4a). The SOD activity
can be regarded as inhibition activity since higher concentrations of SOD lead to a more
pronounced decrease in the measured absorbance [36]. The Ce-CaP NPs exhibited SOD-like
activity and the addition of increasing concentrations of Ce-CaP NPs led to an increase in
the SOD-like activity (Figure 4b), similar to what has been previously reported for cerium
oxide nanoparticles [36–38].

3.4. Formulation of Ce-SANP

Coating metal oxide nanoparticles with biomaterials has been proposed as a strategy
to improve nanoparticle serum stability against aggregation and cellular uptake, as well as
to provide a handle for surface functionalization with, e.g., targeting moieties [39]. Cerium-
based nanoparticles have been coated with various materials such as dextran/poly (acrylic)
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acid [40,41], heparin [42], PEG-based copolymers [38], or cell-membrane derived lipids [43].
In this work, we assessed the possibility to form SANP by mixing Ce-CaP NPs with
DOTAP:CerPEG liposomes to obtain lipid-coated Ce-CaP NPs (Figure 5a). The liposomes
exhibited a z-average diameter of 135 ± 3.34 nm, a PDI of 0.037 ± 0.02, and a zeta potential
of + 45.09 ± 1.72 mV. Mixing the liposomes with the Ce-CaP NPs yielded SANP with a
z-average diameter of 108.93 ± 1.62 nm and a PDI of 0.11 ± 0.06 (Figure 5b); the Ce-SANP
were shown to be negatively charged, with a zeta potential of −30.98 ± 1.34 mV (Figure 5c).
A reduction in the z-average diameter was observed for the Ce-SANP compared to the
liposome and the Ce-CaP NPs, which may suggest a structural reorganization of these
components following mixing to obtain Ce-SANP, as observed in previous studies [44].
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are represented as mean ± s.d. (N = 3 independent batches, n = 3 technical replicates).
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Figure 5. Physico-chemical characterization of Ce-SANP. (a) Schematic of the synthesis of Ce-SANP;
the schematic was partly generated using Servier Medical Art, provided by Servier, licensed under a
Creative Commons Attribution 3.0 unported license. (b) Normalized intensity (light blue), number
(blue), and volume (dark blue) distributions of the Ce-SANP hydrodynamic diameter as measured by
DLS. (c) Zeta potential measurement and (d) stability against aggregation at 37 ◦C of the Ce-SANP
formulations following dilution in 150 mM NaCl or BSA. Data are represented as mean ± s.d. (N = 3
independent batches, n = 3 technical replicates).
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We also tested the stability against aggregation of the Ce-SANP formulations upon a
4 h incubation in a 1 w/v % BSA solution at 37 ◦C to evaluate their suitability for intravenous
administration. The mean hydrodynamic diameter of the Ce-SANP formulations was
measured via DLS at T0, 30 min and 4 h post-incubation in a BSA solution; the nanoparticles
were also incubated in a 150 mM NaCl solution as a positive control. A negligible increase
in the hydrodynamic diameter was observed following incubation with BSA compared to
the control and this value remained unchanged over time, suggesting that the Ce-SANP
formulations have good stability against aggregation at 37 ◦C in the presence of serum
proteins (Figure 5d). This is probably due to the presence of the PEGylated lipid in the
nanoparticle composition which effectively prevents nanoparticle aggregation and protein
adsorption on the surface [45].

3.5. Enzyme-Like Activity of Ce-SANP

In order to understand the effect of the lipid coating on the enzyme-like properties
of Ce-CaP NPs, we carried out the peroxidase and the SOD activity assays on the Ce-
SANP by using an equivalent concentration of Ce-CaP NPs. The Ce-SANP retained their
peroxidase-like activity (Figure 6a), which was a function of the concentration of Ce-CaP
NPs in the SANP formulation. Ce-SANP also exhibited similar SOD-like activity to bare
Ce-CaP NPs with a concentration-dependent behavior. Overall, the lipid coating did not
impair the enzyme-like properties of the Ce-CaP NPs, as previously observed for cerium
oxide nanoparticles encapsulated in nanostructured lipid carriers [46] or adsorbed on the
surface of mesoporous silica nanoparticles which were subsequently coated with a lipid
shell [47].
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Figure 6. Peroxidase- and SOD-like activity of Ce-SANP. (a) Absorbance of the reaction product
measured at 451 nm with varying concentrations of Ce-SANP. Ce-SANP were added to the TMB
substrate solution and the reaction was stopped after 1 min with the addition of a stop solution.
Data points are represented as mean ± s.d. (N = 5 independent batches, n = 3 technical replicates).
(b) SOD-like activity of Ce-SANP as a function of their concentration. Ce-SANP were added to
a solution containing xanthine oxidase and tetrazolium salt; the mixture was incubated at 37 ◦C
for 20 min, after which the absorbance at 450 nm was recorded. Data points are represented as
mean ± s.d. (N = 3 independent batches, n = 3 technical replicates).

3.6. Effect of Ce-SANP on Mitochondrial Activity and Function in Primary Cortical Neurons Exposed
to OGD Followed by Reoxygenation and Differentiated PC12 Cells Exposed to Chemical Hypoxia

Alterations in mitochondrial function are increasingly recognized in neurological
diseases. Given the favorable colloidal properties and enzyme-mimetic activity of the
Ce-SANP formulations, we assessed their ability to rescue neurons from mitochondrial
damage induced by the exposure to ischemia-like stimuli. Ce-SANP were added to the cells
during the reoxygenation phase at concentrations between 5.7 and 170 µg/mL and were
able to improve cellular viability, in a dose-dependent manner, of primary cortical neurons
exposed to OGD followed by reoxygenation and of differentiated PC12 cells exposed
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to chemical hypoxia plus reoxygenation (Figure 7). This latter model was obtained by
treating neuronal cells with OXYPHOS and glycolysis inhibitors which mimic the hypoxic
conditions of brain ischemia.
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Figure 7. Effects of Ce-SANP on mitochondrial activity in primary cortical neurons exposed to OGD
followed by reoxygenation and differentiated PC12 cells exposed to chemical hypoxia. Ce-SANPs
were added to neuronal cells under oxidative stress conditions (a) at various concentrations (the
schematic was partly generated using Servier Medical Art, provided by Servier, licensed under a
Creative Commons Attribution 3.0 unported license). Dose-dependent effects of Ce-SANP on cell
viability, measured as mitochondrial activity, in (b) PC12 cells differentiated with NGF and exposed
to chemical hypoxia followed by reoxygenation (CH/Rx) and (c) primary cortical neurons exposed
to OGD followed by reoxygenation (OGD/Rx). In both cases, Ce-SANPs were added only during
the reoxygenation phase. The white bars represent cells treated with vehicle while the black bars
represent the cells under oxidative stress conditions without the addition of Ce-SANP. * p < 0.05
vs. control, ** p < 0.05 vs. CH/Rx or OGD/Rx and vs. CH/Rx + SANP at the lowest concentration
(5.7 µg/mL or OGD/Rx + SANP at the lowest concentration (5.7 µg/mL).

We further measured several mitochondrial parameters including ATP production,
calcium transport, and ROS generation in the presence of the Ce-SANP formulation. Ce-
SANP at a concentration of 57 µg/mL were able to significantly prevent: (a) hypoxia-
induced ROS production; (b) decrease in ATP level; (c) mitochondrial Ca2+ homeostasis
dysfunction, which was detected as a rapid reduction in FCCP-induced Ca2+ release
(Figure 8). In particular, the present data clearly showed a protective mechanism of
these nanoparticles, aiming to preserve the mitochondrial function, which was highly
compromised in neurons exposed to hypoxic conditions during the ischemic insult. The
fact that Ce-SANP preserved ATP content is of exceptional importance and is testified
by the partial reestablishment of mitochondrial Ca2+ transport. In addition, it should be
also taken into account that many plasma membrane and organellar pumps moving Ca2+

are ATP-dependent. In fact, a lack of ATP, occurring under hypoxic conditions, triggers
intracellular Ca2+ concentration dysfunction, leading to the activation of several cell death
pathways. With regard to the internalization of cerium-doped SANP in neurons, it has been
shown that endocytosis is the privileged mechanism allowing for the targeted delivery
of drugs. For instance, nanoparticles based on selenium enter cells by activating clathrin-
associated endocytosis [48], the major vesicle retrieval mechanism in neurons [49]. These
results highlighted the potential of Ce-SANP as a well-suited formulation of Ce, useful for
the treatment of the oxidative stress associated with neurodegenerative diseases.
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Figure 8. Effects of Ce-SANP on mitochondrial function (e.g., ROS production, ATP levels, mito-
chondrial Ca2+ homeostasis). (a) Arbitrary units of fluorescence in NGF-differentiated PC12 cells
incubated with DCFH-DA under control conditions, after chemical hypoxia + reoxygenation alone
and chemical hypoxia + reoxygenation in the presence of Ce-SANP (57 µg/mL). Ce-SANP were
added only during the reoxygenation phase. On the top of the panel, representative images for each
treatment were reported. The bars show mean values ± SEM from three different experimental
sessions. * p ≤ 0.05 vs. control; ** p ≤ 0.01 vs. CH/Rx. (b) basal ATP content (in µM) in differentiated
PC12 cells under control conditions, after chemical hypoxia + reoxygenation alone and chemical
hypoxia + reoxygenation in the presence of Ce-SANP (57 µg/mL). Ce-SANP were added only during
the reoxygenation phase. The bars show mean values ± SEM from three different experimental
sessions. * p ≤ 0.05 vs. control; ** p ≤ 0.01 vs. CH/Rx. (c) FCCP-induced [Ca2+]i increase in NGF-
differentiated PC12 cells under control conditions, after chemical hypoxia + reoxygenation alone and
chemical hypoxia + reoxygenation in the presence of Ce-SANP (57 µg/mL). Ce-SANP were added
only during the reoxygenation phase. On the top of the panel, representative traces for the effects of
each treatment on [Ca2+]i are reported.

4. Conclusions

In this work, we developed cerium-doped SANP for the treatment of ischemia-like con-
ditions reproduced in vitro by exposing cortical neurons to OGD followed by reoxygenation
or differentiated PC12 cells to specific blockers of mitochondrial oxidative phosphoryla-
tion and glycolysis. We engineered the SANP inorganic core with cerium by synthesizing
cerium-doped CaP NPs, which had hydrodynamic diameters < 150 nm and low PDI, as well
as peroxidase- and SOD-like activity. Upon mixing with cationic liposomes, we obtained
cerium-doped SANP, which retained the enzyme-mimicking activity of the Ce-CaP NPs
and were able to protect PC12 differentiated neurons and primary cortical neurons from
ischemia-induced cell death in a dose-dependent manner. Furthermore, they effectively
prevented hypoxia-induced ROS production, a decrease in ATP levels, and mitochondrial
Ca2+ homeostasis dysfunction. These results highlighted the ability of these antioxidant
delivery systems to preserve mitochondrial functions as ATP production and Ca2+ storing.
Future work will entail loading the cerium-doped SANP with drugs commonly used for the
treatment of neurodegenerative diseases and evaluating the putative synergic therapeutic
efficacy in vitro and in vivo. This work paves the way for the development of an entirely
new class of “bioactive” nanoparticles with the potential to enable multi-modal therapy for
the treatment of neurodegenerative diseases.
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