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Abstract: Oxidative stress and endothelial dysfunction have been shown to play crucial roles in
the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to
investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells.
We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial
cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on
hospital admission, and we incubated these sera with human endothelial cells, comparing the effects
on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who
survived and patients who did not survive. We found that the serum from non-survivors significantly
increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression
levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that
was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum
from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.

Keywords: COVID-19; endothelial dysfunction; ferroptosis; HUVEC; inflammation; lipid peroxidation;
long COVID; oxidative stress; oxytosis; peroxidation; ROS; SARS-CoV-2

1. Introduction

We and others have evidenced the fundamental role of endothelial cells in the pathobi-
ology of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory
syndrome coronavirus (SARS-CoV-2) [1–17]. Equally important, oxidative stress has been
shown to be a key player in COVID-19 [18–25]. Chronic inflammation and oxidative
stress are associated with endothelial dysfunction, and have been linked to the patho-
genesis of atherosclerosis, hypertension, and other cardiovascular and cerebrovascular
disorders [26–48].

The overproduction of reactive oxygen species (ROS) is known to induce endothelial
dysfunction through different mechanisms, including ferroptosis [49,50], a non-apoptotic
type of programmed cell death characterized by the accumulation of lipid peroxides [51–55].
However, to the best of our knowledge, the association of endothelial dysfunction with
ferroptosis has never been investigated in the context of COVID-19.

We hypothesized that oxidative stress and subsequent lipid peroxidation induced
by COVID-19 in endothelial cells could be linked with the disease outcome. To test this
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hypothesis, we collected serum from COVID-19 patients on hospital admission, and we
incubated these sera with human endothelial cells, comparing the effects on ROS generation
and lipid peroxidation between patients who survived and patients who did not survive.

2. Results
2.1. COVID-19 Induces Oxidative Stress in Human Endothelial Cells

We evaluated the effects on ROS production in human umbilical endothelial cells
(HUVECs) of serum obtained from patients who did not survive COVID-19, comparing
these effects with the serum of patients who did survive. The main characteristics of the
patients are shown in Supplementary Table S1. We observed a significantly (p < 0.0001)
increased production of both cellular (Figure 1) and mitochondrial (Figure 2) ROS in
HUVECs incubated for 24 h with 10% serum from non-survivors.
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Figure 1. Serum from patients who did not survive COVID-19 promotes oxidative stress in human
endothelial cells. (A) Representative microphotographs of DCF and Hoechst staining of HUVECs
treated for 24 h with 10% serum obtained on hospital admission from patients who survived or
succumbed to COVID-19; scale bar: 50 µm. (B) Quantification of DCF fluorescence intensity. Data
were obtained from at least three independent experiments and are presented as a box-and-whiskers
plot showing the median and the 5th–95th percentiles; A.U.: arbitrary units.
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Figure 2. Serum from patients who did not survive COVID-19 increases mitochondrial ROS pro-
duction. (A) Representative microphotographs of MitoSOX Red and MitoTracker Green FM (MTG)
staining of HUVECs treated for 24 h with 10% serum from patients who survived or did not survive
COVID-19. (B) Quantification of MitoSOX Red fluorescence intensity. Data are from at least three
independent experiments and are presented as a box-and-whiskers plot showing the median and the
5th–95th percentiles; A.U.: arbitrary units.

2.2. Serum from COVID-19 Non-Survivors Causes Lipid Peroxidation

Oxidative stress has been linked to lipid peroxidation, a process that has been recently
suggested to play a critical role in COVID-19 [56]; on these grounds, we assessed lipid
oxidation in endothelial cells, measuring malondialdehyde (MDA), 4-hydroxynonenal
(4-HNE), and C11-BODIPY [57–59]. We found that all these markers were significantly
increased in HUVECs incubated for 24 h with 10% serum from non-survivors compared
to serum from COVID-19 survivors (Figure 3), whereas there were no significant differ-
ences between normal serum (from healthy donors) and serum from COVID-19 survivors
(Figure 3).
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Figure 3. Lipid peroxidation in HUVECs is increased by serum from patients who did not survive
COVID-19. Three different assays, namely the quantification of MDA equivalents (A), 4HNE (B),
and C11-BODIPY (C), confirmed that the incubation of HUVECs for 24 h with serum from COVID-19
patients who did not survive significantly increased lipid peroxidation. All experiments were
performed in triplicate; the box-and-whiskers graphs show the median and the 5th–95th percentiles;
*: p < 0.01 vs. Normal Serum, #: p < 0.01 vs. Survivors.

2.3. Serum from COVID-19 Non-Survivors Reduces the Expression of the Antioxidant Enzyme
Glutathione Peroxidase 4 (GPX4) in HUVECs

Since the selenoprotein glutathione peroxidase 4 (GPX4) has been shown to be a major
modulator of lipid peroxidation [60–62], we reasoned that COVID-19 serum could regulate
its expression. Thus, we measured GPX4in HUVECs, both at the mRNA and at the protein
level, and we found that a 24 h incubation with serum obtained from patients who did not
survive COVID-19 significantly decreased GPX4 expression (Figure 4).
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Figure 4. GPX4 expression in human endothelial cells is reduced by serum from patients who did not
survive COVID-19. GPX4 levels were measured by RT-qPCR (A) and by immunoblot (B) in HUVECs,
normalizing to glyceraldehyde 3-phosphate dehydrogenase (GAPDH); panel B shows representative
blots from triplicate experiments (top) and their quantification (bottom). All experiments were
performed at least in triplicate; the box-and-whiskers graphs show the median and the 5th–95th
percentiles; *: p < 0.01 vs. Normal Serum, #: p < 0.01 vs. COVID-19 Survivors. Sequences of
oligonucleotide primers are reported in Table 1.
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Table 1. Oligonucleotide sequences of the primers used for RT-qPCR.

Primer Sequence (5′-3′) Amplicon (bp)

GPX4
Forward GAG ATC AAA GAG TTC GCC GC

102Reverse CTT CAT CCA CTT CCA CAG CG

TNFR1
Forward TTG TAT GGC CCC AAC TGT CT

99Reverse CTG GCT CAA GTC CTT CCT CA

GAPDH
Forward GGC TCC CTT GGG TAT ATG GT

94Reverse TTG ATT TTG GAG GGA TCT CG

2.4. Serum from COVID-19 Non-Survivors Triggers Ferroptosis in Human Endothelial Cells

Increased lipid peroxidation and reduced levels of GPX4 represent two hallmarks of
ferroptosis [63,64]; thus, to verify whether this process was actually involved in our model,
we measured the levels of other markers of ferroptosis and their response to Ferrostatin-1
(Fer-1), a well-established inhibitor of ferroptosis [64–66]. We observed that in addition to
GPX4, suppressors of ferroptosis, such as Solute Carrier Family 7 Member 11 (SLC7A11, also
known as Calcium Channel Blocker Resistance Protein, CCBR1, and Cystine/Glutamate
Transporter, a subunit of the Amino Acid Transport System Xc

−) [67–70] and Ferritin heavy
chain (FTH1) [71–73], were significantly downregulated, whereas the ferroptosis inducer
spermidine/spermine N1-acetyltransferase 1 (SAT1) [74–76] was upregulated, in HUVECs
incubated with serum from COVID-19 non-survivors; strikingly, these regulations were all
prevented by Fer-1 (Figure 5).
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Figure 5. COVID-19 serum from non-survivors regulates ferroptosis via TNFR1 in HUVECs. Rep-
resentative immunoblots are shown in panel (A), quantified in panel (B) (GPX4), (C) (SCL7A11),
(D) (FTH1), and (E) (SAT1). All experiments were performed at least in triplicate; the box-and-
whiskers graphs show the median and the 5th–95th percentiles; *: p < 0.01 vs. Survivors.

2.5. COVID-19-Induced Ferroptosis in HUVECs Is Mediated by TNFα

Several studies have consistently shown that increased TNFα serum levels on hospital
admission are associated with the risk of mortality in COVID-19 patients [77–79]. Similarly,
increased serum levels of soluble TNFα Receptor 1 (TNFR1) are associated with mortal-
ity [80]. A recent meta-analysis [81] has confirmed that TNFα significantly augments the
risk of COVID-19 mortality. Therefore, we measured TNFα in our samples, observing sig-
nificantly elevated levels in serum from non-survivors compared to serum from survivors
(10.7 ± 3.3 * vs. 6.3 ± 4.1 pg/mL, p < 0.001).

Then, to mechanistically prove that TNFα was involved in the COVID-19 induced
ferroptotic response, we measured by immunoblot GPX4, SLC7A11, FTH1, and SAT1 after
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having treated HUVECs with a siRNA for TNFR1 or scramble (the efficiency of TNFR1 si-
lencing is shown in Supplementary Figure S1). Strikingly, we observed that knocking-down
TNFR1 (200 nM siRNA) rescued the regulation of all the ferroptosis markers induced by in-
cubation with serum obtained from patients who did not survive COVID-19 (Figure 5A–E).

3. Discussion

The essential contribution of endothelial dysfunction to the pathobiology of COVID-19
was proposed at the beginning of the pandemic in an attempt to explain the systemic
manifestations of the disease, and was later verified by investigations on autoptic sam-
ples [1,3–8,82–85]. Recent analyses using single-cell atlases have confirmed that endothelial
cells in different organs are indeed deeply affected by COVID-19 [86], although the exact
mechanisms are still not fully understood.

The association between oxidative stress and programmed cell death, known as
oxytosis [87], had been described in neuronal cells years before the term ferroptosis had
been coined by Scott Dixon, Brent Stockwell, and collaborators in 2012 [88] to describe
a form of non-apoptotic cell death induced by the small molecule erastin by inhibiting
SLC7A11. SLC7A11 is a member of a heteromeric, Na+-independent, anionic amino
acid transport system that is highly specific for glutamate and cysteine [89,90]; in such
a system, designated Xc

−, the anionic form of cysteine is transported in exchange for
glutamate [91–95]. When inhibited, the transportation into the cytosol of cystine, a precursor
of glutathione, in exchange for glutamate, is blocked, leading to an impaired function of
the housekeeping enzyme GPX4 [96]. The subsequent accumulation of lipid peroxides
eventually compromises the plasma membrane integrity [97,98]. It is notable that previous
studies exploring cellular metabolism had described similar phenomena, although less
detailed from a molecular point of view, in human cells [99].

In our experiments, we were able to demonstrate that the main actors involved in
the ferroptotic process, namely, GPX4, SLC7A11, FTH1, and SAT1, were all regulated by
serum from COVID-19 non-survivors and, in the opposite direction, by TNFR1 silenc-
ing, strongly suggesting that TNFα is functionally involved in the association between
COVID-19 and ferroptosis in endothelial cells. Although TNFα has been shown in several
studies to be a reliable predictor of mortality in COVID-19 [77,81,100–103], we reckon
that other mechanisms could be at play, including the main component of the so-called
cytokine storm [103–111]. Our observation that not only cellular oxidative stress but also
mitochondrial ROS are increased after incubation of HUVECs with COVID-19 serum for
non-survivors is consistent with previous reports, which indicate that mitochondria are not
simple spectators but active participants in oxytosis and ferroptosis [87,112–116].

In the last years, lipid peroxidation has been implied in a series of disorders, in-
cluding cancer [117–119], neurodegeneration [120–122], autoimmune diseases [123–126],
diabetes [127–130], and ischemia-reperfusion injuries [131–133]. With COVID-19, we add
another small piece to this jigsaw puzzle, which is in agreement with the functional contribu-
tion of ferroptosis to a complex process, such as fibrosis of the lung [134–136]. Intriguingly,
our results are consistent with the autoptic observations of accumulated oxidized phospho-
lipids in both renal and myocardial tissue in a patient who died because of COVID-19 [137],
further indicating that lipid peroxidation and ferroptosis could be playing major roles in
the pathophysiology of COVID-19.

Our study is not exempt from limitations, including having performed the assays
only in vitro, and not having explored in detail the exact signaling pathway linking TNFα
and ferroptosis. In this sense, further dedicated experiments, including in vivo assays, are
warranted to corroborate our findings. We did not measure another marker of ferroptosis,
heme-oxygenase 1 (HO-1), which has been recently reported both as a suppressor and as
an inductor of ferroptosis in a series of conflicting data [138,139].
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4. Materials and Methods
4.1. Cell Culture and Reagents

All reagents were purchased from Merck (Darmstast, Germany), unless otherwise
stated. HUVECs were obtained from ThermoFisher Scientific (Waltham, MA, USA; Catalog
number: #C0035C). Cells were cultured in a standard humidified atmosphere (37 ◦C) con-
taining 5% CO2, in EGM-2 medium (Lonza, Basel, Switzerland; Catalog number: #CC4147),
as we described [12,13,47,140]. Experiments on HUVECs were performed at passages 3–7.
HUVECs were plated on glass-bottom culture dishes (MatTek Corporation, Mashland, MA,
USA; Catalog number: #P35GCOL-0-10-C). When 70–80% confluent, the cells were treated
with 10% human serum for 24 h under normal conditions (37 ◦C and 5% CO2).

The sera from fully de-identified COVID-19 patients were provided by the Montefiore–
Einstein COVID-19 biorepository; the protocol was approved by the Institutional Ethical
Committee (IRB #202011756). Normal human serum was purchased from ThermoFisher
Scientific. The absence of SARS-CoV-2 in the serum was confirmed by RT-qPCR. TNFα was
quantified via ELISA (ThermoFisher Scientific; Catalog number #KHC3011) following the
manufacturer’s protocol.

4.2. Assays Measuring Reactive Oxygen Species (ROS) and Lipid Oxidation

ROS production was quantified using 2′-7′-dichlorofluorescin diacetate (H2DCF-DA,
ThermoFisher Scientific; Catalog number #D399), as described previously [141,142]. In-
cubation for both fluorescent probes, as well as washing and imaging, were conducted
in a Krebs-Ringer solution (NaCl 115 mM, KCl 5 mM, NaHCO3 10 mM, MgCl2 2.5 mM,
CaCl2 2.5 mM, HEPES 20 mM) supplemented with 10 mM glucose. After 24 h of treatment
with 10% patients’ serum, HUVECs were incubated with 2.5 µg/mL Hoechst 33342, trihy-
drochloride, trihydrate (ThermoFisher Scientific; Catalog number #H21492) for 30 min, in
the dark, at room temperature. Then, HUVECs were washed and incubated with 10 µM
H2DCF-DA for another 15 min and then washed 3 more times and incubated without any
fluorescent probes for another 15 min, in the dark, at room temperature. Immediately after
this step, cells were imaged using a Nikon CSU-W1 Spinning Disk confocal microscope,
using a 40x objective (Nikon Corporation, Minato City, Tokyo, Japan). The non-fluorescent
dye H2DCF-DA is a chemically reduced form of fluorescein and is cell-permeable; once
intracellular esterases cleave off the diacetate (DA) moiety, H2DCF becomes sensitive to
oxidation by ROS: in its oxidized form, dichlorofluorescein (DCF) is highly fluorescent
and easily detectable. Thus, cells were excited with a laser at wavelengths 405 nm and
488 nm for Hoechst and DCF, respectively. Light emission was detected using 455/50 and
520/40 filters for Hoechst and DCF, respectively. The same settings (including laser inten-
sity, exposure time, and pinhole width) were used for imaging in all experimental groups.
In order to prevent DCF photodynamic reactions, fields of view search and focusing were
performed using a Hoechst signal. Quantification of DCF fluorescence was performed
using ImageJ software.

Mitochondrial ROS production was quantified by MitoSOX™ Red (ThermoFisher
Scientific, #M36008) as previously described and validated [43,140,142–144]. Briefly, after
24 h of treatment with 10% serum, HUVECs were incubated with 200 nM MitoTracker™
Green FM (MTG, ThermoFisher Scientific; Catalog number #M7514) in EGM-2 medium in
the dark for 1 h at 37 ◦C and 5% CO2. Then, the cells were washed with EGM-2 medium
and incubated with 5 µM MitoSOX™ Red in EGM-2 medium in the dark for 10 min at
37 ◦C and 5% CO2. After incubation, cells were washed with EGM-2 medium and imaged
at the Nikon CSU-W1 Spinning Disk confocal microscope using a 100× objective (Nikon
Corporation). Cells were excited with a laser at wavelengths 488 nm and 561 nm for MTG
and MitoSOX, respectively. Light emission was detected using 520/40 and 605/52 filters
for MTG and MitoSOX, respectively. The same settings (including laser intensity, exposure
time, and pinhole width) were used for imaging all experimental groups. In order to prevent
MitoSOX photodynamic reaction, fields of view search and focusing were performed using
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a MTG signal. MitoSOX fluorescence intensity was quantified using NIS-Elements software
(Nikon Corporation).

MDA and 4-HNE levels were measured by using commercially available kits (both
from Abcam, Cambridge, UK), following the manufacturer’s instructions [57]. We quanti-
fied lipid peroxidation using C11-BODIPY581/591 (ThermoFisher Scientific) as previously
described [59,145,146]. Briefly, HUVECs were incubated with 2 µM C11-BODIPY581/591

for 30 minutes (37 ◦C in the dark) and then fluorometrically measured (with an excitation
wavelength of 581 nm and an emission wavelength of 591 nm) using a microplate reader.

4.3. Immunoblotting and RT-qPCR

Immunoblotting assays were performed as previously described by our group [144,147];
the intensity of the bands was quantified using the open-source image processing package
FIJI (Fiji is Just ImageJ). The antibody for GPX4 was purchased from GeneTex (Irvine,
CA, USA; Catalog number: #GT1282); the antibody for SCL7A11 was purchased from
Cell Signaling (Danvers, MA, USA; Catalog number: #12691); the antibody for FTH1 was
purchased from ABclonal Technology (Woburn, MA, USA; Catalog number: #A19544);
the antibody for SAT1 was purchased from Cell Signaling (Catalog number: #61586);
the antibody for GAPDH was purchased from Novus Biologicals (Centennial, CO, USA;
Catalog number: #NB300-221). RT-qPCR was performed using a SYBR Green mix as
we previously described and validated [148–150] using GAPDH as an internal standard;
primer sequences are listed in Table 1.

4.4. Statistical Analysis

Statistical analyses were performed using GraphPad 9 (Dotmatics, Boston, MA, USA).
Statistical significance, set at p < 0.05, was tested using the two-way ANOVA followed
by Tukey–Kramer multiple comparison test or the non-parametric Mann–Whitney U test,
as appropriate.

5. Conclusions

Taken together, our results indicate that the serum from COVID-19 patients who
did not survive induces oxidative stress, lipid peroxidation, and ferroptosis in human
endothelial cells through a mechanism that depends on TNF-α.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12020326/s1, Figure S1: Successful knock-down of TNFR1 in
human endothelial cells. HUVECs were treated for 48 h with siRNA scramble or siRNA TNFR1 to
test TNFR1 silencing in dose-response assays, Table S1: Main characteristics of COVID-19 patients
from whom the serum was obtained.
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