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Abstract: Depression is the most common complication of childhood epilepsy, leading to a poor
prognosis for seizure control and poor quality of life. However, the molecular mechanisms under-
lying epileptic depression have not been completely elucidated. Increasing evidence suggests that
oxidative stress and neuroinflammation are major contributors to depression. The positive effects
of dietary supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on
depression have been previously reported. However, knowledge regarding the effects of EPA and
DHA in managing depressive symptoms in pediatric patients with epilepsy is limited. Therefore, this
study aims to investigate the effects of EPA and DHA on epileptic depression in a pentylenetetrazole
(PTZ)-treated young mouse model. Three-week-old mice were fed a DHA- or EPA-enriched diet for
21 days and treated with PTZ (35 mg/kg, i.p.) every other day for a total of 10 times. EPA was more
effective than DHA at alleviating PTZ-induced depressive symptoms. Pathological results revealed
that DHA and EPA significantly improved neuronal degeneration in the hippocampus. Analysis of
the mechanism revealed that DHA and EPA mitigated PTZ-induced myelin damage by increasing the
protein levels of CNPase, Olig2, and MBP. Furthermore, both DHA and EPA reduced neuroinflam-
mation by promoting microglial M2 polarization and suppressing the LCN2-NLRP3 inflammasome
pathway. Notably, EPA polarized microglia towards the M2 phenotype. In addition, DHA and EPA
decreased oxidative stress by inhibiting NOX2 and enhancing mitochondrial metabolism through
the increased expression of mitochondrial respiratory chain complex I-V proteins. These findings
suggest that DHA and EPA can be used as effective interventions to improve depression in children
with epilepsy, with EPA being a particularly favorable option.

Keywords: DHA; EPA; neuroinflammation; oxidative stress; epileptic depression; young mice

1. Introduction

Epilepsy, a neurological disorder prevalent in children, is characterized by recurrent
epileptic seizures. Meanwhile, comorbid conditions, such as cognitive, behavioral, and
psychiatric disorders also frequently occur with childhood epilepsy [1]. Depression is the
most frequent psychiatric comorbidity of epilepsy, affecting up to one-third of children with
epilepsy, but remains underrecognized and undertreated [2,3]. It is worth noting that there
exists a bidirectional relationship between childhood epilepsy and depression, whereby
depression increases the risk of epilepsy and vice versa [4,5]. Furthermore, depression
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can significantly impact quality of life and may even worsen the prognosis for seizure
management [2,6,7].

Mounting evidence suggests that neuroinflammation plays a critical role in depres-
sion [8] and contributes to the onset of epileptic seizures and epileptogenesis [9,10]. Re-
current epileptic seizures may lead to the development of chronic inflammation, which
further contributes to depression [11]. Microglia, the main innate immune cells in the
central nervous system, are rapidly activated in response to tissue repair and host defense
against infectious stimuli, and exhibit two major phenotypes: M1 (pro-inflammatory) and
M2 (anti-inflammatory) [12]. M1 polarization is characterized by the secretion of proinflam-
matory cytokines and an increased expression of iNOS. The M1 microglial phenotype has
been suggested as a cause or consequence of epilepsy [10,13,14] and is conducive to the
onset of depression [8]. Polarization of microglia into the M2 phenotype, characterized by
a higher expression of arginase-1 (Arg1), facilitates the release of various anti-inflammatory
factors to enhance neuronal protection [15]. Inhibition of microglial M1 polarization and/or
induction of M2 polarization has been proposed as an effective therapeutic strategy for
epilepsy [16] and depression [17,18]. However, the exact role and mechanism of microglial
polarization in children with epilepsy have not yet been clarified.

Oxidative stress is the primary etiology of inflammatory disruptions [19]. Reactive
oxygen species (ROS) and reactive nitrogen species (RNS) cause oxidative stress when
antioxidant defenses fail. Interestingly, the brain, an organ with high oxygen consumption,
is more susceptible to oxidative stress owing to its high metabolic rate and low antioxidant
levels [20,21]. Recent evidence has highlighted the role of oxidative stress in brain disorders,
such as Alzheimer’s disease [22], epileptogenesis [23], and depression [21,24]. Mitochondria
are the primary site of ROS production, and their role has gained increased recognition
in the progression of depression [25] and epileptogenesis. Additionally, NADPH oxidase
(NOX) functions as a ubiquitous intracellular source of superoxide radicals through the
enzymatic reduction of molecular oxygen and the subsequent oxidation of NADPH. The
central nervous system contains cells that express NOX2, such as microglia and neurons.
Moreover, NOX2 is upregulated in epilepsy [26] and depression [27]. NOX2-derived ROS
are involved in neuroinflammation [28]. However, mechanisms underlying oxidative stress
in childhood epilepsy remain unclear.

The primary treatment of epilepsy in children relies on AEDs. However, it should be
noted that some AEDs may have adverse side effects and potentially worsen or trigger
depression or anxiety [5]. There is growing interest in alternative and nutritional therapies
for children epilepsy and depression [29,30]. Fish oil is widely recognized for its neuropro-
tective properties due to its rich eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) contents, which promote neurodevelopment. Furthermore, an increasing body of ev-
idence has demonstrated its efficacy in treating epilepsy and alleviating depression [31,32].
Notably, there is a discrepancy between EPA and DHA in terms of their effectiveness in
improving depression [33] and epilepsy [32,34]. In addition, our previous study found that
DHA and EPA prevented seizure and depression-like symptoms by inhibiting neuroinflam-
mation via different modes-of-action in a PTZ- kindling model in adult mice [35]. However,
the effects of EPA and DHA on children with epileptic depression remain unclear. There-
fore, this study aimed to investigate the effects of EPA and DHA on epileptic depression in
young mice.

2. Materials and Methods
2.1. Subject Animals and Experimental Design

The administration of PTZ can elicit convulsions that resemble absence seizures in
humans, making it a valuable tool for establishing rodent models of epilepsy [36]. Forty
male ICR mice (3 weeks old) were assigned to four groups (n = 10 per group): control (Con),
PTZ kindling (PTZ), PTZ kindling + EPA (EPA), and PTZ kindling + DHA (DHA). Groups
that received either EPA or DHA were fed diets enriched with 1% ethyl ester [23]. The
compositions of the ingredients are provided in Supplemental Table S1.
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2.2. The PTZ-Kindled Epilepsy Model Mice Construction

Pentylenetetrazole, the most commonly used GABAA receptor antagonist to induce
epileptic seizures [37], was purchased from Sigma-Aldrich Chemical Co. Ltd. (Tokyo,
Japan). A single intraperitoneal injection of 35 mg/kg PTZ was administered to the mice,
followed by additional injections every other day, for a total of 11 doses. The Con group
received saline injections [35]. Behavioral changes induced by PTZ were observed and
recorded at 30 min post-administration. The number of seizures, seizure stage, and onset
latency were objectively evaluated using the Racine scoring system. Seizure scores were
recorded according to a previous study [38] with slight modifications, as follows: stage 1
(myoclonic jerk or straub tail), stage 2 (clonic seizure without loss of righting reflex), stage 3
(clonic seizures with loss of righting reflex), stage 4 (clonic tonic seizures), and stage 5
(death).

2.3. Behavioral Assays

Behavioral tests were conducted from 1:00 PM to 5:00 PM during the dark period of
the circadian cycle.

2.3.1. Tail Suspension Test (TST)

For the TST, the mice were suspended by their tails 50 cm above the ground and
monitored for 5 min. Immobility time was recorded during the final 4 min.

2.3.2. Forced Swimming Test (FST)

Individual mice were placed in transparent glass cylinders filled with water (40 cm
in height, 15 cm in diameter, and 20 cm in water depth) maintained at a temperature of
25 ◦C. The behavior of the mice was recorded for 5 min using ANY-MAZE software version
6.3 (Stoelting Co., Wood Dale, IL, USA). During this period, both immobility time and
immobility latency were measured.

2.3.3. Open Field Test (OFT)

Nine squares were divided into 45 × 45 × 30 cm rectangular chambers for the open-
field test. The mice were gently introduced into the center of the testing chamber for a
5-min recording period, and ANY-MAZE software version 6.3 (Stoelting Co., Wood Dale,
IL, USA) was used to analyze the number and duration of entries into the center.

2.4. Western Blot and ELISA Analysis

As in our previous study [22], we lysed the tissue in modified RIPA buffer to obtain the
required proteins. The primary antibodies of Nox2 (ab310337, 1:1000 dilution), NDUFB8
(ab192878, 1:5000 dilution), SDHB (ab175225, 1:50,000 dilution), UQCRC2 (ab203832, 1:2000
dilution), MTCO1 (ab203912, 1:1000 dilution), NLRP3 (ab263899, 1:1000 dilution), LCN2
(ab216462, 1:1000 dilution), Trem2 (ab305103, 1:1000 dilution), IL-1β (ab283818, 1:1000 dilu-
tion), IBA1 (ab178846, 1:1000 dilution), Olig2 (ab109186, 1:2000 dilution), NeuN (ab177487
1:1000 dilution) and INOS (ab178945, 1:1000 dilution) were purchased from Abcam (Cam-
bridge, MA, USA). The primary antibodies of MBP (bs-0380R, 1:1000 dilution), CNPase
(bs-1000R, 1:1000 dilution), and ASC (bs-41334R, 1:1000 dilution) were purchased from
Bioss (Bejing, China). The primary antibodies of Caspase-1 (A0964, 1:2000 dilution), Arg1
(A4923, 1:5000 dilution) and ATP5A1 (A11217, 1:1000 dilution) were purchased from AB-
clonal (Wuhan, China). The primary antibodies of β-actin (66009-1-Ig) were used at a
1:2000 dilution, and the secondary antibodies included HRP-conjugated Affinipure Goat
Anti-Mouse IgG (H + L) (Cat No. SA00001-1) and horseradish peroxidase-conjugated
AffiniPure goat anti-rabbit IgG (H + L) (Cat No. SA00001-2), all purchased from Proteintech
(Chicago, IL, USA) and used at a dilution of 1:5000. ECL Western blotting substrate was
used for the development of blots, and a UVP Auto Chemi Image system (Tanon 4600SF,
Shanghai, China) was employed to visualize luminescence.
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The level of MDA (Nanjing Jiancheng Bioengineering Institute, A003-1-2, Nanjing,
China) and GSH (Nanjing Jiancheng Bioengineering Institute, A006-2-1, Nanjing, China),
and the activity of SOD (Nanjing Jiancheng Bioengineering Institute, A001-1-1, Nanjing,
China) were analyzed using kits.

2.5. Nissl Staining

Nissl staining was performed using Nissl Staining Solution (Nissl Staining Solution
(Cresyl Violet), G3410, Solarbio, Beijing, China) according to the manufacturer’s instruc-
tions. The paraffin-embedded brains were sectioned using a microtome. Sections were
dewaxed, rehydrated, and immersed in a methylene blue staining solution for 10 min.
After immersion in Nissl differentiation solution for 3 s, the sections were rinsed with water
and subsequently dehydrated using pure alcohol. Sections were observed and recorded
using a bright-field microscope.

2.6. Fluoro-Jade B (FJB) Staining

Fluoro-Jade B is a fluorescein derivative with anionic properties that specifically binds
to denatured neurons, resulting in green fluorescence emission. Therefore, it can effectively
label denatured necrotic neurons within the neural tissue [39]. Paraffin-embedded brain
tissue sections were subsequently incubated in 0.06% potassium permanganate solution
for 10 min to effectively suppress endogenous background signals. Next, the sections were
immersed in a staining solution containing FJB (Sigma-Aldrich, Saint Louis, MO, USA) for
30 min. Subsequently, microphotographs were captured using a fluorescence microscope.

2.7. Neuronal Nuclei (NeuN) Staining

NeuN immunofluorescence staining was performed as described previously [40].
The mouse brain sections were subjected to NeuN staining (ab177487, 1:500), followed
by incubation with a goat anti-rabbit IgG secondary antibody conjugated with alkaline
phosphatase (ab6721, 1:500). Immunohistochemical staining was performed using the
Vectastain® ABC Kit (Vector Laboratories, Newark, CA, USA).

2.8. Immunofluorescence

Primary antibodies against IBA1 (ab178846, 1:500), and INOS (ab178945 1:500) were
used, followed by species-specific secondary antibodies conjugated to Alexa Fluor 488 and
594. Digital images of whole stained slides were obtained by scanning with MIRAX MIDI
digital whole slide scanners and analyzed using the Pannoramic Viewer software version
1.15.4 (Carl Zeiss MicroImaging, Jena, Germany) (3D Histech, Ltd., Ramsey, NJ, USA).

2.9. Statistical Analysis

Data are presented as means ± SEM. Multiple groups were compared using one-way
analysis of variance (ANOVA) and Student’s t-test, with statistical significance defined as
p < 0.05.

3. Results
3.1. Effects of EPA and DHA on PTZ-Induced Epileptic Seizure and Depressive-like Behaviors in
Young Model Mice

Compared to the PTZ-treated mice, dietary DHA and EPA comparably alleviated
seizure severity, reduced seizure numbers, and slowed seizure progression with prolonged
latency (Figure 1a, p < 0.05). TST- and FST-treated mice displayed more immobility time
than the Con group, indicating depressive and desperate emotions (p < 0.05). In contrast,
the administration of EPA or DHA significantly reduced the immobility duration in both
the TST and FST groups (Figure 1a–d, p < 0.05), with EPA showing a greater advantage. In
addition, the PTZ-treated mice exhibited only a slight decrease in the number of entries and
time spent in the central area compared to the Con group (Figure 1e,f). The administration
of EPA and DHA notably increased the number of entries and the time spent in the
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central area, in which EPA was superior in terms of the number of entries (p < 0.05). A
representative track of the four groups during the probe trial is shown in Figure 1g. These
findings suggested that both EPA and DHA exerted an antidepressant effect in PTZ-treated
young mice; specifically, EPA showed a better therapeutic effect.
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Figure 1. Effects of EPA and DHA on PTZ-induced epileptic seizure and depressive-like behaviors
in young model mice. (a) The seizure scores in mice after PTZ treatment every other day; (b) the
immobility time and (c) the immobility latency in the tail suspension test; (d) the immobility time
and the (e) immobility latency in forced swimming test; (f) the number of entries in central area (the
blue square) and (g) the time in central area in open field test; the green dots mean the start point and
red dots mean the end point. (h) representative track plot data in probe trial in open field test. The
data are presented as mean + SEM (n = 10); p < 0.05 was considered to be statistically significant. For
quantification, a histogram was generated, where the group with the highest value is designated as a,
followed by b–c. Groups with identical marker letters indicate no statistically significant differences,
while those with different letters suggest significant differences between each group. Differences
among groups were evaluated using one-way ANOVA, with significant differences indicated by
different letters based on Student’s t-test.

3.2. Effects of EPA and DHA on Hippocampal Neuron Injury in PTZ-Treated Young Mice

Hippocampal neuronal injury was assessed using Nissl staining, which revealed a
significant loss of neurons in the CA3 region after PTZ treatment (Figure 2a, p < 0.05).
In contract to the Con group, the PTZ group exhibited evidence of extensive neuronal
degeneration (Figure 2b). NeuN was analyzed to identify neuronal damage. Western
blot revealed a significant decrease in the expression of NeuN protein in the PTZ group
compared to the Con group (Figure 2d, p < 0.05). These findings were consistent with
the results of the immunohistochemistry (Figure 2c). However, these forms of neuronal
damage could be effectively alleviated by administration of EPA and DHA.
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Figure 2. Effects of EPA and DHA on hippocampal neuron injury in PTZ-treated young mice.
(a) Representative Nissl staining images of the hippocampus; (b) Fluoro-Jade B (FJB) staining;
(c) representative images of NeuN immunohistochemistry staining (n = 3), Scale bar, 50 µm;
(d) representative Western blots and densitometry of NeuN. For quantification, a histogram was
generated, where the group with the highest value is designated as a, followed by b–c. Groups with
identical marker letters indicate no statistically significant differences, while those with different
letters suggest significant differences between each group. The data are presented as mean + SEM
(n = 3), and differences among groups were evaluated using one-way ANOVA, with significant
differences indicated by different letters based on Student’s t-test.

3.3. Effects of EPA and DHA on Hippocampal Myelin Damage in PTZ-Treated Young Mice

To further elucidate PTZ-induced impairments in myelin, we analyzed the alterations
in oligodendrocyte-related proteins. Western blotting was used to determine the levels of
Olig2, CNPase, and MBP, a crucial constituent of myelin. The analysis revealed a significant
decrease in Olig2, CNPase, and MBP in the PTZ group compared to that in the Con group
(Figure 3a–d). Treatment with DHA and EPA significantly elevated these proteins, and
DHA was superior in improving CNPase activity (Figure 3c, p < 0.05). Additionally, the
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immunohistochemistry results for MBP were consistent with those of the Western blotting
(Figure 3e, p < 0.05).
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Figure 3. Effects of EPA and DHA on hippocampal myelin damage in PTZ-treated young mice.
(a) Representative Western blots and (b–d) densitometry of Olig2, CNPase, and MBP; (e) immunohis-
tochemical staining of MBP (n = 3), Scale bar, 50 µm. Protein levels are normalized to β-actin, which
served as loading control and reproduced with Con group. Values are indicated as the mean + SEM
(n = 7); p < 0.05 was considered to indicate statistically significant. For quantification, a histogram
was generated, where the group with the highest value is designated as a, followed by b–c. Groups
with identical marker letters indicate no statistically significant differences, while those with different
letters suggest significant differences between each group. Differences among groups were evaluated
using one-way ANOVA, with significant differences indicated by different letters based on student’s
t-test.

3.4. Effects of EPA and DHA on Hippocampal Microglia Polarization in PTZ-Treated Young Mice

To investigate the impact of DHA and EPA on microglial activation and polarization,
we performed Western blotting to detect markers associated with microglial activation
and polarization. Compared to the Con group, the PTZ group demonstrated a significant
upregulation of IBA1 (activation) and INOS (M1 polarization) while exhibiting a downregu-
lation of Arg1 (M2 polarization) (Figure 4a–d, p < 0.05). We also analyzed the alterations in
TREM2, which is known to regulate microglial M1/M2 polarization. Similarly, a significant
decrease in TREM2 expression was observed in the PTZ group compared to that in the Con
group (Figure 4e, p < 0.05). The administration of EPA and DHA reversed these effects.
Interestingly, EPA showed a more pronounced enhancement of Arg1 and TREM2 compared
to DHA (Figure 4d,e, p < 0.05).
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Figure 4. Effects of EPA and DHA on hippocampal microglia polarization in PTZ-treated young mice.
(a) Representative Western blots and (b–e) densitometry of IBA1, INOS, Arg1, and TREM2. Protein
levels are normalized to β-actin, which served as loading control and reproduced with Con group.
Values are indicated as the mean + SEM (n = 7). (f) Immunofluorescence staining for IBA1 in the
hippocampus; (g) immunofluorescence staining for INOS in the hippocampus, scale bars, 200 µm,
(n = 3); (h) fluorescence intensity of IBA1 and (i) INOS. p < 0.05 was considered to indicate statistical
significance. For quantification, a histogram was generated, where the group with the highest value
is designated as a, followed by b–d. Groups with identical marker letters indicate no statistically
significant differences, while those with different letters suggest significant differences between
each group. Differences among groups were evaluated using one-way ANOVA, with significant
differences indicated by different letters based on Student’s t-test.
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3.5. Effects of EPA and DHA on NLRP3 Inflammasome Activation in PTZ-Treated Young Mice

To investigate the involvement of the NLRP3 inflammasome in PTZ-induced depres-
sion in young mice, and to confirm the impact of DHA and EPA on its activation, the
inflammasome NLRP3 was examined by Western blotting. Compared to the Con group,
the PTZ group exhibited a significant increase in the protein expression levels of NLRP3,
ASC, Caspase-1/pro-Caspase-1, and IL-1β (Figure 5, p < 0.05), indicating the activation of
NLRP3 inflammasome. However, NLRP3 inflammasome activation is inhibited by dietary
supplementation with EPA or DHA. In contrast to DHA, EPA exhibited decreased ASC
levels and a lower IL-1β/pro-IL-1β ratio, while NLRP3 remained unchanged. Increased
LCN2 levels in the brain tissue can induce neuroinflammation via NLRP3 inflammasome
activation [41]. Our results revealed that the protein expression levels of LCN2 were signif-
icantly elevated in the PTZ group (Figure 5b). However, the administration of EPA and
DHA decreased the protein expression of LCN2.
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Figure 5. Effects of EPA and DHA on NLRP3 inflammasome activation in PTZ-treated young mice.
(a) Representative Western blots and (b–f) densitometry of LCN2, NLRP3, ASC, Caspase1/pro-
Caspase1, and IL-1β. Protein levels are normalized to β-actin, which served as loading control and
reproduced with Con group. Values are indicated as the mean + SEM (n = 7). p < 0.05 was considered
to indicate statistical significance. For quantification, a histogram was generated, where the group
with the highest value is designated as a, followed by b–d. Groups with identical marker letters
indicate no statistically significant differences, while those with different letters suggest significant
differences between each group. Differences among groups were evaluated using one-way ANOVA,
with significant differences indicated by different letters based on Student’s t-test.

3.6. Effects of EPA and DHA on NOX2-Mitochondrial Oxidative Stress in PTZ-Treated Young Mice

NLRP3 inflammasome activation has been demonstrated to promote the activation of
oxidative stress [19]. Therefore, we studied the effects of DHA and EPA on oxidative stress
in PTZ-treated young mice. In comparison to the Con group, PTZ treatment significantly
elevated the levels of MDA and reduced GSH levels and SOD activity in the hippocampus of
mice (Figure 6a–c, p < 0.05), indicating that PTZ induced oxidative stress. Oxidative stress is
characterized by the excessive production of ROS and damage to the mitochondrial electron
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transport chain (ETC). Based on the premise that mitochondrial ETC and NOX2 are the
primary sources of ROS [42,43], the protein levels of key enzymes in the mitochondrial ETC
(including Complex I (NDUFB8), Complex II (SDHB), Complex III (UQCRC2), Complex
IV (MTCO1), and Complex V (ATP5A1)) and NOX2 were analyzed. In the PTZ group,
the expression of NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1 was significantly
downregulated, whereas NOX2 expression was upregulated compared to that in the Con
group (Figure 6d–j, p < 0.05). In contrast, the administration of EPA or DHA significantly
reversed these alterations (p < 0.05). Notably, the EPA prioritized UQCRC2, whereas DHA
demonstrated an advantage over MTCO1.
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Figure 6. Effects of EPA and DHA on Nox2-mitochondrial mediated oxidative stress in PTZ-treated
young mice. (a) The level of MDA; (b) GSH; (c) the activity of SOD; (d) representative Western
blots, and (e–j) densitometry of NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1. Protein levels are
normalized to β-actin, which served as loading control and reproduced with Con group. Values are
indicated as the mean + SEM (n = 7), and p < 0.05 was considered to indicate statistical significance.
For quantification, a histogram is generated where the group with the highest value is designated as a,
followed by b–c. Groups with identical marker letters indicate no statistically significant differences,
while those with different letters suggest significant differences between each group. Differences
among groups were evaluated using one-way ANOVA, with significant differences indicated by
different letters based on Student’s t-test.
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4. Discussion

Depression is the most common comorbid condition in childhood epilepsy, leading
to a poor quality of life and a worse prognosis for seizure control. However, no effective
therapy is available for this disease, and the mechanism by which it develops remains
unclear. In this study, we investigated the effects of EPA and DHA on epileptic depression
in young PTZ-treated mice. Administration of either EPA or DHA effectively alleviated
PTZ-induced epileptic seizures and depressive symptoms in a young mouse model, with
EPA demonstrating greater efficacy in improving depression. Further analyses revealed
that supplementation with EPA and DHA effectively mitigated neuronal degeneration,
myelin damage, oxidative stress, and neuroinflammation.

Studies have established that myelin damage is common in both epilepsy and de-
pression, suggesting that demyelination may serve as a bridge between epilepsy and
depression [44–46]. In our recent study, we observed a significant decrease in the protein
expression levels of MBP, CNPase, and Olig2 in the hippocampus of young mice treated
with PTZ. Dietary intake of EPA or DHA significantly elevated the expression of these
proteins, indicating that both EPA and DHA possess the ability to alleviate PTZ-induced
myelin damage by facilitating the differentiation and maturation of oligodendrocytes in
the hippocampus of young mice. Therefore, we hypothesized that the positive effects of
EPA and DHA on myelin could serve as a significant cellular foundation for the alleviation
of epileptic depression.

Microglia, the principal innate immune cells of the central nervous system, play a
crucial role in maintaining normal brain function. Microglia are rapidly activated and polar-
ized to the M1/M2 phenotype in response to their microenvironment [12]. Accumulating
evidence suggests that an imbalanced polarization of M1/M2 microglia is associated with
various neurological disorders, including depression and epilepsy [10,47]. Inhibiting M1
and/or inducing the M2 phenotype have been proposed as effective therapeutic strategies
for epilepsy [48] and depression [49]. The triggering receptor expressed on myeloid cell-2
(TREM2) is highly expressed in microglia and plays a crucial role in regulating microglial
polarization and neuroinflammation [50]. Suppression of TREM2 triggers microglial activa-
tion and a proinflammatory phenotype, resulting in depression-like behavior [51].

In the PTZ-treated model, we observed a significant decrease in iNOS with concurrent
increases in TREM2 and Arg1 following dietary supplementation with DHA and EPA.
These findings suggested that the administration of either EPA or DHA effectively inhibited
microglial overactivation and promoted microglial M2 polarization in PTZ-treated young
mice. Notably, the EPA group exhibited higher protein levels of TREM2 and Arg1 than
the DHA group, suggesting that EPA promotes TREM2-mediated microglial M2 polariza-
tion. This may have partly contributed to the superior effectiveness of EPA in alleviating
depression in PTZ-treated mice. The NLRP3 inflammasome has been recognized as a
significant contributor to neuroinflammation by activating caspase-1, which leads to the
production of inflammatory factors such as IL-1β [52]. Researchers have previously shown
a critical role of the NLRP3 inflammasome in the pathogenesis of depression [53,54], and
there is an association between the inhibition of NLRP3 inflammasome assembly and the
amelioration of depression-like behaviors in animal models [25,55]. LCN2, a member
of the highly heterogeneous lipocalin family of secretory proteins, is released by injured
neurons that activate microglia and amplify their M1 polarization [56,57]. LCN2 activates
the NLRP3 inflammasome by directly upregulating the NLRP3 inflammasome complex
in LPS-treated macrophages [58]. LCN2 deficiency diminishes NLRP3 inflammasome
activation and IL-1β production in spinal-cord-injured mice with SCI [59]. Our current
findings consistently demonstrate increased expression of LCN2, NLRP3 inflammasome
complex proteins, and IL-1β in PTZ-treated young mice. These results suggest that the
LCN2-NLRP3 inflammasome pathway is involved in PTZ-induced depression in young
mice. However, supplementation with EPA and DHA comparably reduced the levels of
LCN2 protein and NLRP3 inflammasome complex proteins, resulting in decreased IL-1β
production. Interestingly, unchanged NLRP3 levels and lower ASC levels were observed in
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the EPA group. This suggests that the inhibition of the NLRP3 inflammasome by DHA and
EPA relies on LCN2 but in a different way.

A growing body of evidence indicates that inflammation induces oxidative stress, and
that oxidative stress promotes inflammation [43]. Oxidative stress is believed to be the
leading mechanism underlying depression and epilepsy [60]. Consistently with previous
studies [35,61], our data revealed an increase in MDA, a marker of lipid peroxidation, and
decreases in GSH and SOD, indicating the occurrence of oxidative stress in the hippocam-
pus of PTZ-treated young mice. Numerous studies have demonstrated a strong association
between mitochondrial dysfunction and the development of neurological disorders, such
as major depressive disorder and epilepsy [42,62,63]. NOX, an enzyme complex, facilitates
the generation of cellular ROS by transferring an electron from NADPH to oxygen [64].
Hu et al. [43] reported that NOX2 induced mitochondrial ROS production. Moreover,
inhibition of NOX2 can alleviate oxidative stress and anxiety- and depression-like be-
haviors in PTZ-treated mice [65]. Our findings revealed that the administration of EPA
and DHA reduced NOX2 and upregulated proteins related to mitochondrial metabolism
(complexes I-V). Interestingly, the EPA group showed higher levels of complex III core
subunit (UQCRC2), whereas the DHA group exhibited higher levels of complex IV core
subunit (MTCO1) protein. Therefore, we conclude that EPA and DHA exert beneficial
effects on PTZ-induced depression by inhibiting NOX2-mitochondrial oxidative stress,
albeit in slightly different ways.

DHA is the most abundantω-3 fatty acid in the brain and plays a crucial role in brain
development. In contrast, as a DHA precursor, EPA accumulates to a lesser extent in the
brain. Our previous study found that administration of EPA or DHA comparably increased
brain DHA levels, whereas only mice treated with EPA exhibited a significant increase in
cerebral EPA. Several clinical studies have indicated that EPA administration significantly
improves depression and has a greater antidepressant effect than DHA in patients with
depressive disorders [48–50]. A previous meta-analysis reported that EPA (purity > 60%)
has significantly greater efficacy than DHA in treating depression [66]. Our findings
provide further evidence, supporting the superior efficacy of EPA over DHA in improving
PTZ-induced depression in young mice. Furthermore, purified EPA was more effective
than DHA in reversing patients’ proinflammatory profile. In line with this, our results
demonstrated that EPA exhibited a stronger preference in reducing the M1/M2 polarization
ratio in activated microglia. The brain mainly contains arachidonic acid (AA), which is
an ω-6 fatty acid. It is abundant in the membrane phospholipids of inflammatory cells
and produces proinflammatory oxylipins [67]. The accumulation of AA during epileptic
seizures can damage cell membranes and mitochondria through lipid peroxidation [68,69].
In the present study, supplementation with EPA and DHA resulted in a reduction in
the brain—AA ratio, leading to a decrease in AA oxylipins [67,70] and an increase in
DHA/EPA-derived oxylipins possessing neuroinflammation-inhibitory properties [66,71].
In fact, the active metabolites of EPA and DHA (i.e., oxylipins) differ, which may contribute
to their differential efficiency and anti-inflammatory mechanisms. Oxylipins from EPA and
DHA have unique anti-inflammatory and pro-resolution properties that may be useful for
developing novel depression management strategies.

5. Conclusions

In conclusion, our findings suggest that dietary DHA and EPA may protect against
epileptic depression by improving myelin damage, inhibiting neuroinflammation by reduc-
ing mitochondrial metabolic impairment, and promoting microglial M2 polarization in a
young PTZ-treated mouse model. Notably, EPA demonstrated superior efficacy compared
to DHA. These findings suggest that dietary interventions involving EPA or DHA may be
effective, with EPA being the preferred choice.
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