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Abstract: Cancer is one of the most serious public health issues worldwide, demanding ongoing
efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological
applications of phytochemicals, particularly polyphenols, resveratrol—a naturally occurring polyphe-
nolic stilbene derivative—has emerged as a candidate of interest. This review analyzes the pleiotropic
anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation,
inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor
microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer
development, are also discussed. Future research directions are identified, including the elucidation
of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention
and therapy.
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1. Introduction

Cancer is characterized by the uncontrolled growth and spread of abnormal cells
within the body [1]. Affecting people of all ages and backgrounds, it has a profound impact
on society [2]. According to the World Health Organization, one in six deaths is caused
by cancer, making it the second leading cause of death around the world [3]. Recent ad-
vancements in biomedical research have highlighted the role of phytochemicals as potential
therapeutic anti-cancer agents [4–6]. Bioactive substances with diverse chemical structures
and biological actions include phenols, flavonoids, quinones, coumarins, phenolic acids,
tannins, terpenes, and alkaloids. Polyphenols, a subclass of phenolic chemicals, have a wide
range of configurations, from monomeric forms with a single benzene ring to polymers
with several aromatic rings [7,8].

Resveratrol, a polyphenolic stilbene derivative, which occurs naturally in grapes, red
wine, and other plant sources, has gained significant interest due to its anti-neoplastic prop-
erties [9]. These properties involve a variety of cellular and molecular mechanisms, making
resveratrol a potentially valuable candidate for both prevention and treatment of breast,
prostate, lung, pancreatic, liver, colorectal, and other cancers. In addition, resveratrol exerts
antioxidant, anti-inflammatory, and neuroprotective activity [8,10]. The anti-carcinogenic
properties of resveratrol are facilitated by its diverse interactions with cellular signaling
pathways implicated in several biological processes, such as apoptosis, control of the cell
cycle, inflammation, angiogenesis, and metastasis [9]. Furthermore, it has been observed
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that resveratrol could restrict the expression of oncogenes, activate genes limiting tumor
growth, and regulate the activity of transcription factors. Recent research has provided
increasing evidence on the capacity of resveratrol to specifically target cancer stem cells,
which frequently play a role in both resistance to traditional treatments and the recurrence
of diseases [11]. Moreover, resveratrol can influence the tumor microenvironment, a cru-
cial, yet sometimes disregarded element in the advancement of cancer and the response
to treatment [12]. Thus, resveratrol shows promise in sensitizing cancer cells to estab-
lished chemotherapeutic agents, offering potential synergistic effects, which may improve
treatment efficacy and reduce side effects [9].

The anti-cancer properties of resveratrol are largely attributed to its impact on
mitochondria—the organelles, which are commonly referred to as the “powerhouses”
of the cell due to their crucial involvement in energy generation, cellular signaling, and
programmed cell death, known as apoptosis [13]. These functions are intricately associated
with the genesis and progression of cancer [14–16]. Resveratrol has a wide variety of effects
on mitochondria, which presents an interesting opportunity for research on its potential
therapeutic applications in the field of oncology [17]. The interactions, which include resver-
atrol and the activity of mitochondria offer a comprehensive strategy for the suppression
of cancer, which can be used independently or in combination with other approaches [18].
Identifying specific molecular targets and elucidating the mechanisms of action of resvera-
trol are essential areas of ongoing research. These insights could facilitate the clinical use of
resveratrol for chemoprevention, oncological therapies, and neuroprotection.

2. Chemical Properties and Sources of Resveratrol

Resveratrol belongs to a group of compounds called polyphenols. It has two phenolic
rings connected by a styrene double bond. It is also known as 3,4′,5-trihydroxystilbene;
hence, being a hydroxylated derivative of stilbene, it is attributed to the class of polyphenols
known as stilbenes. Such chemical structure enables the formation of two isoforms, trans
and cis isomers. The trans isomer is more stable and more common than cis isomer [19]. Poor
resveratrol solubility in water (<0.05 mg/mL) affects its absorption and bioavailability [20].

In 1939, Takaoka successfully isolated resveratrol from the white hellebore plant
(Veratrum grandiflorum O. Loes). Resveratrol is present in significant quantities in the
dried roots of the plant Polygonum cuspidatum [21], as well as in grape berry skins and
seeds, and it is particularly plentiful in red wine [22]. The concentration of resveratrol
in grapes ranges from 0.16 to 3.54 µg/g [23]. Previous research has established that
red wine has a much greater concentration of polyphenolic chemicals in comparison
to white wine [23]. The concentration of resveratrol in different varieties of red wine
exhibits a range of 0.1–15 mg/L [22]. Conversely, white wine demonstrates a concentration
range of 0.1–2.1 mg/L [23]. Resveratrol can be found in a diverse range of plant species,
including but not limited to pines, legumes, rhubarb, blueberries, raspberries, mulberries,
and pistachios [22].

Resveratrol serves as an antioxidant in plants, protecting against photodamage. Fur-
thermore, resveratrol is recognized as a phytoalexin. Plants synthesize such chemicals to
protect them from stress induced by fungi, bacteria, or UV radiation [22]. Trans resveratrol
is synthesized in Vitis vinifera grapes as a defense mechanism against the proliferation of
fungal diseases, including Botrytis cinerea [24].

Food products often consist of a combination of the cis and trans isoforms of resver-
atrol, with the glycosylated form being the predominant variant. The prevalence of the
trans isoform is higher in plant species [25]. Glycosylated resveratrol has enhanced sta-
bility and solubility; furthermore, glycosylation serves as a protective mechanism against
oxidation [26,27]. In mammals, resveratrol undergoes rapid metabolism in the colon and
liver [28]. Once in the plasma, it forms complexes with lipoproteins and albumin, thereby
facilitating its cellular uptake [20].
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3. Safety, Metabolism, and Pharmacokinetics of Resveratrol

Even at high concentrations (e.g., 1000–1500 mg/day), resveratrol is well tolerated by
mammals [29]. As a dietary polyphenol, 100–1000 mg/day of resveratrol has been reported
to be safe [19,30,31], confirmed in animal models in vivo [32] and clinical studies [33] as
well. Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34],
in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate
gastrointestinal symptoms [35] and diarrhea at twice-daily doses of 2 g [36]. It is important
to note that resveratrol, which has been micronized, is more tolerable [37].

At least 70% of orally or intravenously administered 14C-labeled resveratrol is ab-
sorbed by humans [38]. Phase II metabolic enzymes (UDP-glucuronosyltransferases and sul-
fotransferases) are responsible for the metabolism in liver and intestinal microsomes. This
pathway produces the well-known conjugates of resveratrol glucuronides and sulfates [31].
At low concentrations of resveratrol, glucuronides were the predominant metabolites, but
at higher concentrations, there were more sulphates [39,40]. The metabolites dihydroresver-
atrol, 3,4′- dihydroxy-trans-stilbene, and lunularin are produced by human microbiota. In
the circulation, low density lipoprotein and albumin transport resveratrol and its metabo-
lites. Resveratrol enters cells through passive diffusion and can form complexes with
integrin [41]. Studies implicated that complexation of resveratrol with serum proteins, fatty
acids, lipoproteins, or integrins could reduce resveratrol accessibility to the cells [41]. After
an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol
(40 nM) and total resveratrol (native resveratrol + resveratrol metabolites) (about 2 µM) in
plasma suggested significantly greater bioavailability of resveratrol metabolites than native
resveratrol [28,38]. The total plasma concentration of resveratrol did not exceed 10 µM
following high oral doses of 2–5 g [36,37,42]. The bioavailability of micronized resveratrol
(5 g/day) administered to colorectal cancer patients for 10–21 days was significantly greater
than that of non-micronized resveratrol. The maximum serum concentration was threefold
greater, at 8.51 µM and 2.40 µM, respectively, when using micronized resveratrol and
non-micronized resveratrol [37,42].

Resveratrol is excreted in urine in its glucuronidated and sulfated forms. Interestingly,
age and gender are known to influence resveratrol metabolism [43]. Several in vitro investi-
gations demonstrated that the bioavailability of resveratrol can be increased by combining
it with piperine or quercetin [19].

4. Pleiotropic Effects of Resveratrol

Various research studies investigated the pleiotropic properties of resveratrol. Resvera-
trol has been found to demonstrate a variety of positive effects by influencing many molec-
ular targets, including transcription factors, hormone receptors, caspases, cyclooxygenases,
cyclins, sirtuins, interleukins, and others [23,44,45] (Figure 1). Resveratrol exerts anti-cancer
activity through various molecular mechanisms, including the PI3K/Akt, STAT3/5, MAPK,
AMPK/mTOR, SIRT1/NF-κB, and PGC-1α signaling pathways [46–48].

Numerous studies have provided evidence of the cardioprotective properties of resver-
atrol [49], its ability to inhibit platelet aggregation [50], its antioxidant effects [51], its
anti-inflammatory properties [52], its capacity to lower blood glucose levels [53], its hep-
atoprotective effects [54], its neuroprotective properties [55], its potential in anti-aging
interventions [54], and its anti-cancer activities [9,56]. A diet abundant in polyphenols
has been found to be linked to a reduced risk of cardiovascular disease due to multiple
factors. Resveratrol possesses the ability to impede platelet aggregation and promote
vasodilation through the augmentation of nitrogen oxide generation [48,57]. Furthermore,
it has been observed that resveratrol has the ability to decrease the oxidation of low density
lipoproteins [58] and improve endothelial function [48].
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Figure 1. Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, 
MMPs—matrix metalloproteinases, TNF-a—tumor necrosis factor alpha, IL—interleukins, NF-κB—
nuclear factor kappa-light-chain-enhancer of activated B cells, Nrf2—nuclear factor erythroid 2–re-
lated factor 2, Bcl-2—B-cell lymphoma protein 2, Bcl-XL—Bcl-2 homologous splice variants, Bax—
Bcl-2-associated X protein, Bak—Bcl-2 homologous antagonist killer 1, AMPK—AMP—activated 
protein kinase, MAPK—mitogen activated protein kinase, PI3K—phosphatidylinositide 3-kinases, 
Akt—protein kinase B. 

Resveratrol exhibited protective effects against some neurodegenerative disorders, 
including Alzheimer’s disease [59], Parkinson’s disease [60], Huntington’s disease, and 
amyotrophic lateral sclerosis [61]. One of the neuroprotective mechanisms attributed to 
resveratrol involves the activation of sirtuins, which are histone deacetylases. This activa-
tion subsequently leads to the reduction in nuclear transcription factor NF-κB signaling 
[62]. This factor governs the regulation of many genes, which have also been associated 
with processes such as inflammation, cytoprotection, and carcinogenesis. Therefore, the 
anti-inflammatory actions of resveratrol involve many routes, which result in decreased 
NF-κB activation. In addition, it has been observed that resveratrol could impede the ac-
tivity of cyclooxygenases—enzymes, which play a crucial role in the synthesis of pro-in-
flammatory mediators [63]. Furthermore, resveratrol could decrease the activity of micro-
somal prostaglandin E synthase-1—an enzyme, which is important in the creation of the 
pro-inflammatory prostaglandin PGE2 [64]. 

It is widely recognized that resveratrol has antioxidant properties at concentrations 
ranging from 5 to 10 µM. This is attributed to its ability to scavenge free radicals and en-
hance the activity of antioxidant enzymes. Moreover, the comparison of the anticarcino-
genic characteristics of catechin, quercetin, gallic acid, and trans resveratrol demonstrated 
that resveratrol exhibited the greatest antioxidant activity among the aforementioned pol-
yphenols after being administered twice a week for a duration of 18 weeks in the animal 
model [65]. Nevertheless, it has been observed that resveratrol exhibits pro-oxidant prop-
erties when present in doses ranging from 10 to 40 µM [23]. High concentrations of 
resveratrol can trigger apoptosis, suggesting its potential application in the field of cancer 
prevention [23,66]. 
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1, MMPs—matrix metalloproteinases, TNF-a—tumor necrosis factor alpha, IL—interleukins, NF-
κB—nuclear factor kappa-light-chain-enhancer of activated B cells, Nrf2—nuclear factor erythroid
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Bcl-2-associated X protein, Bak—Bcl-2 homologous antagonist killer 1, AMPK—AMP—activated
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Resveratrol exhibited protective effects against some neurodegenerative disorders,
including Alzheimer’s disease [59], Parkinson’s disease [60], Huntington’s disease, and
amyotrophic lateral sclerosis [61]. One of the neuroprotective mechanisms attributed
to resveratrol involves the activation of sirtuins, which are histone deacetylases. This
activation subsequently leads to the reduction in nuclear transcription factor NF-κB sig-
naling [62]. This factor governs the regulation of many genes, which have also been
associated with processes such as inflammation, cytoprotection, and carcinogenesis. There-
fore, the anti-inflammatory actions of resveratrol involve many routes, which result in
decreased NF-κB activation. In addition, it has been observed that resveratrol could impede
the activity of cyclooxygenases—enzymes, which play a crucial role in the synthesis of
pro-inflammatory mediators [63]. Furthermore, resveratrol could decrease the activity of
microsomal prostaglandin E synthase-1—an enzyme, which is important in the creation of
the pro-inflammatory prostaglandin PGE2 [64].

It is widely recognized that resveratrol has antioxidant properties at concentrations
ranging from 5 to 10 µM. This is attributed to its ability to scavenge free radicals and
enhance the activity of antioxidant enzymes. Moreover, the comparison of the anticarcino-
genic characteristics of catechin, quercetin, gallic acid, and trans resveratrol demonstrated
that resveratrol exhibited the greatest antioxidant activity among the aforementioned
polyphenols after being administered twice a week for a duration of 18 weeks in the ani-
mal model [65]. Nevertheless, it has been observed that resveratrol exhibits pro-oxidant
properties when present in doses ranging from 10 to 40 µM [23]. High concentrations of
resveratrol can trigger apoptosis, suggesting its potential application in the field of cancer
prevention [23,66].
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5. Mechanisms of Resveratrol in Cancer Prevention

The ability of resveratrol to specifically alter numerous important cellular pathways
implicated in tumor progression is one of the reasons it has gained so much attention
as an anti-cancer agent with multiple applications [67–71]. A vast number of studies
revealed the chemopreventive effect of resveratrol in various experimentally induced
tumor models, such as skin, lung, gastric, colon, liver, pancreas, prostate, bladder, breast,
ovarian, esophagus, thyroid, etc. [67–71]. Resveratrol exposure induced differentiation in
canine oral mucosal melanoma cells, enhancing their sensitivity to cisplatin and increasing
the mRNA expression of melanoma differentiation markers, such as microphthalmia-
associated transcription factor (MITF) [72]. This differentiation effect was attributed to
suppression of JNK signaling by resveratrol, as confirmed by inhibitor studies and decrease
in JNK activity [72]. In estrogen receptor α-positive breast cancer cells, 17β-estradiol
elevated neuroglobin levels, promoting cell survival [73]. Resveratrol could inhibit this
pathway, but its rapid metabolism compromised efficacy; therefore, conjugating resveratrol
with gold nanoparticles could enhance its bioactivity, offering potential in targeted breast
cancer therapeutics [73]. Resveratrol sensitized colorectal cancer cells to 5-fluorouracil
via β1-integrin receptors, modulating the tumor microenvironment and targeting the β1-
integrin/HIF-1α signaling axis. This interaction could be important in the strategies to
overcome 5-fluorouracil resistance in advanced colorectal cancer treatments [74].

Resveratrol can influence a wide range of processes in tumor cells, including cell
growth, apoptosis, stimulate transcription, hormone signaling, and inhibit tumor cell
proliferation, inflammation, redox signaling, and angiogenesis [67–71] (Figure 2).
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Resveratrol activates programmed cell death pathways in tumor cells. These effects
are reviewed further in the subchapter “Mitochondria-Related Anti-Cancer Effects of
Resveratrol”. Multiple molecular targets and signaling pathways are affected by resveratrol.
It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75]
and may affect tumor growth via other mechanisms as well. Many types of human cancer
are associated with the changes in Akt signaling pathways [76]. Nuclear transcription factor
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NF-κB is known to be upregulated in many cancer cells, leading to tumor cell survival,
proliferation, and metastasis formation [77,78]. The effects of resveratrol are linked to the
suppression of NF-κB phosphorylation through SIRT1 signaling pathway [79,80].

Recent studies revealed that resveratrol induced autophagy and apoptosis by increas-
ing the mRNA expression and activation of NGFR-AMPK-mTOR pathway in non-small-cell
lung cancer A549 cells [75]. Protective autophagy was enhanced at resveratrol concentra-
tions below 55 µM, while higher concentrations (above 55 µM) caused lethal autophagy [75].
It has been demonstrated that the proliferation of osteosarcoma cells in vitro and in vivo
was reduced by resveratrol due to JAK/STAT3 pathway inhibition [11]. Phosphoryla-
tion of oncostatin M, JAK2, and STAT3 in MG-63 and MNNG/HOS cells decreased after
resveratrol treatment for 48 h. Moreover, this study revealed that resveratrol abolished the
self-renewal capacity of osteosarcoma cells [11].

Wnt signaling, a pathway activated in over 85% of colon cancers, was found to be
suppressed in vitro and in vivo by resveratrol [81]. Resveratrol was shown to exert an
inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and
survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion
of cancer cells [82]. Resveratrol inhibited breast cancer stem-like cells in vitro and in vivo
by suppressing Wnt/β-catenin signaling pathway, thus reducing cancerous cell population
and inhibiting their proliferation [83].

In many types of cancer, the expression of Nrf2 was found to be elevated. Resveratrol
activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84],
leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-
2 [85] and heme-oxygenase (HO-1) [86].

The effects of resveratrol on angiogenesis are related to the inhibition of both vascular
endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1 generation, which
leads to decreased secretion of VEGF [87]. The molecular mechanisms of resveratrol
in acquired drug-resistant cancer cells have been summarized in a recent review [88].
Resveratrol was demonstrated to have an impact on drug bioavailability, regulation of cell
cycle, DNA transcription, and autophagy. Moreover, it exerted pro-apoptotic and anti-
metastatic activity [88]. Resveratrol could suppress leukemia cell proliferation and induce
apoptosis due to increased expression of PTEN (the phosphatase and tensin homolog
deleted on chromosome ten) and the inhibition of the activity of PI3K/AKT signaling
pathway, resulting in decreased tumor cell proliferation, division, activated apoptosis,
reduced angiogenesis, and formation of metastases [89]. Such multiple effects of resveratrol
can be applied for prevention and treatment of various types of cancer [90].

Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through
various mechanisms, such as promoting drug absorption by tumor cells, limiting drug
metabolism by enzymes—such as cytochromes and glutathione-S-transferases—and re-
ducing drug efflux [91]. In addition, resveratrol targets other resistance factors in cancer
cells by influencing cell death pathways, including autophagy and apoptosis, adjusting
reactive oxygen species (ROS) levels, modulating DNA repair processes, targeting cancer
stem cells, and altering epigenetic factors, such as miRNAs [91]. Cancer stem cells are
pivotal in tumor initiation and recurrence, with the tumor microenvironment components,
such as cytokines, influencing cancer progression [92]. Resveratrol has been demonstrated
to suppress tumor activity in lung cancer, specifically by inhibiting lung cancer stem-like
cell stemness and reducing IL-6 levels [92]. Cancer-associated fibroblasts in the tumor
microenvironment release cytokines, which promote tumor progression and the formation
of cancer stem cells in oral cancer [93]. These fibroblasts, when stimulated, significantly
increase the secretion of CXCL-12 and IL-6, which in turn boost cancer stem cell growth,
proliferation, and metastatic potential [93]. Resveratrol nanoparticles have been shown to
mitigate these effects by reducing the secretion of these cytokines, thus inhibiting cancer
stem cell growth and other malignant behaviors [93]. One of the significant obstacles in
cancer treatment is drug resistance, often leading to therapy failure and tumor relapse [94].
Resveratrol has demonstrated potential in addressing this issue by targeting cancer stem
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cells and non-coding RNAs, essential for stemness and drug resistance, thus impacting
cancer initiation and the self-renewal of cancer stem cells [94].

All stages of carcinogenesis (initiation, promotion, and progression) are known to
be affected by resveratrol. Resveratrol blocks initiation due to the activation of various
carcinogen-detoxifying and antioxidant enzymes. It also suppresses promotion by inhibit-
ing cyclooxygenase-2 activity [95], thus reducing prostaglandin synthesis and preventing
DNA against oxidative damage. Moreover, resveratrol suppresses tumor progression due
to induction of cancer cell cycle arrest, activation of apoptosis, and inhibition of angiogene-
sis and metastasis [71]. Due to its multifaceted effects on various phases of carcinogenesis,
resveratrol is emerging as a potential anti-cancer agent. It functions by detoxifying carcino-
gens, providing antioxidant protection, inhibiting enzymes promoting cancer development,
and protecting DNA from oxidative damage. With its broad spectrum of anti-cancer
activities, resveratrol has the potential to be included in future cancer prevention and
treatment strategies.

6. Chemotherapeutic Application of Resveratrol

The novel nano-formulations for resveratrol delivery include polymeric nanoparticles,
liposomes, micelles, metallic nanoparticles, and solid lipid nanoparticles [96]. Various
innovative resveratrol delivery systems, such as liposomes, micelles, polymeric nanopar-
ticles [97], lipid-based nanocarriers [98], gold and silver nanoparticles [99], and silica
nanoparticles [100], are known to improve the beneficial effects of resveratrol, including
its anti-cancer efficacy. Such systems enable the improvement of several main properties
of resveratrol, namely stability, solubility in water, penetration across biological mem-
branes, and they provide enhanced permeation and access to cancer cells [96]. In order
to increase the anti-cancer activity of resveratrol, it can also be used in nanomedicines in
combination with various compounds or drugs, such as curcumin [101], quercetin [102],
paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids
(siRNAs) [106,107].

An investigation of the effect of resveratrol in combination with common anti-cancer
drugs docetaxel and doxorubicin in solid tumor cell lines MCF-7, HeLa, and HepG2
in vitro demonstrated that it increased the cytotoxicity of common chemotherapeutic drugs
and alleviated the side effects, such as cardiac toxicity [108]. Increased expression of
Bax and Bcl-2 was found when resveratrol was used in combination with docetaxel and
doxorubicin [108]. Resveratrol could increase the anti-cancer effect of fluorouracil on
murine hepatoma22 cells by inducing the S phase arrest of cancer cells [109]. Moreover, the
toxicity of fluorouracil was markedly decreased by resveratrol [109].

The encapsulation of resveratrol in colloidal mesoporous silica nanoparticles signifi-
cantly (approx. by 95%) enhanced both solubility and in vitro release kinetics of resvera-
trol [100]. The antibacterial and anti-cancer effect of resveratrol was elevated using both
resveratrol-loaded gold and silver nanoparticles [99]. Recently, lecithin-encapsulated nano-
resveratrol was demonstrated to be effective as an anti-cancer agent in vitro using human
breast cancer cells BT474 [110].

Innovative delivery systems, such as polymeric nanoparticles, liposomes, micelles,
and metallic nanoparticles, could enhance resveratrol stability, solubility, and ability to
permeate biological membranes, ensuring more efficient access to cancer cells. When
combined with other anti-cancer drugs, resveratrol has shown potential in increasing
their cytotoxic effects and decreasing the associated side effects. Recent advancements,
such as encapsulating resveratrol in colloidal mesoporous silica nanoparticles or lecithin,
have further underscored its potential as a potent anti-cancer agent, especially when
delivered in nano-formulations. However, the clinical studies on nano-resveratrol in various
cancers (multiple myeloma, colon, liver, neuroendocrine tumor) have been summarized
in a recently published review article [111]. There are currently insufficient clinical trials
using nano-formulations of resveratrol. Most of the clinical trials initiated have not been
completed yet.
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7. The Role of Mitochondria in Cancer

The provision of a constant source of chemical energy, in the form of adenosine
5′-triphosphate (ATP), is important for the proper functioning of cells [112]. The inner
membrane of mitochondria contains the electron transport chain (ETC), which serves as the
primary enzymatic system responsible for the oxidation of carbohydrates, fats, and proteins.
This process involves the conversion of the energy stored in the chemical bonds of reduced
nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide
(FADH2) into ATP molecules [113]. Mitochondria are the primary location for adenosine
triphosphate (ATP) synthesis in human cells. They are responsible not only for ATP synthe-
sis but also for the biosynthesis of proteins, lipids, heme, iron–sulfur clusters. Moreover,
mitochondria participate in apoptosis, maintenance of calcium and iron homeostasis, cell
differentiation, induction of sirtuins, autophagy, ROS formation, and detoxification [114].
The disruption of at least one of these processes leads to mitochondrial-dysfunction-related
aging, neurodegenerative disorders, cardiovascular diseases, inflammatory responses, and
metabolic disorders [114,115]. The main changes in tumor mitochondria are shown in
Figure 3.
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7.1. Mitochondria, ROS, and Cancer

Mitochondria are the main organelles consuming oxygen in cells. Furthermore, they
are also the main producer of ROS. Up to 2% of electrons flowing down in the electron
transport chain (ETC) leak out under normal physiological conditions [116], react with
oxygen, and form the superoxide anion radical O2

•−, which is known as primary ROS. Then,
other ROS, such as hydrogen peroxide H2O2 and hydroxy radical HO•, can be formed in the
specific reactions (by superoxide dismutase and in the Haber–Weiss reaction, respectively).
Mitochondria contain antioxidant enzymes, which are subject to regulation via certain
signaling pathways. The activation of nuclear factor erythroid 2–related factor 2 (Nrf2) is a
prominent mechanism in human cells, which contributes to antioxidant activity. This system
controls the production of many antioxidant enzymes, including superoxide dismutase,
catalase, glutathione peroxidase, and glutathione reductase [117,118]. Nrf2 additionally
governs the modulation of enzymes included in phase II detoxification processes, such
as glutathione-S-transferase, which plays a crucial role in the conjugation of xenobiotics
or other harmful compounds with glutathione (GSH) [119]. When the mitochondrial
antioxidant system is unable to detoxify ROS, a condition called oxidative stress develops.
Mitochondrial inner membrane is the site of ROS production, but simultaneously, it is
especially sensitive to lipid damage caused by ROS. Oxidative stress can increase the
permeability of inner mitochondrial membrane, disrupt mitochondrial membrane potential,
and impair the production of ATP. Moreover, elevated levels of ROS can induce mutations
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in mitochondrial DNA, which can lead to neurological, gastrointestinal, cardiac, respiratory,
endocrinal, ophthalmological diseases in adults [120]. Thus, mitochondria are critically
involved in the maintenance of the cellular redox balance—a process of extreme importance
for various physiological functions.

The increased ROS generation in cancer cells presents a paradoxical situation [121]. On
the one hand, ROS can be detrimental; they have the potential to induce cellular damage,
primarily because of their high reactivity. They can target various cellular components,
including proteins, lipids, and DNA. DNA damage inflicted by ROS can be especially dan-
gerous for the cell, leading to mutations, some of which might provide a selective growth
advantage, driving tumorigenesis and the progression of malignancies [121]. On the other
hand, ROS are not merely destructive entities; they have evolved to serve significant physi-
ological roles. In controlled amounts, ROS function as signaling molecules, regulating a
plethora of cellular processes, from proliferation and differentiation to cellular responses to
stress and inflammation [121]. They play a crucial role in maintaining cellular homeostasis.
In cancer cells, the elevated ROS levels can modulate these signaling pathways, enhancing
survival, growth and even metastatic spread of the tumor [121]. Furthermore, the influence
of ROS extends beyond the cellular level. ROS can modulate the tumor microenvironment,
influencing immune cell recruitment and function, thereby affecting the immune response
against the tumor. Elevated ROS can also promote angiogenesis, facilitating the supply
of nutrients to the rapidly growing tumor [121]. Thus, while the increased production
of ROS in cancer cells can contribute to the genetic instability and DNA damage often
associated with malignancies, ROS also play sophisticated roles in modulating cellular
signaling and the tumor microenvironment [121]. Understanding the dual nature of ROS in
cancer biology offers potential avenues for therapeutic strategies, either by targeting ROS
directly or by manipulating their downstream effects.

7.2. Mitochondria, Apoptosis, and Cancer

Mitochondria play a crucial role in the regulation of apoptosis, often known as pro-
grammed cell death. In response to cellular stress, cells can release pro-apoptotic substances,
such as cytochrome c [122]. This release subsequently triggers the activation of caspase
enzymes, which are responsible for the dismantling of the cell. The process of oxidative
stress can be intensified by an imbalance between the generation of reactive oxygen species
(ROS) by mitochondria and the antioxidant defenses of the cell [122]. An increase in reactive
oxygen species (ROS) has the potential to cause harm to cell functions, hence promoting
apoptosis through disruption of the integrity of the mitochondrial membrane. Simultane-
ously, mitochondria serve as the location for anti-apoptotic proteins, which suppress these
pro-death pathways, thus ensuring that cell death is strictly regulated and only occurs when
necessary [122]. p53, commonly referred to as the “guardian of the genome”, is a tumor
suppressor protein, which plays a crucial role in safeguarding against cancer [123,124]. It
regulates cell health by pausing the cell cycle to facilitate DNA repair upon detecting dam-
age and by initiating apoptosis to eliminate cells when damage is irreparable. Furthermore,
p53 inhibits angiogenesis, which prevents tumors from developing the blood vessels they
need to grow. In many cancers, a dysfunctional p53 pathway, resulting from mutations in
either p53 or its regulatory components, impedes its role in apoptosis, thereby allowing
damaged cells to proliferate uncontrollably [123,124].

Cancer cells are characterized by their inherent ability to undergo sustained pro-
liferation, escape growth suppressors, and exhibit resistance to programmed cell death.
To support these characteristics, they undergo profound metabolic changes, which dif-
ferentiate them from their normal counterparts. The mitochondria, with their pivotal
role in energy production, metabolism, and cell signaling, are at the forefront of these
metabolic adaptations.
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7.3. Metabolic Changes in Tumor Cell Mitochondria
7.3.1. Warburg Effect

Tumor cells exhibit several distinct metabolic deviations compared to normal cells.
One of the distinctive metabolic signatures of tumor cells is their increased dependence
on aerobic glycolysis, commonly referred to as the Warburg effect, named after Otto
Warburg, who first observed this phenomenon in the early 20th century [125]. While
glycolysis is a process, which breaks down glucose to produce energy in the form of ATP,
it typically operates in cells under low oxygen conditions. However, tumor cells, even
in the presence of ample oxygen, predominantly utilize glycolysis over the more energy-
efficient oxidative phosphorylation—a process, which healthy cells generally favor when
oxygen is abundant [125]. Aerobic glycolysis allows these cells to rapidly produce ATP,
which is crucial for their accelerated growth and proliferation. Moreover, the byproducts of
glycolysis, including various metabolites, provide essential building blocks for the synthesis
of nucleotides, lipids, and amino acids, supporting the biomass requirements of rapidly
dividing cells [125]. While the Warburg effect may seem energetically inefficient compared
to oxidative phosphorylation, it confers several advantages to tumor cells, enabling them to
thrive and proliferate even in fluctuating oxygen environments and providing them with
the metabolic flexibility to adapt and resist various therapeutic interventions.

7.3.2. Impaired Lipid Metabolism

Cancer cells are characterized by significant disruptions in lipid metabolism. Specif-
ically, these cells exhibit a pronounced inclination toward lipid biosynthesis driven by
glutamine, an amino acid, altering typical cellular metabolic pathways [126,127]. This
preference for glutamine-driven lipid biosynthesis in cancer cells serves multiple pivotal
roles. First, it provides the necessary lipids, which are integral components of cell mem-
branes, thereby supporting the structural and functional needs of rapidly dividing cells.
Additionally, alterations in lipid metabolism contribute to the activation of several bio-
chemical pathways implicated in both the initiation of cancer (tumorigenesis) and the
process whereby cancer spreads to other parts of the body (metastasis) [126,127]. These
pathways, enhanced by the aberrant lipid metabolism, enable cancer cells to modulate their
environment, resist apoptotic signals, and invade distant tissues, rendering them more
aggressive and resilient to conventional therapeutic strategies. Moreover, the products of
altered lipid metabolism can also serve as signaling molecules and modulators of gene
expression, further reinforcing the aggressive and adaptable nature of cancer cells [126,127].
These modifications in lipid metabolic pathways offer insights into the intricate metabolic
reprogramming of cancer cells and represent potential targets for therapeutic intervention
to impair cancer progression.

7.3.3. Acidic Environment

Tumor cells exhibit a distinct metabolic phenotype, which significantly regulates both
intracellular and extracellular pH levels, resulting in impaired pH balance. The intra-
cellular processes—predominantly the elevated rate of glycolysis often present in cancer
cells—lead to increased production of lactic acid, subsequently causing a reduction in the
pH of the extracellular environment, making it more acidic [128]. This acidic microenvi-
ronment serves to promote inflammation. The low pH condition triggers the release of
pro-inflammatory cytokines and chemokines, leading to the recruitment of inflammatory
cells. This inflammation within the tumor microenvironment is a well-recognized hallmark
of cancer, often associated with enhanced tumor growth, progression, and metastasis. The
acidic extracellular environment promotes the activity of enzymes, such as cathepsins and
matrix metalloproteinases, which destroy the extracellular matrix, allowing cancer cells
to invade the surrounding tissues [129]. It also impacts the surrounding non-tumorous
cells, modifying their function and potentially inducing a pro-tumoral phenotype, thereby
creating a supportive niche for tumor progression.
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7.3.4. Changes in Cardiolipin Levels and Impaired Activity of Mitochondrial Enzymes

Mitochondrial enzyme activity is often impaired in tumor cells, resulting in changes in
metabolism and energy balance [14,130]. Central to these alterations is the lipid
cardiolipin—the main phospholipid of the inner mitochondrial membrane. Cardiolipin is
essential for maintaining the integrity of the mitochondrial membrane and plays a vital role
in anchoring and stabilizing many mitochondrial proteins and enzymes. In cancer cells,
alterations in cardiolipin levels and composition have been observed, and these changes can
have profound implications for mitochondrial function [131–133]. When cardiolipin levels
are disrupted, this can affect the optimal functioning of several mitochondrial enzymes,
including those involved in the electron transport chain, which is crucial for oxidative phos-
phorylation [131–133]. The changes in enzymatic activity can lead to reduced efficiency in
energy production and can also increase ROS production. An elevation in ROS can further
induce oxidative stress, damage the cellular components, and modulate the signaling
pathways, which can promote tumorigenesis [121,131–133]. Moreover, the compromised
enzyme activities in the mitochondria of tumor cells can also alter other metabolic path-
ways, such as the Krebs cycle, fatty acid oxidation, and amino acid metabolism [131–133].
Such disruptions can force the cell to rely more on alternative metabolic routes, such as
glycolysis, even in the presence of oxygen, further underscoring the metabolic flexibility
and adaptability of cancer cells.

7.3.5. Hyperpolarization of Mitochondria

Mitochondria maintain a voltage difference across their inner membrane, known as
the mitochondrial membrane potential (∆Ψm). This potential is crucial for numerous mito-
chondrial functions, primarily the production of ATP through oxidative phosphorylation.
In cancer cells, an intriguing alteration observed is the hyperpolarization of their mito-
chondria [14]. This condition arises due to the more significant accumulation of protons in
the intermembrane space and a corresponding more negative charge inside the mitochon-
drial matrix. The various causes of this hyperpolarization in cancer cells include altered
metabolic pathways, changes in electron transport chain efficiency, or even changes in the
activities of ion channels and transporters [14]. Mitochondrial hyperpolarization indicates
that the mitochondria in these cells might be working at a higher energetic level, potentially
driving increased ATP synthesis, which could satisfy the increased energy demands of
rapidly proliferating cancer cells. Studies have suggested that the hyperpolarized state of
mitochondria is directly proportional to the aggressive nature of the cells [14]. The more
hyperpolarized the mitochondria, the higher the potential of the cancer cell for invasive-
ness, metastatic spread, and resistance to therapies [14]. Moreover, this hyperpolarized
phenotype might play roles in cellular signaling, modulating the pathways associated with
cell survival, growth, and even immune evasion.

Thus, the growth, survival, and aggression of tumor cells depend on mitochondria-
driven metabolic changes. Understanding these alterations provides insights into potential
therapeutic targets and strategies for cancer treatment.

8. Mitochondria-Related Anti-Cancer Effects of Resveratrol

Resveratrol exhibits various anti-cancer properties, including the initiation of apoptosis
through mitochondrial pathways, interference with energy metabolism in cancer cells,
and enhancing the oxidative stress within the mitochondria of these cells, leading to
cell damage and death. Additionally, it can modulate mitochondrial calcium, increase the
efficacy of existing chemotherapeutic agents, target cancer stem cells, alleviate inflammation
associated with tumors, and promote the elimination of impaired mitochondria (Figure 4).
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The effects of resveratrol on mitochondria are complex and depend on various factors,
including cell type and physiological context (Table 1).

Table 1. Main mitochondria-related effects of resveratrol on different cancer types.

Cancer Type Model Used Experimental
Conditions

Effect of
Resveratrol Ref.

Neuroendocrine cancer Mouse neuroblastoma cells Neuro-2a
and NB41A3 2.5–100 µM/48 h Induction of apoptosis [134]

Colorectal cancer Human HCT116 and SW620 2–500 µg/mL
Decreased cell viability,

enhanced apoptosis, increased
ROS level

[135]

Human Caco-2, HCT116, and SW480 10–100 µM/24 and 48 h Decreased cell viability [136]

Human HCT116 and Caco-2 100 µM/48–72 h Suppressed proliferation,
inhibited glycolytic enzymes [137]

HT-29 10–150 µM/24 h Suppressed glucose uptake [138]

Leukemia Human U937 and MOLT-4 10–100 µM/24 and 48 h Decreased cell viability, DNA
fragmentation [136]

Breast cancer Human MCF-7 10–100 µM/24 and 48 h Decreased cell viability,
enhanced apoptosis [136]

T47D 10–150 µM/24 h Suppressed glucose uptake [138]

Liver cancer Human HepG2 10–100 µM/24 and 48 h Decreased cell viability,
enhanced apoptosis [136]

Lung cancer Human A549 10–100 µM/24 and 48 h Decreased cell viability [136]

Human NSCLC cells 100 µM/48–72 h Inhibited hexokinase II
(HK2)-mediated glycolysis [139]

Lewis lung carcinoma 10–150 µM/24 h Suppressed glucose uptake [138]
B-cell carcinoma Human GC-like DLBCL cell lines 25 or 50 µM/24 h Glycolysis inhibition [140]
Ovarian cancer Ovarian cancer cells 50 µM/48 h Glycolysis inhibition [141]

Cervical cancer HeLa 25 µmol/L/30 min
Decreased ROS level,

stimulated mitochondrial
respiration

[142]

50 and 100 µmol/L/30 min Increased ROS level,
stimulated autophagy [142]

200 µM/48 h Induced mitophagy and ROS
overproduction [143]

100 µM/36 h Increased calcium uptake and
induced apoptosis [144]

20–100 µg/mL/24 h Induced calcium overload and
apoptosis [145]

Prostate cancer Human PC3 10 µM/48 h Enhancement of oxidative
phosphorylation [146]
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8.1. Resveratrol Activates Apoptosis in Tumor Cells

Resveratrol has been shown to induce mitochondria-mediated apoptosis in cancer
cells [147,148]. This is significant, as apoptosis is often dysregulated in cancer, allowing for
uncontrolled cell proliferation. The interaction of resveratrol with the mitochondria can
lead to the release of cytochrome c, a critical component in the initiation of the apoptotic
cascade [147,148]. Resveratrol activates pro-apoptotic proteins, such as Bax and Bak. Once
activated, these proteins can permeabilize the mitochondrial outer membrane, leading
to the release of apoptogenic factors, including cytochrome c [147,148]. In addition to
activating pro-apoptotic proteins, resveratrol also inhibits anti-apoptotic proteins, such
as Bcl-2 and Bcl-xL. Through the inhibition of these proteins, resveratrol has the capacity
to shift the equilibrium in favor of apoptosis [147,148]. Studies have demonstrated that
resveratrol could amplify oxidative stress within mitochondria, leading to mitochondrial
dysfunction and further promoting apoptosis [147,148]. One of the early events in the
induction of apoptosis is the loss of mitochondrial membrane potential. Resveratrol can
induce its decrease, making the cell more susceptible to the apoptotic process [147,148]. The
effects of resveratrol are not only limited to direct interactions with mitochondrial proteins.
It can also influence various cellular signaling pathways, which can ultimately impact mi-
tochondrial function and the induction of apoptosis, leading to tumor cell death [147,148].
In the investigations of the impact of resveratrol (2.5–100 µM for 48 h) on mouse neuroblas-
toma cells Neuro-2a and NB41A3, cytotoxic effects were observed, where apoptosis and
autophagy were identified as the predominant mechanisms of cell death, as opposed to
necrosis [134]. Resveratrol induced the production of Grp78 protein and ROS in neuroblas-
toma cells in a time-dependent manner. Furthermore, the suppression of the ER-stress–ROS
signaling axis resulted in a considerable reduction in resveratrol-induced autophagy, DNA
damage, and cell death [134]. Additionally, resveratrol decreased phosphorylation of the
retinoblastoma protein, leading to the arrest of the cell cycle at the S phase, and facilitated
the translocation of the Bak protein to the mitochondria, resulting in a drop in the mi-
tochondrial membrane potential [134]. This event subsequently triggered the activation
of caspases-9, -3, and -6, ultimately leading to DNA fragmentation [134]. Another study
examined the anti-cancer effects and mechanism of resveratrol (2–500 µg/mL) in human
colorectal cancer cells HCT116 and SW620 [135]. The results demonstrated that resveratrol
dose-dependently reduced colorectal cancer cell viability and enhanced apoptosis and
ROS levels relative to the control group [135]. In resveratrol-treated colorectal cancer cells,
Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3 were increased, while Bcl-2
was downregulated relative to control cells [135]. Resveratrol’s anti-viability effects were
compared among various human cancer cell types, showing that resveratrol (1–100 µM for
24 and 48 h), starting from 10 µM and in a time-dependent manner, markedly suppressed
cell viability in U937 and MOLT-4 leukemia cells, moderately inhibited it in MCF-7 breast,
HepG2 liver, and A549 lung cancer cells, and slightly inhibited it in Caco-2, HCT116, and
SW480 colon cancer cells [136]. U937 and MOLT-4 showed a significant increase in late
apoptosis after resveratrol treatment, while MCF-7 and HepG2 showed an increase in early
apoptosis, whereas only leukemic cells showed DNA fragmentation [136]. Sirtuin 1 and
adenosine-monophosphate-activated protein kinase was not responsible for apoptosis,
stimulated by resveratrol [136]. Resveratrol decreased Akt activation and H-Ras, facilitat-
ing Bax translocation to mitochondria in leukemic cells [136]. Resveratrol demonstrated
differential pro-apoptotic effects in colorectal cancer through modulation of Sirt-1 and
p53 [149]. Higher concentrations suppress Sirt-1, enhancing p53 acetylation, and apopto-
sis in wild-type colorectal cancer cells, suggesting a novel negative regulatory interplay
between p53 and Sirt-1 in resveratrol-treated colorectal cancer [149]. Thus, by inducing
apoptosis, resveratrol can suppress tumor growth, making it a compound of interest for
therapeutic applications in oncology.
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8.2. Resveratrol Counteracts Warburg Effect

Resveratrol has a modulatory effect on cellular energy metabolism—another critical
function of mitochondria. Cancer cells often shift their metabolic focus toward glycoly-
sis, even in the presence of oxygen—a phenomenon known as the Warburg effect [150].
Resveratrol inhibits aerobic glycolysis, thereby reducing cancer cell survival and prolifera-
tion [151]. Resveratrol modulated glucose metabolism in various types of cancer, including
breast, prostate, lung, pancreatic, liver, colorectal, and others [138,152–155]. Cancer cells
have increased glucose absorption due to overexpression of Glut transporters and are char-
acterized by lactate fermentation even under aerobic conditions [150]. An excess of lactate
causes increased acidity (low pH levels) in cancer cells [150]. The main regulatory enzymes
of glycolysis, such as hexokinase-2, phosphofructokinase, aldolase, glucose-6-phosphate
dehydrogenase, enolase, pyruvate kinaseM2, are known to be overexpressed in cancer
cells [151]. Uncontrolled proliferation of cancer cells requires a large amount of energy and
sufficient supply of nucleotides for DNA synthesis. Increased uptake of glucose and over-
expression of enzyme glucose-6-phosphate dehydrogenase in cancer cells enable attaining
sufficient ribose-5-phosphate and the reducing equivalents in the form of NADPH in the
pentose phosphate pathway [151]. Ribose-5-phosphate and NADPH are vital for cancer
cell survival because they are necessary for de novo nucleotide synthesis [151]. Resver-
atrol can modify glucose/carbohydrate metabolism in cancer cells by affecting several
signaling pathways, the activity of some transcription factors, as well as gene expression.
It has been demonstrated in several studies that resveratrol inhibits glycolysis through
the PI3K/Akt/mTOR signaling pathway in human cancer cells [140,141]. In addition,
resveratrol was reported to inhibit the growth of cells through metabolic shifting from
aerobic glycolysis to oxidative phosphorylation in PC3 prostate cancer cells [146]. Moreover,
resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1; therefore,
less lactate was produced, and consequently, the survival of tumor cells was reduced
as well [151]. Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II
(HK2)-mediated glycolysis, leading to a significant inhibition of both anchorage-dependent
and -independent growth in non-small-cell lung cancer cells [139]. Moreover, the activation
of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon expo-
sure to resveratrol [139]. Resveratrol (10–150 µM for 24 h), in a concentration-dependent
manner, inhibited glucose absorption in Lewis lung carcinoma, HT-29 colon, and T47D
breast cancer cells via modulation of the ROS-driven activation of hypoxia-inducible factor-
1 [138]. Resveratrol also suppressed colon cancer cell HCT116 and Caco-2 proliferation
with half maximum inhibitory concentrations (IC50 of 50 and 130 µM) for HCT116 and
Caco-2, respectively [137]. Caco-2 cells showed a significant time-dependent increase in
the glycolytic pathway, whereas HCT116 cells did not. Resveratrol (100 µM for 48–72 h)
inhibited glycolytic enzymes (pyruvate kinase and lactate dehydrogenase) in Caco-2 cells
while increasing citrate synthase activity and decreasing glucose consumption in both cell
lines [137]. Moreover, resveratrol suppressed the expression of leptin and c-Myc while
increasing the level of vascular endothelial growth factor. Caspases 3 and 8, which are
apoptotic indicators, were activated, and the Bax/Bcl2 ratio was raised [137].

Resveratrol can also influence the electron transport chain in mitochondria, potentially
limiting ATP production in cancer cells, leading to suppressed tumor proliferation [148].
It was reported that resveratrol could inhibit mitochondrial ATP synthase with IC50
19 µM [156]. The deprivation of ATP disrupts critical processes within tumor cells, as
they rely heavily on a constant energy supply to maintain their rapid growth and repli-
cation [148]. Counteracting the Warburg effect and restricting ATP synthesis, resveratrol
could potentially enhance the efficacy of cancer therapies by rendering tumor cells more
susceptible to treatment interventions.

8.3. Antioxidant and Pro-Oxidant Effects of Resveratrol

The influence of resveratrol on mitochondrial oxidative stress appears to be selectively
detrimental to cancer cells. By amplifying the oxidative stress within the mitochondria
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of these cells, resveratrol induces a state of cellular toxicity, which leads to damage and
subsequent cell death while often sparing healthy cells [17,143,157]. Resveratrol displays
a dual behavior concerning ROS balance: it acts as an antioxidant in regular conditions
but as a strong pro-oxidant in cancer cells, initiating apoptosis pathways. Both antioxidant
and pro-oxidant activities are involved in the anti-cancer effects of resveratrol [17,143,157].
Investigations have demonstrated that HeLa cells exposed to resveratrol for 24 h exhibited
concentration-dependent increases in cell growth inhibition, ROS activation, and light chain
3-II expression [142]. Intriguingly, HeLa cells exposed to resveratrol for 30 min exhibited a
concentration-dependent effect, with low concentrations of resveratrol (25 µmol/L) reduc-
ing ROS level, inhibiting transcription and expression levels of light chain 3-II expression,
and stimulating mitochondrial respiratory capacities [142]. In contrast, high concentrations
of resveratrol (50 and 100 µmol/L) induced ROS overproduction and autophagy in the
cells, resulting in decreased mitochondrial membrane potential, DNA copy numbers, and
respiratory capacities [142]. Resveratrol was tested for its effect on cancer cell prolifer-
ation using HeLa, MDA-MB-23, MCF-7, SiHa, A549, HUVEC, and 3T3 cell lines [143].
After 48 h, resveratrol exhibited greater effectiveness in inhibiting metastatic HeLa and
MDA-MB-23 (IC50 = 200–250 µM) cells compared to low metastatic MCF-7, SiHa, and A549
(IC50 = 400–500 µM) and non-cancer HUVEC and 3T3 (IC50 ≥ 600 µM) [143]. In HeLa cells,
resveratrol (200 µM/48 h) dramatically reduced OxPhos protein concentrations (30–90%)
and fluxes (40–70%) compared to non-treated cells [143]. Using succinate as an oxidizable
substrate, resveratrol (100 µM/1–5 min) significantly reduced the OxPhos flux (net ADP-
stimulated respiration) in isolated tumor mitochondria (>50%) compared to non-tumor
mitochondria (<50%) [143]. Resveratrol also increased cellular ROS production (2–3 times)
and decreased SOD activity (but not content) and GSH levels, while catalase, glutathione
reductase, glutathione peroxidase, and glutathione-S-transferase activities remained un-
changed [143]. Furthermore, resveratrol (200 µM/48 h) caused cellular death through high
mitophagy activation (65%), not apoptosis [143]; it also stimulated ROS overproduction,
which inhibited OxPhos and stopped metastatic HeLa cancer cell proliferation [143]. Thus,
resveratrol selectively upregulates oxidative stress within mitochondria, causing damage
and death to cancer cells. The potential of resveratrol to maintain the integrity of normal
cells and trigger programmed cell death in tumor cells renders it an attractive candidate for
cancer treatment strategies.

8.4. Effects of Resveratrol on Calcium Homeostasis

Resveratrol, by interacting with mitochondrial calcium channels, can influence the
intracellular calcium levels, thus impacting the homeostasis and metabolic activity of
the cells [66,148,158]. Changes in mitochondrial calcium can have downstream effects on
cellular processes, including energy metabolism and apoptosis, which are crucial for the sur-
vival and growth of cancer cells [66,148,158]. Increased calcium levels in the mitochondria
can activate various enzymes and alter the mitochondrial membrane potential, affecting
cell functions and overall viability [148]. Changes in mitochondrial calcium uptake due
to resveratrol can influence multiple cellular signaling pathways, which are integral in
regulating cellular functions, such as cell cycle progression, cellular differentiation, and
cellular response to stress [148]. These pathways play a critical role in determining the
fate of tumor cells—whether they will continue to proliferate or undergo programmed cell
death. Additionally, the modulation of these pathways by resveratrol may contribute to
the disruption of the supportive tumor microenvironment and hinder the establishment
and progression of tumors [66,148,158]. By affecting the calcium dynamics within the mito-
chondria, resveratrol can induce stress in cancer cells, disrupt their metabolic adaptability,
and potentially make them more susceptible to anti-cancer therapies [148]. Investigations
of the effects of resveratrol (100 µM/36 h) on cell viability, caspase activity, calcium levels
in various cell components, ATP content, and mitochondria–ER junctions in cell lines
EA.hy926 and HeLa and HUVEC somatic cells revealed that resveratrol induced cell death
selectively in cancer cells by enhancing mitochondrial calcium uptake [144]. The anti-cancer
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effect of resveratrol (20–100 µg/mL for 24 h) and the function of sodium/lithium/calcium
exchanger in relation to calcium ions were investigated in HeLa cells [145]. This therapeutic
approach, employing siNCLX-mediated gene silencing and drug therapy with resveratrol,
demonstrated a disruption of calcium homeostasis, an increase in caspase (3, 8, 9) mRNA
expressions, and DNA damage, all of which resulted in apoptotic cell death [145]. Ca2+

overload killed HeLa cells in response to the inhibition of mitochondrial Ca2+ extrusion
together with resveratrol therapy [145]. Thus, resveratrol influences mitochondrial calcium
channels, thereby affecting intracellular calcium levels and cellular processes, such as
energy metabolism, apoptosis, and multiple signaling pathways, essential for cancer cell
survival and proliferation. This modification can induce stress in cancer cells, impair their
metabolic adaptability, and increase their susceptibility to anti-cancer treatments.

8.5. Effects of Resveratrol on Metabolic Plasticity, Cancer Stem Cells, and Tumor Microenvironment

Metabolic plasticity and the ability to evade harmful effects of chemotherapeutic
medicines are crucial for tumor cell survival. The process relies heavily on mitochondria,
which control energy production, calcium homeostasis, and apoptotic pathways [159,160].
The mitochondrial effects of resveratrol can lead to metabolic and functional alterations,
which weaken the resistance of tumor cells to chemotherapy. For example, resveratrol
can induce apoptosis in tumor cells by changing the mitochondrial membrane potential
or by shifting the balance between pro-apoptotic and anti-apoptotic proteins [159,160].
Standard chemotherapeutic medicines can have a greater cytotoxic effect when combined
with resveratrol. Because of this synergistic impact, it is possible that standard drug dosages
can be decreased while maintaining or even improving therapeutic outcomes [159,160].

Cancer stem cells are a unique subset of cells within a tumor, which possess the ability
to self-renew and drive tumor growth [17]. Due to their inherent resistance mechanisms,
these cells often escape conventional cancer treatments, leading to relapse and metasta-
sis [17,161]. Unlike differentiated cancer cells, cancer stem cells show a distinct metabolic
profile characterized by a heightened reliance on mitochondrial oxidative phosphorylation
for energy production [17,161]. This makes their mitochondrial function a potential target
for therapeutic interventions. Preliminary studies have hinted at the ability of resveratrol
to target the mitochondrial metabolism of cancer stem cells. By inhibiting the bioenergetic
function of mitochondria in these cells, resveratrol may deplete their energy reserves,
thereby hampering their survival and proliferation [162]. While the exact mechanisms
remain to be fully elucidated, it is postulated that resveratrol disrupts the electron transport
chain in the mitochondria of cancer stem cells, leading to a reduction in ATP produc-
tion [162]. This energy crisis in cancer stem cells may activate cellular stress pathways and
promote cell death [162]. The ability of resveratrol to target the mitochondrial bioenergetics
of cancer stem cells presents a novel approach for eliminating this challenging cell popu-
lation. By specifically targeting cancer stem cells, resveratrol may enhance the efficacy of
standard cancer treatments and reduce the chances of tumor relapse [17,161].

The tumor microenvironment, which comprises cancer cells, stromal cells, and the
extracellular matrix, often exhibits a pro-inflammatory state [12,17]. This inflammatory
microenvironment is characterized by the release of cytokines, chemokines, and growth
factors, which promote tumor growth, angiogenesis, and metastasis [12,17]. Chronic in-
flammation in this setting not only supports tumor progression but also helps in evading
the immune system. The interaction of resveratrol with mitochondrial pathways plays a
pivotal role in its anti-inflammatory effects [12,17]. By modulating mitochondrial functions,
resveratrol can influence the production of ROS and other inflammatory mediators [12,17].
The reduction in ROS levels and the subsequent decrease in oxidative stress can lead to a
reduction in the activation of various pro-inflammatory pathways. Resveratrol has been
shown to downregulate the production of pro-inflammatory cytokines, such as TNF-α, IL-6,
and IL-1β [87]. By inhibiting these cytokines, resveratrol can disrupt the signals promoting
inflammation within the tumor environment. The mitigation of the inflammatory milieu
within tumors can potentially hinder tumor growth and progression. A less inflammatory
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tumor environment might be less favorable to angiogenesis, tissue invasion, and metasta-
sis [87]. Furthermore, by reducing inflammation, resveratrol might also restore the function
of immune cells within the tumor, making them more effective in targeting and eliminating
cancer cells.

8.6. Effects of Resveratrol on Mitophagy

Mitophagy, a specialized form of autophagy, plays a central role in maintaining cellular
homeostasis by selectively degrading damaged mitochondria. By eliminating malfunc-
tioning mitochondria, mitophagy prevents the accumulation of ROS and safeguards the
cell from detrimental metabolic consequences [143]. Dysregulated mitophagy has been
implicated in various diseases, including cancer. Inefficient removal of damaged mitochon-
dria can result in heightened oxidative stress, which can lead to DNA damage, mutations,
and eventually, tumorigenesis [163–165]. Furthermore, some cancer cells may exploit
mitophagy for survival, especially under metabolic stress or therapeutic interventions.
Resveratrol has been shown to activate mitophagy pathways [163–165]. By upregulating
certain mitophagy-related proteins and receptors, resveratrol ensures the swift identifica-
tion and removal of damaged mitochondria from the cell. This action can minimize the
harmful effects of mitochondrial dysfunction, such as oxidative damage, which might oth-
erwise promote carcinogenesis [163–165]. One of the ways in which resveratrol promotes
mitophagy is through the activation of the protein SIRT1, a known regulator of autophagy
and cellular health [166]. Once activated, SIRT1 can stimulate the deacetylation and sub-
sequent activation of essential mitophagy players, thereby promoting the encapsulation
and degradation of impaired mitochondria [166]. The ability of resveratrol to improve
mitophagy offers a dual advantage in cancer management. On the one hand, it prevents the
accumulation of damaged mitochondria, which can drive cancer progression, and on the
other, it can make cancer cells more vulnerable to therapies by denying them the survival
benefits of mitophagy under stress.

9. Conclusions and Future Perspectives

The multifaceted effects of resveratrol in cancer management point to its potential
role as a versatile tool in oncological interventions. The ability of resveratrol to regu-
late cellular pathways, interfere with mitochondrial functions in cancer cells, and exert
significant effects on cellular metabolism, apoptosis, and energy generation indicates a
profound importance in the field of cancer therapies. To overcome the limits of current
treatments and improve patient outcomes, groundbreaking research is targeted at utiliz-
ing the capacity of resveratrol to synergize with existing chemotherapeutic drugs. The
incorporation of advanced technologies, such as nanotechnology, is critical for improving
the distribution and specificity of resveratrol and addressing current bioavailability issues.
Furthermore, the discovery of resveratrol analogs could enhance treatment efficacy and
overcome the adaptive resistance of tumor cells. The growing interest in creating preven-
tive measures highlights the involvement of resveratrol in preventing cancer growth and
altering the tumor microenvironment, especially in colon and breast cancers. As more
conclusive clinical evidence becomes available and knowledge from other scientific fields
is integrated, resveratrol is likely to become an integral part of future cancer therapies and
preventative measures.
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