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Abstract: Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation
of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments,
lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process
of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes
and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization
of ROS and therefore prevent oxidative damage of cell components. In the present review, we
focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid
(vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone,
and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be
described. This review is also devoted to the modern genetic engineering methods, which are
widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in
cultivated plants. These methods allow various plant lines with given properties to be obtained in a
rather short time. The most successful approaches for plant transgenesis and plant genome editing
for the enhancement of biosynthesis and the content of these antioxidants are discussed.

Keywords: higher plants; reactive oxygen species; antioxidants; isoprenoids; plastoquinone; carotenoids;
tocopherol; ubiquinone; flavonoids; ascorbic acid; glutathione; transgenesis; CRISPR/Cas9

1. Introduction

In all aerobic organisms, the interaction between molecular oxygen and various cellu-
lar components invariably gives rise to the production of reactive oxygen species (ROS).
In higher plants, these components primarily include the carriers of the electron transport
chains in both photosynthetic and respiratory apparatuses and of the short plasma mem-
brane chain. Even under optimal operating conditions, ROS are formed at a low level [1].
Stress conditions amplify ROS production in different cellular compartments, such as
chloroplasts [2–4], peroxisomes [5], mitochondria [6], and the plasma membrane [7]. The
physiological functions of ROS largely depend on their chemical properties, their formation
site, and the concentration of the ROS. This concentration is influenced by the rate of ROS
formation and the rate of their neutralization by the antioxidant systems.

The antioxidant systems in higher plants are represented by antioxidant enzymes
and non-enzymatic antioxidants. Antioxidant enzymes exist in multiple molecular forms
(isoenzymes) across different cell organelles, mainly within their aqueous phases (for
review, see [8]). For example, superoxide dismutases (SODs), which detoxify superoxide
anion radicals, can be classified as CuZnSOD, MnSOD, or FeSOD, based on the metal
cofactor. These isoenzymes are localized in distinct cell compartments: in chloroplasts (for
FeSOD and CuZnSOD), cytosol (for CuZnSOD), and mitochondria (for MnSOD). Catalase,
ascorbate peroxidases (APXs), Cys peroxiredoxins, and various other peroxidases are the
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most abundant antioxidant enzymes, which catalyze the reduction of hydrogen peroxide
(H2O2) to water. APXs (thylakoid-bound APX and stromal APX) and Cys peroxiredoxins
detoxify H2O2 in chloroplasts and cytoplasmic and peroxisomal APX in cytoplasm and
peroxisomes, respectively. Catalase functions in glyoxysomes and peroxisomes.

Representatives of non-enzymatic antioxidants in higher plants are ascorbic acid
(vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E),
ubiquinone, and plastoquinone. Similar to antioxidant enzymes, non-enzymatic antiox-
idants function in different cell compartments, but in both aqueous (ascorbic acid, glu-
tathione, and flavonoids) and membrane phases (flavonoids and isoprenoids). Recently,
the potential antioxidant activity of compounds that were not previously considered as
such (sugars, proline, etc.) has been actively studied. However, they are not the subject
of this review, as the mechanism of their antioxidant activity remains unclear and may be
associated with their protective and signaling effects.

Over the last few decades, scientists not only successfully increased the intensity of
biosynthesis of antioxidant enzymes, but also multiplied the level of the antioxidants to
improve plants sustainability. Although creating mutant plants with modified biosynthesis
of non-enzymatic antioxidants is complicated, since multiple pathways and enzymes are
involved in their biosynthesis, these plants may have some advantages over plants with
overexpression of antioxidant enzymes. First of all, low molecular weight antioxidants can
interact with different types of ROS, not just one, as in the case of antioxidant enzymes.
Moreover, it is known that stress conditions often result in exhaustion of the substrates of
the antioxidant enzymes, especially at the initial phase of the introduction of stress factors.
For example, it has been shown that ascorbate—the substrate for APX and a low molecular
weight antioxidant itself—is rapidly depleted in chloroplasts when H2O2 is supplied [9].
The lack of ascorbate results in deactivation of ascorbate peroxidase and the failure of
chloroplasts to neutralize H2O2.

Furthermore, as described above, most antioxidant enzymes are located in the aqueous
phases of the cell, while they are practically absent in the membranes. Considering that
membranes contain vital electron transport chains—such as the photosynthetic electron-
transport chain in the thylakoid membranes of chloroplasts and respiratory electron-
transport chain in the inner mitochondrial membrane—the need to protect the components
of these chains becomes obvious. In this regard, important low molecular weight antioxi-
dants are isoprenoids and tocopherols.

Low molecular weight antioxidants often perform not only antioxidant functions but
also other functions in plant cells. For example, flavonoids are effective in controlling insect
pests [10]. Ascorbate and tocopherols can improve nutritional properties of plants and seed
quality. In addition, ascorbate is able to protect α-tocopherol from oxidation [11].

Thus, all the advantages described above underline the importance of altering non-
enzymatic antioxidants to enhance the antioxidant capacity of plant cells, thereby reducing
the oxidative status of plants under stress conditions.

There are two primary approaches to increase the levels of low molecular weight
antioxidants: (i) enhancing the expression of one or more genes encoding key enzymes
involved in the biosynthesis of the target antioxidant; (ii) reducing the expression of genes
encoding enzymes involved in the utilization or consumption of the specific antioxidant.
These approaches can be achieved using both classical transgenesis and genome editing
methods, either directly by altering the expression intensity of antioxidant biosynthesis
genes or indirectly by regulating the activity of transcription factors for the correspond-
ing genes.

The classical transgenesis technique involves the introduction of additional copies
of the key enzyme-encoding genes into the plant genome, either from the same plant’s
own genome or from other species. The method of classical transgenesis is widely used
to create overexpressing lines, which are plants with significantly higher-than-normal
expression of a specific gene. For this, additional copies of the gene are added, controlled
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by constitutive promoters which are always active, such as the cauliflower mosaic virus
(CaMV) 35S promoter.

Classical transgenesis is also commonly used to create plants, notably Arabidopsis
thaliana transgenic lines with knocked out genes, where T-DNA insertions, falling randomly
into the plant’s own gene regions, disrupted their functions. Since insertion in these
plants acts as a marker that allows cloning of DNA sections adjacent to the insertion, such
plants are of interest for identifying genes, the function of which has been disrupted by
the insertion. However, large-scale analyses of the composition of nucleotide sequences
of extended DNA sections adjacent to the insertions revealed genetic disorders, such as
translocations, inversions, and deletions, in some cases. These disorders can also act
as sources of various phenotypic disorders and mask the phenotypic manifestations of
mutations directly caused by T-DNA insertions. In addition, based on the results of a
detailed study, in some cases, various disorders were detected away from the integration site
of the foreign gene in such mutant plants. Additionally, this approach proved challenging
in plant species lacking a wide range of knockout mutants, unlike Arabidopsis.

Another approach to regulate gene expression is RNA interference (RNAi). This
method is based on the creation of genetic constructs with fragments of the coding region of
the target gene linked to an antisense sequence. This promotes hairpin RNA formation after
transcription, leading to the production of interfering RNAs that suppress gene expression
at the post-transcriptional level. This is the so-called “gene knockdown” technique, which
most often does not lead to complete suppression of gene expression. It is a convenient tool
in cases where a partial reduction in gene expression is preferable, e.g., when a complete
gene knockout could cause serious metabolic disorders.

The genome editing strategies, i.e., site-directed mutagenesis techniques, incorpo-
rate the use of zinc finger nucleases (ZFN), transcription activator-like effector nucleases
(TALEN), and clustered regularly interspaced short palindromic repeats with CRISPR-
associated protein (CRISPR/Cas) systems. CRISPR/Cas9 has become the most popular
system due to its simplicity, accuracy, and versatility. This method uses ribonucleopro-
tein complexes that recognize targeted sequences in the genome. These complexes use
synthetic guide RNA to direct a double-stranded DNA break. This break is then repaired
either through homology-directed repair (HDR) using a donor template or through non-
homologous end joining (NHEJ). The most common results of NHEJ are insertions and
deletions (indels) in target sites, often leading to frame shift mutations in the coding se-
quence of the gene. This can result in the introduction of a stop codon, potentially leading
to loss of gene function or, in some rare cases, to enhanced gene expression, for example,
through a nonsense-mediated mRNA decay (NMD), by affecting alternative splicing (for
review, see [12]). Thus, genome edited plants are increasingly displacing mutants with
T-DNA insertions, and the CRISPR/Cas9 genome editing system has become widely used
in applied research to create crops with valuable agronomic traits without introducing
exogenous sequences and with minimal off-target changes in the genome [13,14].

Modern actively developing approaches designed on CRISPR/Cas9 provide the deliv-
ery of effector molecules or markers to certain DNA regions to change the transcriptional
level of gene expression towards activation (CRISPRa) or suppression of gene activity
(CRISPRi). A promising technique for creating mutants with altered gene expression is
the use of Cas9 nuclease, which does not edit DNA but carries some additional functional
elements. Cas9 proteins in which both nuclease domains are inactivated (deadCas9, dCas9)
bind to DNA but cannot make cuts. Depending on where the dCas9:sgRNA binding site is
located, transcription of the corresponding gene stops at either the initiation or elongation
stage. By targeting gRNA to DNA regions where transcriptional repressors bind, the oppo-
site effect can be achieved, i.e., activating gene expression. Another method of transcription
regulation involves creating chimeric proteins by fusing dCas9 with eukaryotic transcrip-
tion factors or the ω subunit of bacterial RNA polymerase. This provides an alternative
approach for creating overexpressing lines with minimal introduction of foreign genes into
the plant genome [12].
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The present review describes the biosynthesis pathways of isoprenoid antioxidants,
flavonoids, ascorbic acid, and glutathione. The mechanisms of the antioxidant activity of
these compounds in relation to various ROS are also described. This review also emphasizes
the success in developing a wide range of plants of different species with increased content
of non-enzymatic antioxidants with deep analysis of the molecular genetic approaches used.
Given the indispensable role of the CRISPR/Cas9 genome editing system in advancing
functional genomics, we pay special attention to CRISPR/Cas9-based editing of plants. The
most promising strategies for creation of crops with the efficient antioxidant properties and
other valuable characteristics are summarized. The further development of these strategies
may represent a universal approach for comprehensive qualitative improvement of plants
under various environmental stresses.

2. Functioning of Non-Enzymatic Antioxidants in Higher Plant Cells and the Ways of
Boosting Their Biosynthesis
2.1. Isoprenoids
2.1.1. Biosynthesis of Isoprenoids

Isoprenoids (also known as terpenoids) belong to secondary metabolites, which in-
clude carotenoids, sterols, polyprenyl alcohols, ubiquinone-10 (UQ), plastoquinone-9 (PQ),
tocopherols, and others. The first stages of their biosynthetic pathways involve the forma-
tion of prenyl side chain precursors and a benzoquinone ring. Isopentenyl diphosphate
(IPP) (Figure 1A) is the universal isoprene precursor for prenyl side chain synthesis of all
isoprenoids. A benzoquinone ring originates from L-tyrosine (Figure 1B) or phenylalanine,
both products of the shikimate pathway, which is a specialized pathway for the biosynthesis
of aromatic compounds.
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Figure 1. The chemical structures of the main precursors in isoprenoid synthesis. (A) Isopentenyl
diphosphate; (B) L-tyrosine; (C) 4-hydroxybenzoic acid.

In the second stage, the condensation of the ring and the prenyl side chain with subse-
quent modifications takes place [15]. The prenyl side chain is synthesized in the cytoplasm
IPP, which is converted by isopentenyl diphosphate isomerase (IPPI) to dimethylallyl
pyrophosphate (DMAPP), followed by the synthesis of numerous isoprenoids, including
PQ and UQ (Figure 2). Information about the genes which encode the main enzymes of the
isoprenoid biosynthesis in Arabidopsis thaliana is given in Table 1.



Antioxidants 2023, 12, 2014 5 of 53Antioxidants 2023, 12, x FOR PEER REVIEW 5 of 55 
 

 

Figure 2. Schematic overview of biosynthetic pathways of isoprenoid antioxidants. Metabolites: 4-

HBA, 4-hydroxybenzoic acid; 4-HPPA, 4-hydroxyphenylpyruvic acid; DAHP, 3-deoxy-D-arabino-

heptulosonate 7-phosphate; DMAPP, dimethylallylpyrophosphate; DMPBQ, dimethyl-phytyl-ben-

zoquinone; GGPP, geranylgeranyl diphosphate; HGA, homogentisate acid; IPP, isopentenyl diphos-

phate; MEP, 2C-methyl-D-erythritol-4-phosphate; MPBQ, methyl-phytyl-benzoquinone; MSBQ, 

methyl-solanesyl-benzoquinone; MVA, mevalonic acid; Phytyl-DP, phytyl diphosphate; PPDHB, 

polyprenyl-dihydroxybenzoate; PPHB, polyprenyl-hydroxybenzoate; PPPP, polyprenyl pyrophos-

phate; Solanesyl-DP, solanesyl diphosphate. Enzymes (colored): 4CL8, peroxisomal 4-coumarate 

CoA ligase; βLCY1, β-carotene cyclase; β-OHase, β-carotene hydroxylase; εLCY, ε- carotene cyclase; 

εOHase, ε-carotene hydroxylase; CoQ1 (SPS3), solanesyl diphosphate synthase; Coq3, Coq5, S-

Figure 2. Schematic overview of biosynthetic pathways of isoprenoid antioxidants. Metabo-
lites: 4-HBA, 4-hydroxybenzoic acid; 4-HPPA, 4-hydroxyphenylpyruvic acid; DAHP, 3-deoxy-
D-arabino-heptulosonate 7-phosphate; DMAPP, dimethylallylpyrophosphate; DMPBQ, dimethyl-
phytyl-benzoquinone; GGPP, geranylgeranyl diphosphate; HGA, homogentisate acid; IPP, isopen-
tenyl diphosphate; MEP, 2C-methyl-D-erythritol-4-phosphate; MPBQ, methyl-phytyl-benzoquinone;
MSBQ, methyl-solanesyl-benzoquinone; MVA, mevalonic acid; Phytyl-DP, phytyl diphosphate;
PPDHB, polyprenyl-dihydroxybenzoate; PPHB, polyprenyl-hydroxybenzoate; PPPP, polyprenyl
pyrophosphate; Solanesyl-DP, solanesyl diphosphate. Enzymes (colored): 4CL8, peroxisomal 4-
coumarate CoA ligase; βLCY1, β-carotene cyclase; β-OHase, β-carotene hydroxylase; εLCY, ε-
carotene cyclase; εOHase, ε-carotene hydroxylase; CoQ1 (SPS3), solanesyl diphosphate synthase;
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Coq3, Coq5, S-adenosyl-l-methionine (SAM)-dependent methyltransferases; Coq2 (PPT1), 4-
hydroxybenzoate polyprenyl diphosphate transferase; Coq6, CoqF, flavin-dependent monooxy-
genases; CRTISO, carotenoid isomerase; FPPS, farnesyl diphosphate synthase; GGPPS, ger-
anylgeranyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; HPPD, 4-
hydroxyphenylpyruvate dioxygenase; HPPR, 4-hydroxyphenylpyruvatereductase; HPT (VTE2),
homogentisate phytyl transferase; HST, homogentisate solanesyl diphosphate transferase; IDI,
isopentenyl diphosphate isomerase; IPPI, isopentenyl diphosphate isomerase; NXS, neoxanthin
synthase; PDS, Phytoene desaturase; PSY, Phytoene synthase; SPS, solanesyl diphosphate synthases;
TAT, tyrosine aminotransferase; VDE, violaxanthin de-epoxidase; VTE1, tocopherol cyclase; VTE3,
MPBQ/MSBQ methyl transferase; VTE4, γ-tocopherol methyltransferase; VTE5, phytol kinase; VTE6,
phytyl-phosphate kinase; ZDS, ζ-carotene desaturase; ZE, zeaxanthin epoxidase. The enzymes of
the cytoplasmic stages of isoprenoid synthesis are marked in purple, the stages and enzymes of
the chloroplast isoprenoid synthesis are marked in turquoise, the stages of tocopherol synthesis are
yellow-brown, the stages of plastoquinone synthesis are green, and the stages of carotenoid synthesis
are red. The stages and enzymes of ubiquinone synthesis are marked in brown.

Table 1. Arabidopsis thaliana genes encoding the key enzymes involved in synthesis of isoprenoid
antioxidants.

Genes Enzyme and Its Alternative Names in
Arabidopsis Functions

At5g16440

IPPI, isopentenyl diphosphate isomerases

Enzymes with dimethyl allyl diphosphate isomerase activity. It is
involved in the biosynthesis of IPP, isopentenyl diphosphate. IPP

is a subject for further condensation reactions to form
intermediates in the synthesis of plastidic and mitochondrial

isoprenoids (carotenoids, tocopherols, PQ, plastochromanol, UQ)

At3g02780

At4g19010 AT4G
19010 Peroxisomal 4-coumarate

CoA ligases
4-HBA (hydroxybezoic acid) biosynthesis from phenylalanine in

peroxisomes for further UQ biosynthesis [16,17]
At5g38120 4CL8

At5g47770 FPPS1 Farnesyl diphosphate
synthases

Isoprenoid farnesyl diphosphate (FPP) biosynthesis for further
UQ biosynthesis [18,19]At4g17190 FPPS2

At2g34630 CoQ1, SPS3, solanesyl diphosphate synthase Isoprene polymerization for further UQ biosynthesis [20]

At4g23660 Coq2, PPT1, 4-hydroxybenzoate polyprenyl
diphosphate transferase

Rate-limiting enzyme in UQ biosynthesis.
Catalysis of benzoquinone ring of 4-HB condensation with

polyisoprenoid side chain of polyprenyl pyrophosphate to form
3-polyprenyl-4-hydroxybenzoate [21]

At3g24200 Coq6 Flavin-dependent
monooxygenases

Aromatic hydroxylation of C-H in different positions in UQ
biosynthesis

At1g24340 CoqF

At2g30920 Coq3 S-adenosyl-l-methionine
(SAM)-dependent methyl

transferasesAt5g57300 Coq5

At2g03690 Coq4 Presumably a scaffold protein, which is responsible for
organization of UQ biosynthetic complex [22]

At5g17230 PSY, phytoene synthase Condensation of two molecules of
GGDP to produce phytoene for further carotenoid biosynthesis

At4g14210 PDS, phytoene desaturase Desaturation of phytoene to ζ-carotene by introduction of four
double bonds into phytoene for further carotenoid biosynthesis

At3g04870 ZDS, ζ-carotene desaturase Reduction of ζ-carotene to lycopene by introduction of four
double bonds for further carotenoid biosynthesis
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Table 1. Cont.

Genes Enzyme and Its Alternative Names in
Arabidopsis Functions

At1g06820 CRTISO, carotenoid isomerase

Catalyzes cis–trans isomerization of poly-cis-carotenoids to
all-trans-lycopene. Together with PDS and ZDS, CRTiso is

required to complete the synthesis of lycopene from phytoene for
further carotenoid biosynthesis [23,24]

At3g10230 βLCY1, β-carotene cyclase, ATLCY, LYC,
Lycopene cyclase

Introduction of a ring at both ends of symmetrical lycopene to
form the bicyclic β-carotene [25]

At5g57030 εLCY, ε-carotene cyclase Required to form lutein [26]

At4g25700 β-OHase1
β-carotene hydroxylases Conversion of beta-carotene to zeaxanthin via cryptoxanthin [27]

At5g52570 β-OHase2

At3g53130 εOHase, ε-carotene hydroxylase Involved in epsilon ring hydroxylation to carotene for lutein
biosynthesis [28]

At5g67030 ZE, zeaxanthin epoxidase Introduction of epoxide groups into both rings of zeaxanthin to
form violaxanthin [29]

At1g08550 VDE, De-epoxidation of violaxanthin to zeaxanthin [30]

At1g06570
HPPD, 4-hydroxyphenylpyruvate dioxygenase

(α-ketoisocaproate dioxygenase, KIC
dioxygenase)

Homogentisate (HGA) synthesis from hydroxyphenylpyruvate
for further biosynthesis of PQ, plastochromanol, and

tocopherols [31]

At5g04490 VTE5, phytol kinase Phosphorylation of free phytol for further biosynthesis of
tocopherols [32]

At1g78620 VTE6, phytyl-phosphate kinase A key enzyme for phytol phosphorylation for further
biosynthesis of tocopherols and phylloquinone [33]

At1g78510 SPS1
Solanesyl diphosphate

synthases

Solanesyl diphosphate condensation from geranylgeranyl
diphosphate (GGDP) and isopentenyl phosphate (IPP) for further

biosynthesis of PQ and plastochromanol [34–36]At1g17050 SPS2

At5g09820 FBN5-B Fibrillins Specifically interacted with solanesyl SPS1 and SPS2

At3g11945 HST, homogentisate solanesyl diphosphate
transferase

Condensation of homogentisate (HGA) with solanesyl
diphosphate with formation of methyl-solanesyl-benzoquinone

(MSBQ) for further biosynthesis of PQ and plastochromanol

At2g18950 HPT, homogentisate phytyl transferase (VTE2)
Catalysis of condensation of HGA and Phytyl-DP to form

dimethyl-phytyl-benzoquinone (MPBQ) for further biosynthesis
of tocopherols

At3g63410
VTE3

2-methyl-6-phytyl-1,4-benzoquinol
methyltransferase

Methyl-solanesyl-benzoquinone (MSBQ) conversion to PQ and
methyl-phytyl-benzoquinone (MPBQ) conversion to DMPBQ for

further biosynthesis of tocopherols [37]

At4g32770 VTE1, tocopherol cyclase Plastochromanol-8 synthesis from PQH2; α-tocopherol
biosynthesis from γ-tocopherol [37]

At1g64970 VTE4, G-TMT,
γ-tocopherol methyltransferase

Conversion of δ- and γ-tocopherols (and tocotrienols) to β- and
α-tocopherols [37]

The transformation of IPP to DMAPP occurs both in the stroma of chloroplasts and
in the matrix of mitochondria with the involvement of polyprenyl diphosphate synthase
(PPS), such as geranyl diphosphate synthase (GPPS), farnesyl diphosphate synthase (FPPS),
and geranylgeranyl diphosphate synthase (GGPPS) [38,39]. These diphosphate synthases
catalyze the formation of polyprenyl diphosphates with various chain lengths, making
them the key enzymes in the biosynthesis of many isoprenoid compounds, such as PQ and
UQ, vitamin E, carotenoids, and others [40].
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Ubiquinone Synthesis

For the synthesis of UQ, IPP is transported to mitochondria, where further stages of
UQ synthesis are carried out. In plants, the isoprene subunits for the UQ side chain are
generated through the mevalonate (MVA) pathway, which takes place both in cytoplasm
and peroxisomes (Figure 2). The produced precursors are further used for the biosynthesis
of sesquiterpenes, triterpenes, sterols, and brassinosteroids [41,42]. The next step of UQ
synthesis is the formation of polyisoprenoid tail of polyprenyl pyrophosphate (PPPP)
in mitochondria by solanesyl diphosphate synthase (SPS3), which is trans-polyprenyl
diphosphate synthase, also called Coq1. This is one of the most important enzymes in
UQ synthesis, since Arabidopsis AtSPS3 knockout mutants were embryo-lethal [20]. The
most likely substrate for SPS3 in plants is farnesyl diphosphate (FPP), as evidenced by the
reduced UQ level in loss-of-function FPP synthase mutants FPS1 and FPS2 [43].

The aromatic ring precursor for UQ biosynthesis is 4-hydroxybezoic acid (4-HB,
Figure 1C), which is derived from either L-phenylalanine or L-tyrosine. Phenylalanine is
converted to p-coumaric acid through the phenylpropanoid pathway, which also precedes
the synthesis of flavonoids in cytoplasm. Formed in this way, flavonoid kaempferol serves
as one of the 4-HB sources [44]. The other pathway involves the conversion of p-coumaric
acid into 4-HB by β-oxidative metabolism, in which p-coumaric acid is imported into per-
oxisomes [45]. In peroxisomes, 4-coumarate CoA ligases (AT4G19010 and 4CL8) catalyze
the formation of p-coumaroyl-CoA with subsequent 4-HB formation.

Coq2, 4-hydroxybenzoate polyprenyl diphosphate transferase (PPT1), is another
important enzyme in UQ biosynthesis, which provides the catalysis of its rate-limiting
stage [15]. PPT1 transfers the polyisoprenoid chain of PPPP to the 4-HB ring, generating
the first lipophilic UQ intermediate, polyprenyl-hydroxybenzoate (PPHB) [21]. Further UQ
biosynthesis requires subsequent hydroxylation of C1, C5, and C6 positions of the aromatic
ring in PPHB structure catalyzed by flavin-dependent monooxygenases (Coq6 and CoqF)
and S-adenosyl-l-methionine-dependent methyltransferases (Coq3 and Coq5) [46]. The co-
expression of the genes involved in UQ biosynthesis in mitochondria as well as of the genes
involved in 4-HB biosynthesis and the MVA pathway was shown in Arabidopsis [20,47].
In the context of plants, both the regulation of UQ biosynthesis and the response of the
genes encoding UQ biosynthetic enzymes to environmental stimuli are less studied than in
yeasts and mammals [46].

Plastoquinone Synthesis

The synthesis of the benzoquinone ring for all isoprenoids synthesized in chloroplasts,
as described above, originates from L-Tyrosine (Figure 2). The resulting L-Tyrosine is
converted by 4-hydroxyphenylpyruvate dioxygenase (HPPD) to homogentisate acid (HGA)
via 4-hydroxyphenylpyruvic acid (HPPA). It is HGA that is the benzene quinone ring pre-
cursor for PQ and tocopherols in plants. This is an important step in the synthesis of plastid
tocopherols in plants. The second key component in PQ synthesis, solanesyl diphosphate,
is synthesized from geranylgeranyl diphosphate (GGDP) and IPP by a reaction catalyzed
by solanesyl diphosphate synthase (SPS). This is one of the most important regulatory
enzymes in PQ synthesis, since under exposure of Arabidopsis plants to increased light
intensity, an accumulation of PQ was observed accompanied by the increase of transcript
levels of the genes encoding the enzymes of plastoquinone biosynthesis and, first of all,
the gene encoding SPS1 [48]. Condensation of HGA ring and side chain of solanesyl
diphosphate is the first direct step in PQ synthesis via a methyl-solanesyl-benzoquinone
intermediate. The formation of PQ and its product plastochromanol-8 (hereafter referred to
as plastochromanol) occurs by tocopherol cyclase enzymes (VTE3 and VTE1).

Tocopherol Synthesis

VTE3 and VTE1 are also involved in the biosynthesis of γ- and δ-tocopherols (Figure 2).
Phytyl-PP for tocopherols synthesis originates from GGDP by phosphorylation of its free
phytol with VTE5 or VTE6. Both of these enzymes are important for vitamin E synthesis:
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tocopherol levels reduced to 20% in VTE5 knockout Arabidopsis plants, compared to the
wild-type plants [32]. Phytol phosphorylation, catalyzed by VTE6 was also shown to be
important for phylloquinone biosynthesis, which in turn is required for Photosystem I
(PS I) complex functioning and stability [33]. The VTE6 knockout Arabidopsis mutants
exhibited an impaired function of PS I due to a higher rate of PS I subunits degradation
and increased PS I susceptibility to photodamage, compared to the wild-type plants.

Phytyl-PP molecules are condensed with HGA by homogentisate prenyl transferase
(HPT, VTE2) to yield 2-methyl-6-phytylplastoquinol (MPBQ), which is methylated by
VTE3 to form 2,3-dimethyl-5-phytyl-1, 4-benzoquinone (DMPBQ). MPBQ and DMPBQ are
substrates for VTE1 to yield δ- and γ-tocopherols (Figure 2). Finally, γ-tocopherol methyl-
transferase (VTE4) converts δ- and γ-tocopherols (and tocotrienols) to β- and α-tocopherols.
HPT is the enzyme which catalyzes the limiting step in tocopherols biosynthesis [49].

Carotenoid Synthesis

Carotenoid synthesis is also a branch of terpenoid plastid biosynthesis from the same
precursors as for tocopherols and PQ (Figure 2). Carotenoid synthesis starts from the
condensation by the enzyme phytoene synthase (PSY) of two GGDP molecules to produce
phytoene. Two desaturases, phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS),
catalyze similar dehydrogenation reactions by introducing four double bonds to form
tetra-cis-lycopene.

The knockout of the PDS gene in many crop species resulted in a phenotype with
pigmentation loss. Albino regenerants of cells with edited PDS gene have been obtained for
Malus domestica plants, for diploid and octoploid strawberries, yams, and onion [50–53]. The
regenerants of carrot cells with mutations in the region of the DcPDS and DcMYB113-like
genes were depigmented [54].

Desaturation requires a plastid terminal oxidase and plastoquinone in photosynthetic
tissues [55–57]. In the next step, the carotenoid isomerase (CRTISO) catalyzes cis–trans iso-
merization resulting in all-trans-lycopene. This enzyme is important for optimal carotenoid
synthesis in etioplasts, chromoplasts, and chloroplasts [58]. Mutant plants deficient in
CRTISO activity accumulate various cis-isomer biosynthetic intermediates when grown
in the dark, but these intermediates can be photoisomerized in the light and yield viable
plants, albeit with reduced lutein levels [24]. The next steps of carotenoid biosynthesis
split into two main branches differing by cyclic end-groups. One branch is responsible
for the synthesis of α-carotene and its derivatives by lycopene epsilon cyclase (εLCY) and
lycopene beta cyclase (βLCY). Their altered expression in mutants resulted in lutein levels
ranging from 10% to 180% of those in the wild-type plants [59]. With participation of
βLCY, lycopene is cyclized to introduce β-ionone, which leads to the other β,β branch of
carotene synthesis. The functioning of this branch leads to the synthesis of β-carotene and
its derivatives, provitamin A and the components of the xanthophyll cycle, violaxanthin,
antheraxanthin, and zeaxanthin.

The Orange genes (Or), which were found in many plant species, are a class of regulatory
genes that mediate carotenoid accumulation [60]. It has been shown that, in sweet potato,
the product of IbOr can protect PSY and the oxygen-evolving enhancer protein PsbP of
photosystem II (PS II) [61,62]. The product of this gene does not directly participate in
carotenoid biosynthesis but is involved in chromoplast differentiation, creating a storage
site for carotenoids [63]. Two spontaneous natural mutations in the Or were recognized
in Brassica oleracea, which were responsible for the orange color of the inflorescences [64].
The overexpression of the Or leads to an increase in carotenoid content in transgenic
potatoes [65] and maize [66].

During fruit ripening, a signal transduction cascade in response to the plant hormone
ethylene involves proteins of the ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE
3-LIKEs (EIN3/EILs) family. In tomato plants, CRISPR/Cas9 knockouts of eil2 were shown
to produce yellow or orange fruits, in contrast to the red wild-type tomato fruits. Further
analysis of the transcriptome and metabolome data of the ripe fruits of the mutant and
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the wild-type showed that TF EIL2 is involved in the accumulation of β-carotene through
direct regulation of the expression of the SlERF.H30 and SlERF.G6 genes, which, in turn,
are involved in the regulation of the βLCY gene in tomatoes (SlLCYB2) [67].

Thylakoid lumen acidification under high light conditions activates violaxanthin
de-epoxidase, resulting in zeaxanthin formation from violaxanthin through antheraxan-
thin [68]. The interconversion reaction, which is the epoxidation of zeaxanthin by zeax-
anthin epoxidase localized on the stromal side of the thylakoid membrane, takes place
under low light intensities [29]. Conversion of violaxanthin to neoxanthin is catalyzed by
neoxanthin synthase (NXS).

Fibrillins are lipid-associated proteins which are known as structural components of
carotenoid sequestering in plant chromoplasts [69,70]. Some fibrillins have the ability to
bind proteins involved in the synthesis of plastid isoprenoids, thus contributing to their
activity. Fibrillin 5 (FBN5) was found to be essential for PQ biosynthesis. FBN5 stimulates
enzymatic activity of SPS1 and SPS2 through binding to its solanesyl moiety [71]. The
same authors have shown that homozygous Arabidopsis mutants with the FBN5 encoding
gene knocked out were seedling-lethal, and the growth rate of transgenic plants with low
FBN5-B levels was slower than that of wild-type plants. FBN6 was shown to interact with
PSY and increase its enzymatic activity [72].

2.1.2. Activity of Isoprenoids towards ROS

Quinones, both plastoquinone, the mobile electron carrier in the photosynthetic
electron-transport chain of the chloroplast, and ubiquinone, the mobile electron carrier in
the respiratory electron-transport chain of the mitochondria, possess efficient antioxidant
activity. The fully reduced PQ, plastohydroquinone (PQH2), and UQ, ubihydroquinone
(UQH2), neutralize superoxide anion radical (O2

•−), protecting against lipid peroxidation of
the membranes during oxidative stress conditions of both abiotic and biotic nature [73–77].
It is known that O2

•−, especially in the protonated state (perhydroxyl radical, HOO•)
initiates lipid peroxidation [76,78].

O2
•− is the primary singly reduced product of molecular oxygen reduction. In thy-

lakoids, O2
•− is generated at the level of PS I outside the membrane by FA/FB terminal

clusters and to a high extent inside the thylakoid membranes by phyllosemiquinone (the
singly reduced phylloquinone or vitamin K) [4,79] presumably in A1 sites under stress
conditions [80]. Moreover, O2

•− can be produced in the plastoquinone pool (PQ pool) [81]
as well as in some other complexes of the chain under specific conditions (reviewed in [80].
In the PQ pool, O2

•− is produced in the reaction of singly reduced PQ, plastosemiquinone
(PQ•−), with molecular oxygen. Presumably, PQ•− appears in the PQ pool owing to com-
proportionation of PQ and PQH2 molecules rather than as the result of PQH2 oxidation in
the plastohydroquinone-oxidizing site of cytochrome b6/f complex (reviewed in [82]).

In the mitochondria, the electron transfer to molecular oxygen with generation of
O2
•− can proceed in complex I and complex III. In complex I, such a reducing agent

is presumably reduced flavin mononucleotide [83], and at the level of complex III, it is
believed to be a singly reduced ubiquinone, ubisemiquinone (UQ•−), formed as a result
of the oxidation of UQH2 in the quinol-oxidizing site of complex III [84]. Meanwhile, it
is possible to predict that in the UQ pool, as in the PQ pool, UQ•− may also be produced
owing to comproportionation of UQ and UQH2.

Reactions of the reduced quinones with O2
•− were studied in detail; in an aqueous

medium, the constant rate of second order reaction is estimated to be around 108 M−1 s−1 [85],
and around 104 M−1 s−1 in acetonitrile [86]. We propose that the reaction of PQH2 with
O2
•− as well as the reaction of UQH2 with O2

•− occurs predominantly at the mem-
brane/water phase boundary, where the rate constant of 108 M−1 s−1 is applicable. We
have previously estimated that the equilibrium constant of the reaction of PQH2 with O2

•−

should be equal to or even higher than 109 [82].
The reaction of the reduced quinone with O2

•− results in the formation of H2O2 [77,87],
which possesses a lower reactivity among ROS. It has now been proven that PQH2 is
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also able to react with H2O2 [86,88,89]; however, the rate constant of the reaction of hy-
droquinones with H2O2 is rather low, approximately 103 M−1 s−1–104 M−1 s−1 in the
phosphate buffer [88].

Another aspect of the antioxidant activity of the reduced quinones is related to their
ability to quench singlet oxygen, 1O2, which is known to initiate lipid peroxidation as
well. 1O2 is formed as a result of the spin inversion of one of the unpaired electrons
in the O2 molecule. This is especially relevant to chloroplasts, where the main way of
1O2 generation is the energy transfer from the chlorophyll in triplet state (3Chl) to O2.
That process primarily occurs in PS II of the photosynthetic electron-transport chain in
thylakoids [90,91]. The energy of 3Chl is approximately 1.3 eV, allowing the molecular
oxygen to be converted into 1O2 (~1 eV).

PQH2 neutralizes 1O2 [86,92,93] owing to either chemical or physical mechanisms
with a rate constant of approximately 108 M−1 s−1 [94,95]. The physical mechanism of
quenching is based on the energy transfer from 1O2 to PQH2, resulting in conversion
of 1O2 back to O2, while the chemical mechanism of quenching is due to oxidation of
PQH2 (presumably of its isoprenoid chain), resulting in generation of the plastoquinone
derivatives, hydroxyplastoquinones.

The ability to quench 1O2 is also typical for other prenylquinols, including tocochro-
manols such as tocopherols, tocotrienols, and plastochromanol [95]. Tocopherols in organic
solvents can neutralize both O2

•− with the rate constant of 106 M−1 s−1 [96] and 1O2
with the rate constant of 108 M−1 s−1 [94], as well as scavenge OH• [97] and decompose
H2O2 [98].

Although the reaction of UQH2 with 1O2 is less studied, it can be assumed that this
activity is also characteristic of ubihydroquinone and both mechanisms, physical and
chemical, can be applied.

Quinones may not only directly quench 1O2 but also quench 3Chl, therefore preventing
the formation of 1O2 [99]. Carotenoids, the tetraterpenoid organic pigments, exert an
antioxidant activity through the same pathway, i.e., due to their ability to quench both
1O2 and 3Chl. Carotenoids are subdivided into two main groups. The first group is
xanthophylls, which are the oxygenated carotenoids. The representatives of this group in
thylakoids are violaxanthin, zeaxanthin, lutein, neoxanthin, fucoxanthin, etc. The second
group is carotenes; in thylakoids these are β-carotene and lycopene. Quenching of 3Chl by
carotenoids mainly proceeds in the antenna system of PS II [100,101]. Alboresi et al. [102]
showed that the lack of lutein and zeaxanthin resulted in a higher generation of 1O2 in
thylakoids. Telfer [100] suggested that the main function of β-carotene of the PS II reaction
center is the quenching of 1O2 if it is generated there.

Carotenoids, similar to quinones, quench singlet oxygen by physical and chemical
mechanisms, and it has been shown that chemical quenching is much weaker than physical
quenching [103]. The rate constants of physical quenching of 1O2 by β-carotene and zeax-
anthin were estimated to be 7× 109 M−1 s−1 and of 7× 108 M−1 s−1 for fucoxanthin, while
the rate constants of chemical quenching for β-carotene and zeaxanthin were approximately
4 × 106 M−1 s−1 and 3 × 105 M−1 s−1 for fucoxanthin [103]. Similar results were presented
in [104].

However, there is a series of works in which, using biochemical and biophysical
methods, researchers have shown that some carotenoids can be involved in the formation
of singlet oxygen themselves; for example, Ashikhmin et al. [105] provided the evidence
that phytofluene, the uncolored C40 carotenoid with a short chain, effectively generated
1O2 under UVA conditions, while it was able to quench 1O2 in the dark.

2.1.3. Genetic Approaches for Boosting Isoprenoid Production in Plants

The biosynthetic pathway of isoprenoid synthesis involves numerous enzymes (see
Table 1 and Figure 2). For many of these enzymes, the impact of overexpression or knockout
on the content of various isoprenoids and the characteristics of the mutant plants have
been studied. The regulation of isoprenoid biosynthesis is a complex, multi-level process,
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including transcriptional, epigenetic, and post-translational control. At each of these stages,
it is possible to interfere with genetic engineering methods. The content of isoprenoids
in plants can be changed using different approaches, such as introducing additional gene
cassettes, which affect the intensity of enzyme biosynthesis or by introducing targeted
mutations into the genes of these enzymes.

One of the approaches for the elevation of the level of various isoprenoids is upreg-
ulation of the expression of the genes encoding the enzymes of the initial steps of the
isoprenoid biosynthetic pathway. However, such an approach may be associated with
certain challenges, since the correspondent metabolites are used in various branches of
the biosynthesis of antioxidants further downstream. For instance, Arabidopsis plants
overexpressing the FPPS encoding gene (see Figure 2) exhibited lower levels of endogenous
isoprenoids compared to the wild-type plants [106]. Moreover, these plants displayed
necrotic damage accompanied by an increase in hydrogen peroxide accumulation, espe-
cially under constant illumination. It appears that elevation of FPPS expression leads to
metabolic disruptions, possibly due to the rapid depletion of IPP (isopentenyl diphosphate),
a precursor for all isoprenoids.

Another enzyme, HPPD, plays a crucial role in the metabolic pathway leading to the
synthesis of tocopherols, PQ, and plastochromanol. Studies involving overexpression of
the HPPD gene yielded contradictory results. For example, overexpression of HPPD in Ara-
bidopsis led to an approximately 40% increase in tocopherol accumulation in leaves [107].
In tobacco plants with overexpression of the barley HPPD gene under the 35S promoter,
there was no increase in tocopherol content in the leaves; however, tocopherol levels in-
creased in seeds [108]. Interestingly, these tobacco plants exhibited a significant (up to
50% of wild-type levels) increase in PQ content in leaves [107]. Transgenic sweet potato
plants overexpressing HPPD were found to be more resistant to drought (cessation of
watering for 14 days), salinity (watering with 200 mM NaCl), and oxidative stress (induced
by incubating leaf discs in 5 µM methyl viologen) compared to non-transgenic plants [109].
Similar to the findings in Falk et al. [108], the authors of that study did not observe an
increase in tocopherol content in the leaves of transgenic sweet potatoes. Unfortunately,
the authors did not analyze the content of plastoquinones and plastochromanol, so the
mechanism of resistance of these transgenic plants remains unclear.

Nevertheless, when enzymes are exclusively involved in the biosynthesis of specific
types of isoprenoids, successful genetic transformations have been reported. For example,
in Arabidopsis, the overexpression of the gene encoding peroxisomal 4CL involved in the
oxidation of p-coumaric acid for the subsequent biosynthesis of UQ (Figure 2) led to an
approximately 1.5- to 2-fold increase in UQ accumulation [16,17].

The most promising approaches to enhance isoprenoid content involve genetic engi-
neering manipulations with enzymes catalyzing the last steps of biosynthesis of certain
antioxidants of interest. Overexpression of VTE1, which catalyzes both the penultimate
step in tocopherol biosynthesis and the conversion of PQ to plastochromanol (Figure 2),
resulted in a seven-fold increase in tocopherol accumulation in Arabidopsis leaves [110].
Another study involving VTE1-overexpressing Arabidopsis plants demonstrated a signif-
icant accumulation of plastochromanol in leaves, approximately 60 times higher than in
wild-type plants [111]. Tobacco plants overexpressing the VTE1 gene from Arabidopsis
exhibited increased resistance to drought stress, with reduced lipid peroxidation and H2O2
content under stress conditions [112]. Rice plants overexpressing VTE1 (using a construct
with two 35S promoters) demonstrated enhanced resistance to salinity stress, along with
decreased H2O2 levels under stress conditions [113].

It is known that α-tocopherol exhibits the highest biological activity. That is why
many studies focus on the strategy of increasing the content of this form of tocopherol in
plants. The enzyme VTE4 is involved in the final stage of α-tocopherol biosynthesis (Table 1,
Figure 2). It has been used extensively for genetic engineering modifications of various
plant species, including the increase of α-tocopherol content in soybean seeds to enhance
their nutritional value. The expression of the gene encoding VTE4 from Perilla frutescens
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under a seed-specific promoter (vicilin) resulted in a ten-fold increase in α-tocopherol
content in soybean seeds [114]. Overexpression of AtVTE4 in soybean seeds showed a
four-fold increase in α-tocopherol content [115], although the overall tocopherol content
changed only slightly.

In the study by Li et al. [116], screening was conducted to assess the impact of overex-
pressing various tocopherol biosynthesis genes, both separately and in certain combinations
(VTE2 + VTE4 and VTE3 + VTE4), on tocopherol content. The highest accumulation of
tocopherols in the form of α-tocopherol occurred in Arabidopsis plants with simultaneous
overexpression of VTE2 and VTE4, approximately six times higher than in the wild-type
plants. Additionally, a high level of tocopherol accumulation was demonstrated in trans-
genic Arabidopsis plants with increased VTE2 content [116]. Interestingly, transgenic
Codonopsis lanceolata plants overexpressing the Arabidopsis gene AtVTE4 exhibited a higher
antimicrobial activity against Staphylococcus aureus and E. coli compared to the wild-type
plants [117]. The increased antimicrobial activity may be associated with the elevated
accumulation of tocopherols in these transgenic plants that was approximately six times
higher than in the leaves of wild-type plants.

Because UQ is a component of the respiratory chain common to all eukaryotes, gene
transfer from other eukaryotic organisms, such as yeast, into plant genomes is feasible. The
expression of CoQ2 from yeast led to a six-fold increase in ubiquinone content in tobacco
leaves [118]. The resulting transgenic plants showed increased resistance, compared to the
wild-type plants, against salinity stress (300 mM NaCl) and oxidative stress induced by the
addition of 50 µM methyl viologen [118].

Overexpression of the SPS enzymes (Figure 2) in different plant species has led to
increased accumulation of UQ or PQ, depending on the specific variant of the SPS gene used.
In Salvia miltiorrhiza plants, the overexpression of the SmPP1 gene resulted in approximately
a 2-fold increase in PQ content, while the overexpression of the SmPP2 gene led to a 1.5-fold
increase in UQ content [119].

In Arabidopsis plants with the overexpression of SPS1, the content of PQ increased
approximately 1.5- to 2-fold, and the content of plastochromanol increased approximately
3-fold compared to that in wild-type plants [48]. These transgenic plants showed greater
resistance to high light conditions (1300 µmol photons/m2 s) compared to the wild-type
plants: they exhibited decreased lipid peroxidation and PS II photoinhibition. Since there
was a significant increase in plastochromanol content in these plants, it can be speculated
that the increased resistance is determined by the higher plastochromanol content. How-
ever, despite the similarly increased plastochromanol content, the plants overexpressing
VTE1 did not differ from wild-type plants in their resistance to high light conditions [48].
Furthermore, plants with a VTE1 knockout, which were highly sensitive to increased light
conditions, regained their resistance to light stress when SPS1 was overexpressed in these
plants [120]. Therefore, increasing PQ content in leaves by genetic engineering approaches
could be a promising way to enhance plant sustainability under photoinhibitory conditions.

As detailed above, carotenoids also play an important antioxidant role. Furthermore,
β-carotene serves as a precursor to vitamin A, which humans cannot synthesize on his
own and must obtain it from food. Both of these factors explain the numerous attempts to
increase the content of carotenoids in the leaves and fruits of plants.

One of the best-known examples of plants with increased β-carotene content is
“Golden Rice”, created through the simultaneous overexpression of the narcissus gene
encoding PSY (Figure 2) and a bacterial carotene desaturase [121]. Subsequently, “Golden
Rice II” was developed, using the PSY gene from maize, resulting in a 23-fold increase
in carotenoid content compared to the original “Golden Rice” (Table 1) [122]. Seeds of
Brassica napus, known as “Golden Canola”, were generated through the overexpression
of a bacterial phytoene synthase gene, leading to carotenoid levels in these seeds approxi-
mately 50 times higher than in non-transgenic seeds [123]. Similar approaches were used
to produce “Golden Maize” seeds [124]. In transgenic bananas, the highest accumulation
of carotenoids was detected in lines carrying the banana PSY gene rather than the maize
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PSY. In these bananas, the carotenoid content reached 55 µg/g, exceeding that in “Golden
Rice II” seeds [125].

An alternative approach for obtaining plants with increased β-carotene content in-
volves inhibiting the activity of enzymes that use β-carotene as a substrate. Orange plants
with a significant (up to 36 times) increase in β-carotene content were generated through
the suppression of β-carotene hydroxylase (β-OHase) expression using RNA interference
(Figure 2, Table 1) [126]. The antioxidant properties of these oranges were tested on a model
organism, a small nematode worm Caenorhabditis elegans. The study revealed that the sur-
vival rate of worms under oxidative stress conditions (hydrogen peroxide supplementation)
increased by 20% when they were fed oranges with enhanced β-carotene content [126].

To increase the β-carotene content in sweet potatoes, RNA interference of β-OHase
was also employed to suppress its expression level [127]. The total carotenoid content in
these transgenic plants increased by 10 to 18 times, β-carotene content increased by 16 to
35 times, and the amount of zeaxanthin increased by 5 to 15 times. The resulting plants
demonstrated increased resistance to salinity (150 mM NaCl) and reduced accumulation of
ROS under stress conditions [127].

On the other hand, overexpression of β-OHase in Arabidopsis only led to a slight
reduction in the amount of β-carotene due to its conversion into xanthophylls, along with
a significant accumulation of xanthophyll carotenoids, reaching up to 40% of the total
carotenoid content under moderate light conditions [128]. These transgenic Arabidopsis
plants showed increased resistance to higher light intensity and elevated temperatures
(1000 µmol photons/m2 s, 40 ◦C) [128], which is in line with the role of xanthophylls in
protecting plants against photoinhibition. Additionally, the transgenic Arabidopsis plants
accumulated significantly lower amount of anthocyanin (see below), which also serves as a
stress indicator for Arabidopsis. The levels of lipid peroxidation in the leaves of transgenic
plants were also reduced under high light conditions compared to wild-type plants [128].

Mulberry plants overexpressing β-OHase under the 35S promoter displayed increased
resistance to UV radiation, high light (1000 µmol photons/m2 s), and heat stress (40 ◦C),
compared to wild-type plants, resulting in reduced accumulation of ROS in the leaves [129].
In Lisianthus plants, overexpression of the Arabidopsis gene encoding β-OHase also
led to a significant increase in carotenoid content (1.5–3 times) and, notably, enhanced
accumulation of zeaxanthin (1.5–2 times) [130]. These transgenic plants were also more
resistant to light stress [130]. Another way to increase zeaxanthin content in plants is by
gene silencing of zeaxanthin epoxidase (see the carotenoid biosynthesis pathway in Figure 2).
For example, using this approach on potato plants resulted in the growth of zeaxanthin
content in tubers up to 130 times greater compared to the control plants [131].

LCYs are the key enzymes in the carotenoid biosynthesis pathway in higher plants
(Table 1, Figure 2). Therefore, in many experimental studies on various plant species, LCY
encoding genes are the targets for genome editing in order to increase the accumulation
of bioactive lycopene. Tomato plants with a five-fold increase in lycopene content in
fruits compared to unedited plants were transformed using the multiplex editing system
CRISPR/Cas9. This approach resulted in simultaneous knockout of five genes: Stay-green
1 (SGR1) gene for the stimulation of lycopene synthesis, εLCY, and three βLCY genes,
preventing cyclization of lycopene. Single, double, triple, and quadruple mutants of these
genes were characterized, with the highest accumulation of lycopene in fruits for SGR1
single mutants [132]. Reducing the activity of εLCY should lead to an increase in β-
carotene and zeaxanthin, but it may also result in a decrease in lutein levels that could have
negative consequences for plants. There are mentions in the literature about the specific
reduction of εLCY activity in tubers from potato plants obtained using antisense sequences
of the εLCY gene fragments introduced under the control of patatin promoter, which is
specific for tuber tissues. In the resulting transgenic plants, carotenoid content in the tubers
increased 2.5 times, and β-carotene content increased 14-fold [133]. In order to increase the
provitamin A content, the fifth exon of the εLCY gene was transformed in an embryogenic
cell suspension of commercial banana varieties, specifically the Cavendish, Grand Naine,
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and Rasthali cultivars, followed by regeneration of transformed plants. The β-carotene
content in the flesh of mature fruits of edited banana lines was six times higher compared
to unedited fruits, while the amounts of lutein and α-carotene were reduced [134].

Using CRISPR/Cas9 genomic technology, a single His in position 523 was replaced by
Leu in εLCY in rice callus culture [135]. For precise targeted mutagenesis, a matrix delivery
system based on a geminiviral replicon was used, which made it possible to significantly
increase the frequency of homologous recombination and to obtain the transformed rice
calli with a bright orange color with a success rate of 1.32%. The total content of carotenoids
in the resulting edited callus lines was 6.8–9.6 times higher than in the wild-type callus. The
authors also showed a decrease in the accumulation of ROS in the edited lines under salt
stress conditions. Unlike traditional methods that rely on randomly selecting mutations
and monitoring their effects, this work specifically targeted the εLCY gene for precise
editing. It was performed as a follow-up to the study by Ishihara et al. [136], who found
that a polymorphism of one nucleotide in the εLCY gene (H523L) led to an increase in the
accumulation of carotenoids in rice calli. This experiment demonstrates the possibility
of the replacement of the genes by “elite alleles” within one generation, which makes an
invaluable contribution to the development of new varieties of agricultural plants.

Nicotiana tabacum K326 plants, which are the knockouts of the homologous genes encod-
ing εLCY, Ntε-LCY1 and Ntε-LCY2, were obtained using CRISPR/Cas9 by Song et al. [137].
The authors studied the phenotypes of the mutants, the expression pattern of carotenoid
biosynthesis pathway genes, and the response to light stress. This made it possible to
identify functional differences in the expression of homologues. Mutations in the Ntε-LCY
gene regions led to an increase in growth rate of leaves, an accumulation of carotenoids
and chlorophyll, and an increase in stress resistance to strong light of tobacco plants. All
these effects were most pronounced in Ntε-LCY2 mutant plants [137].

The use of the Target activation induced cytidine deaminase (Target-AID) technology
results in obtaining the alleles of the DNA damage UV binding protein 1 (SlDDB1)/de-etiolated1
(SlDET1) genes, and the genes encoding βLCY (SlCYC-B) that affects the accumulation of
carotenoids in tomatoes. The content of carotenoids, lycopene and β-carotene in the edited
lines was higher compared to the wild-type tomato plants [138,139]. This study showed
the possibility of simultaneous replacement of nucleotides in several target genes in one
plant within one generation, that has potential advantages in breeding work.

Another promising approach to increase the content of carotenoids in plants is the
expansion of storage space for carotenoids together with intensification of their biosynthesis.
The previously described Or gene is not only a chaperone capable of binding to PSY, but
is also involved in chromoplast formation, a storage site for carotenoids [63]. This gene
encodes the cysteine-rich protein DnaJ and regulates the accumulation of carotenoids in
chromoplasts [140,141]. The use of the CRISPR/Cas9 system makes it possible to introduce
targeted mutations into various parts of the Or gene and to identify the parts of the gene
where the changes would lead to an increase in carotenoid accumulation. A model cell
line of orange rice callus was obtained by targeted mutagenesis of the OsOr gene. The
authors showed that it was the single guide RNA targeting region between the third exon
and the third intron which produced the orange calli phenotype. The transformed cell line
accumulated more lutein and β-carotene compared to the wild-type callus line and was
characterized by an increase in the level of transcripts of the genes encoding the enzymes of
the carotenoid metabolic pathway: PSY2, PSY3, PD, ZDS, and βLCY. Orange callus plants
also showed increased tolerance to salt stress [142].

An interesting and promising approach involves simultaneously overexpressing genes
in the isoprenoid biosynthesis pathway that are located upstream of the target product and
reducing the activity of downstream enzymes. For example, the knockdown of the activity
of β-OHase in wheat endosperm led to an approximately 10-fold increase in β-carotene
content [143]. Overexpression of the PSY gene resulted in an approximately 14-fold increase
in β-carotene content. As a result, the simultaneous use of both of these strategies led to an
approximately 30-fold increase in β-carotene content in wheat endosperm [143].
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There are examples of successful editing of genes encoding the proteins of isoprenoid
catabolism resulting in an increase in isoprenoid content. One such example is the editing of
Carotenoid cleavage dioxygenases (CCDs), which belong to a small family of genes that play an
important role in carotenoid degradation. Silencing of the CCD4 gene using CRISPR/Cas9
in banana plants resulted in an increase of β-carotene content of 1.3–1.4 times in leaves and
of 2.3–2.7 times in roots compared to the wild-type plants [144].

A new step in plant biotechnology involved the production of marker-free rice plants
with an increased content of carotenoids in grains by the insertion of a biosynthesis gene
cassette into two specially selected regions of the plant genome, called genomic safe harbors
(GSHs). The integration of genetic constructs into GSHs avoids negative consequences
of accidental random insertions into vital regions of the plant genome. The carotenoid
biosynthesis gene expression cassette included the carotenoid desaturase gene from Erwinia
uredovora (SSU-crtI) and maize phytoene synthase (ZmPsy) under the control of the endosperm-
specific glutelin promoter [145]. The resulting rice plants accumulated significant amounts
of β-carotene in the endosperm compared to non-transgenic plants without β-carotene in
the endosperm.

Metabolic engineering, complemented by genome editing techniques, allows re-
searchers to improve desired experimental results. Thus, the transfer of a transgenic
construct including an expression cassette of carotenoid biosynthesis genes (maize PSY,
Arabidopsis ORHis, barley HGGT), together with CRISPR/Cas9 sequences to knock out
the β-carotene hydroxylase 2 (BCH2) gene, increased the carotenoid content in Arabidopsis
seeds by 5.3 times and their stability during ripening and storage. Due to the knockout
of the BCH2 gene, the negative effect of increased carotenoid content on seed storage and
germination was reduced, since the pool of hydroxylated β-carotene, which is a precursor
in abscisic acid biosynthesis, decreased [146].

We summarized the results of genome editing by CRISPR/Cas9 in various species of
higher plants indicating target genes and the type of editing in Table 2.

Table 2. Engineering plants through CRISPR/Cas9 editing of the genes involved in synthesis of
antioxidants of non-enzymatic nature.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

Kaempferol 3-O-
rhamnosyltransferase

and kaempferol
3-O-

glucosyltransferase

A. thaliana At1g30530,
At5g17050 UQ Knockout as a result of

deletion and insertion

UQ content in the
double knockout

represented 160% of
wild-type level [147]

PSY,
phytoene synthase Oryza sativa ZmPsy Carotenoids

Marker-free targeted
insertion at

pre-determined plant
genomic safe harbors

(knockin Erwinia
uredovora carotenoid

desaturase (SSU-crtI) and
maize phytoene synthase
(ZmPsy) both driven by
the endosperm-specific

glutelin promoter)

High level of
β-carotene in the
endosperm [145]

SlCYC-B,
lycopene-β-

cyclase;
SlDDB1,

DNA damage UV
binding protein 1;

SlDET1,
de-etiolated1

Solanum
lycopersycum

DNA damage
SlCYC-B,

SlDDB1, SlDET1,
Carotenoids

Target
activation-induced
cytidine deaminase

base-editing technology,
substitution of a cytidine

with a thymine

Variations in
carotenoid

accumulation with an
additive effect for each

single mutation
[138,139]
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Table 2. Cont.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

LCY-E, lycopene
ε-cyclase;

Blc, beta-lycopene
cyclase;

LCY-B1, lycopene
β-cyclase 1;

LCY-B2, lycopene
β-cyclase 2;

SGR1, Stay-green 1

S. lycopersycum

DQ100158
(SGR1),

EU533951
(LCY-E),

XM_010313794
(Blc),

EF650013
(LCY-B1),
AF254793
(LCY-B2)

Carotenoids

Knockout as a result of
deletions, insertion,

substitution

Lycopene content in
tomato fruit was
increased about

5.1-fold [132]

LCYE, lycopene
ε-cyclase

O. sativa
(rice calli) LcyE

Gene replacement using
HDR, substitution

H523L

Orange-colored line,
total carotenoid

content was
6.8–9.6 times higher

than that of wild-type
calli, increased
tolerance to salt

stress [135]

Nicotiana
tabacum

Ntε-LCY1,
Ntε-LCY2

Knockout as a result of
deletions, insertion,

substitution

Increase in the total
carotenoid and

chlorophyll contents,
photosynthetic

efficiency, and levels of
the stress

response [137]

Musa sapientum
(banana) GN-LCYε

Knockout as a result of
indels

Accumulation of
β-carotene content up
to 6-fold; absence or a

drastic reduction in
the levels of lutein and
α-carotene [134]

EIL2, Ethylene-
Insensitive 3/

Ethylene-
Insensitive

3-Likes

S. lycopersycum EIL2 Carotenoids,
Ascorbate

Knockout as a result of
insertion

Yellow, orange fruits;
1.62-fold increase of
ascorbate content via
both the L-galactose

and myoinositol
pathways [67]

PDS, phytoene
desaturases

Malus domestica
(apple)

LC10183
(PDS)

Carotenoids

Knockout as a result of
deletions, insertion

Albino phenotypes of
regenerated

plantlets [50]

Fragaria sp. PDS Knockout as a result of
deletions

Albino
regenerants [51]

Daucus carota
(Orange carrot
‘Kurodagosun’,
‘Deep purple’

carrot)

XM_017385289.1
(DcPDS and

DcMYB113-like
genes)

Knockout as a result of
deletions, insertion,

substitution

Albino plants and
purple color

depigmented plants
[54]

Dioscorea
rotundata DrPDS Knockout as a result of

deletions, insertion

Phenotypes of
variegated to complete

albinism [52]

Allium cepa L. AcPDS Knockout as a result of
deletions, indels

Regenerated shoots
exhibited three distinct

phenotypes: albino,
chimeric, and pale

green [53]
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Table 2. Cont.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

CCDs, carotenoid
cleavage

dioxygenases

Musa sapientum
(banana) CCDs Carotenoids Knockout as a result of

deletions

Higher fold β-carotene
accumulation in
non-green tissue

(roots) than in green
tissue (leaf) [144]

β-OHase2,
β-carotene

hydroxylase
A. thaliana At5g52570

(BCH2) Xanthophylls Knockout as a result of
deletions

Prevention of the
negative effects of

carotenoid
overproduction on

seed germination [146]

DnaJ, cysteine-rich
zinc-binding

domain

O. sativa
(rice calli)

Orange gene
(OsOr)

Chromoplast
formation

Knockout as a result of
deletions

Orange-colored line
accumulated more

lutein, β-carotene, and
two β-carotene

isomers; increased
tolerance to salt

stress [142]

F3H, flavanone
3-hydroxylases

D. carota
(Carrot calli,

purple-
colored)

F3H

Dihydro-
flavonols,

leucoantho-
cyanidins,

pro-
anthocyanidins,

anthocyani-
dins,

anthocyanins

Knockout as a result of
deletions

Blockage of the
anthocyanin
biosynthesis,

discoloration of
calli [148]

F3′H, flavanone
3′-hydroxylase

Oryza sativa L.
(black rice)

Os10g0320100
(OsF3′H)

Flavan-3-oles Knockout as a result of
deletions, insertions

Ocher seeds, much
lower anthocyanin

content [149]

Euphorbia
pulcherrima F3′H

Increased ratio of
pelargonidin to

cyanidin, bright color
changed from vivid
red to vivid reddish

orange [150]

DFR,
dihydroflavonol

4-reductase

Zea mays

GRMZM2G026
930 (a1),

MZM2G013726
(a4)

Leucoantho-
cyanidins,

pro-
anthocyanidins,

anthocyani-
dins,

anthocyanins

Knockout as a result of
deletions, insertions

Blockage of the
anthocyanin

biosynthesis [151]

S. lycopersycum Solyc02g085020
(DFR)

Blockage of the
anthocyanin
biosynthesis,

hypocotyls and callus
were green [152,153]

Oryza sativa L.
(black rice)

Os01g0633500
(OsDFR)

Much lower
anthocyanin

content, ocher
seeds [149]

Ipomoea nil AB006793
(InDFR-B)

Anthocyanin-less
white flowers [154]

S. lycopersycum DFR

Green hypocotyl due
to defective
anthocyanin

accumulation [153]
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Table 2. Cont.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

LDOX, leucoantho-
cyanidin

dioxygenase

Oryza sativa L.
(black rice)

Os01g0372500
(OsLDOX)

Prontho-
cyanidins,

anthocyani-
dins,

anthocyanins

Knockout as a result of
deletions and insertions

Brown seeds, much
lower total

anthocyanin content
[149]

UGTs, UDP-
glucosyltransferases A. thaliana

UGT79B2
(At4g27560),
UGT79B3,

(At4g27570)

Modulating
anthocyanin
biosynthesis
and abiotic

stress tolerance

Knockout as a result of
deletions and insertions

Reduced levels of
flavonoids and

increased
susceptibility to

abiotic stress [155]

Gt5GT,
anthocyanin 5-O-

glucosyltransferase;
Gt3′GT,

anthocyanin 3′-O-
glucosyltransferase;

Gt5/3′AT,
anthocyanin

5/3′-aromatic
acyltransferase

Gentian cv.
Albireo

(Gentiana-
triflora×Gentian

ascabra)

Gt5GT,
Gt3′GT,

Gt5/3′AT

Anthocyanin
biosynthesis

Knockout as a result of
deletions and insertions

Transformants
produced pale

red-violet, dull pink,
and pale mauve

flowers [156]

PAP1, production
of anthocyanin

pigment 1
(MYB transcription

factor (TF))

A. thaliana AT1G56650
(PAP1) Flavonoids

CRISPR/Cas9 activation
system with the

p65-HSF activators to
increase endogenous
transcriptional levels

Purple pigmentation
of the leaves under a

high light [157]

ANT1, anthocyanin
mutant 1

(Myb TFs)

S. lycopersicum

ANT1

Flavonoids

Gene targeting upstream
of the ANT1 gene

Overexpression and
ectopic accumulation
of pigments in tomato

tissues [158]

CRISPR/LbCpf1-based
HDR, gene targeting

upstream of the ANT1
gene

Tomato purple
phenotype with

salinity tolerance [159]

SlAN2-like,
(R2R3-MYB TFs)

Solyc10g086290
(SlAN2-like)

Knockout as a result of
deletion

Lower accumulation
of anthocyanins,

downregulation of
multiple

anthocyanin-related
genes [160]

SlAN2
(R2R3-MYB TFs) SlAN2

Knockout as a result of
deletion and
substitution

Flavonoid content and
the relative expression

levels of several
anthocyanin-related
genes in vegetative

tissues were
significantly
lower [161]

DcPDS and
DcMYB113-like

(R2R3-MYB TFs)

D. carota
(‘Deep Purple’)

DcPDS,
DcMYB113-like

Knockout as a result of
deletions

Regenerated albino
shoots [54]

PtrMYB57
(R2R3-MYB TFs)

Populus
tomentosa Carr PtrMYB57

Anthocyanin
and proantho-

cyanidin

Knockout as a result of
deletions

High anthocyanin and
proanthocyanidin
phenotype [162]
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Table 2. Cont.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

FtMYB45
(R2R3-MYB TFs)

Fagopyrum
tataricum FtMYB45 Flavonoids Knockout as a result of

deletions and insertion

Content of rutin,
catechin, and other

flavonoids was
increased in hairy root

mutants [163]

bZIP
(basic

region/leucine
zipper TFs)

Vitis vinifera VvbZIP36 Flavonoids Knockout as a result of
deletions and insertion

Accumulation of
metabolites

(naringenin chalcone,
naringenin,

dihydroflavonols, and
cyanidin-3-O-

glucoside); synthesis
of stilbenes

(α-viniferin), lignans,
and some flavonols

(including quercetin-3-
O-rhamnoside,

kaempferol-3-O-
rhamnoside and
kaempferol-7-O-
rhamnoside) was

significantly
inhibited [164].

TTG1, Transparent
Testa Glabra1
(MYB-bHLH-

WD40
TFs)

A. thaliana TTG1

Flavonoids Knockout as a result of
deletion

Mutants produce pale
seeds and lack
trichomes [165]

O. sativa L. OsTTG1

Decreased falvonoid
accumulation in

various rice
organs [166]

TT, transparent
testa (bHLH TFs)

Brassica napus BnTT8

Proanthocy
anidin

Knockout as a result of
deletion and insertion

Yellow-seeded
phenotype, seeds with
elevated seed oil and
protein content, and

altered fatty acid
composition [167,168]

N. tabacum L. NtAn1a, NtAn1b

uORFGGP1

Single nucleotide
transversion from C to T

in the 5′ UTR of the
Solyc06g073320

sequence, leading to a
change in the predicted

amino acid sequence
from serine to
phenylalanine

Increased ascorbate
content (two- to

five-fold higher), male
sterility [169]

GST, Glutathione
S-transferase

S. lycopersycum SlGSTAA

Quenching of
the toxic

compounds
together with
glutathione

Knockout as a result of
deletions

Green hypocotyl
owing to anthocyanin

deficiency [170,171]

Gentian cv.
Albireo

(G. triflora × G.
scabra)

GST Knockout as a result of
deletions

Decreased
anthocyanin

accumulation in
flower petals [156]

F. vesca
RAP, Reduced

Anthocyanins in
Petioles

Knockout as a result of
deletions, insertion

Green stem and
white-fruited

phenotype [172]
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Table 2. Cont.

Proteins Species Target Genes Anti-Oxidants Editing Type Result

Phosphorylase,
GGP

Lactuca sativa

uORFAtVTC2LsG
GP1 and LsGGP2

(homologs of
AtVTC2) Ascorbate

Knockout as a result of
deletions and indels

Increased ascorbate
content by ~150% and

oxidation stress
tolerance [173]

S. lycopersicum
uORFAtVTC2LsG
GP2 (homologs

of AtVTC2)

Knockout, deletions,
indels

Increased ascorbate
content [132]

3. Flavonoids
3.1. Biosynthesis of Flavonoids

Flavonoids are a class of water-soluble polyphenolic secondary metabolites contain-
ing a 15-carbon phenylpropanoid core, which is modified by rearrangement, alkylation,
oxidation, and glycosylation. In the structure of flavonoids, benzene rings A and B, along
with heterocycle C, include not only carbon atoms but also oxygen (Figure 3). Flavonoids
represent the most numerous classes of natural phenolic compounds. The classification
of flavonoids into 12 groups is based on the oxidation state of heterocycle C and the
number of hydroxyl or methyl groups on the benzene ring. The four key classes of
flavonoids—chalcones, flavanones, dihydroflavonols, and leucoanthocyanidins—also act
as intermediate metabolites. They contribute to the synthesis of other flavonoid forms
such as flavones, isoflavones, flavonols, flobaphenes, proanthocyanidins, anthocyanins,
stilbenes, and aurones.
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structure.

By functioning as signaling molecules, allelopathic compounds, phytoalexins, detox-
ifying agents, and antimicrobial protective compounds, flavonoids protect plants from
various biotic and abiotic stresses as well as nutritional deficiencies [174]. In addition,
flavonoids in plants serve as natural UV filters [175].

Biosynthesis of flavonoids (Figure 4) occurs at the cytosolic side of the endoplasmic
reticulum, leading to the accumulation of flavonoids in the central vacuole. As with
isoprenoids, flavonoid biosynthesis begins with phenylalanine, one of the products of
the shikimate pathway (Figure 2). The first three steps of flavonoid biosynthesis from
phenylalanine are referred to as the general phenylpropanoid pathway resulting in the
formation of 4-coumaroyl-CoA (4-C-CoA) from p-coumaric acid (Figure 4). The initial step,
the deamination of phenylalanine to trans-cinnamic acid, is catalyzed by phenylalanine
ammonia lyase (PAL) [176]. The information on the genes, which encode the main enzymes
for flavonoid biosynthesis in A. thaliana, is given in Table 3. PAL exhibits strong inducibility
under stress conditions, enhancing the synthesis of all phenolic compounds, including
phytoalexins, thereby serving as a primary adaptive response to a number of biotic and
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abiotic stressors [177]. Subsequent steps of this pathway are catalyzed by cinnamic acid
4-hydroxylase (C4H) and 4-coumarate CoA ligase (4CL).
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Figure 4. The pathway of flavonoid biosynthesis in plants. Each colored frame represents a dif-
ferent class of flavonoids. The enzyme names are abbreviated as follows: ACCase, acetyl-CoA
carboxylase; ANS, anthocyanidin synthase; ANR, anthocyanidin reductase; C4H, cinnamic acid 4-
hydroxylase; CHI, chalcone isomerase; CH4′GT, chalcone 4′-O-glucosyltransferase; 4CL, 4-coumarate
CoA ligase; CHS, chalcone synthase; CHR, chalcone reductase; CLL-7, cinnamate–CoA ligase; DFR,
dihydroflavonol 4-reductase; FGT (AGT), flavonoid glycosyltransferases; FNS, flavone synthase;
FNR, flavanone 4-reductase; F3H, flavanone 3-hydroxylase; F3′H, flavanone 3′-hydroxylase; FLS,
flavonol synthase; IFS, isoflavone synthase; LAR, leucoanthocyanidin reductase; PAL, phenylalanine
ammonia lyase; STS, stilbene synthase.
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Table 3. Arabidopsis thaliana genes encoding the key enzymes involved in synthesis of flavonoids.

Genes Enzyme and Its Alternative Names in
Arabidopsis Functions

At2g37040
PAL, phenylalanine ammonia lyase The deamination of phenylalanine to trans-cinnamic

acid [178,179]At3g53260

At2g30490 C4H, Cinnamic acid 4-hydroxylase The hydroxylation of trans-cinnamic acid [180,181]

At1g65060 4CL, 4-coumarate CoA ligase Coumaric acid conversion to coumaroyl-CoA, which is the last
step of phenylpropanoid pathway [182]

At5g13930 CHS, chalcone synthase (ATCHS,
Transparent Testa 4, TT4)

The condensation of activated coumaric acid with three
molecules of activated malonic acid in the form of malonyl-CoA

to the formation of naringenin-chalcone. A key enzyme
involved in the biosynthesis of flavonoids [183]

At3g55120
CHI, chalcone isomerase (A11, ATCHI,

Chalcone flavanone isomerase,
Transparent Testa 5, TT5)

Catalysis of the conversion of chalcones into flavanones [183].
At3g55120 is co-expressed with CHS encoding gene [60]

At3g51240 F3H, flavanone 3-hydroxylase
Encodes flavanone 3-hydroxylase that is coordinately expressed

with CHSs and CHIs and involved in flavonoid
biosynthesis [184]

At5g07990
F3′H, flavanone 3′-hydroxylase

(CYP75B1, Cytochrome P450 75B1, D501,
Transparent Testa 7, TT7)

Hydroxylation of 3′-position of B-ring of flavonoids with
catalysis of dihydroquercetin and quercetin formation from

dihydrokaempferol and kaempferol, respectively [184]

At5g24530 FNS, flavone synthase (AtDMR6, Downy
Mildew Resistant6)

The conversion of the flavanones into flavones. This class is also
shown to comprise soluble Fe2+/2-oxoglutarate-dependent
dioxygenases, which are oxygen- and NADPH-dependent
cytochrome P450 membrane-bound monooxygenases [185]

At5g08640
FLS, flavonol synthase (ATFLS1)

Encodes a flavonol synthase that catalyzes formation of
flavonols from dihydroflavonols. Co-expressed with CHI and

CHS (qRT-PCR)At5g63590

At5g42800 DFR, dihydroflavonol 4-reductase
The reduction of the 4-keto group of dihydroflavonol to the

corresponding leucoanthocyanidin. Synthesis of phlobaphenes
from flavan-4-oles in Zea mays [186]

At1g61720 ANR, anthocyanidin reductase Synthesis of proanthocyanidins (condensed tannins) from
leukoanthocyanidins and anthocyanidins [13]

At4g22880 ANS, anthocyanidin synthase (LDOX,
Leucoanthocyanidin dioxygenase) Convertion leucoanthocyanidins to anthocyanins [187]

At5g17050

FGT, flavonoid glycosyltransferases Glycosylation of anthocyanidins to anthocyanins [188–191]

At1g30530

At5g17030

At2g36790

At1g06000

At4g14090

At5g54060

At2g47460 MYB domain protein 12, MYB12,
ATMYB12, PFG1 Flavonol synthesis regulators. Strongly activate the promoters

of CHS, F3H, FLS, and CHI [192]At3g62610 AtMYB11, PFG2

At5g49330 AtMYB111, PFG3

At2g46510
bHLH17 (ABA-inducible bHLH-type

transcription factor), AIB, ATAIB,
JA-associated MYC2-like 1, JAM1

Positive regulator of flavonoid biosynthesis [193]
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The key reaction in flavonoid biosynthesis is the condensation of activated coumaric
acid (4-coumaroyl-CoA) with three molecules of activated malonic acid (malonyl-CoA).
This reaction is catalyzed by chalcone synthase (CHS), which is the key and the rate-limiting
enzyme in the flavonoid biosynthetic pathway. CHS activity leads to the formation of
naringenin-chalcone [194]. Total flavonoid level decreased in tomato plants after RNAi-
mediated CHS gene suppression [195]. Malonyl-CoA and p-coumaroyl-CoA are also used
in the synthesis of stilbenes catalyzed by stilbene synthase (STS) [196]. The formation of
stilbenes is the first branch of the flavonoid biosynthetic pathway that has only been found
in a few plants, such as grapes, pine, sorghum, and peanuts [197,198].

Naringenin-chalcone is the origin for other chalcones after hydroxylation of the ring
B. Its formation is also a key branch point for the synthesis of several major classes of
flavonoids: flavanones, flavonols, and anthocyanins. Naringenin-chalcone is then exposed
to dehydroxylation by chalcone reductase (CHR), yielding isoliquiritigenin [199]. Chal-
cone isomerases (CHIs) utilize either naringenin-chalcone or isoliquiritigenin to generate
naringenin and liquiritigenin, which are another class of flavonoids: flavanones. These fla-
vanones, as well as pentahydroxyflavanone and eriodictyol, are common substrates for the
synthetic branches leading to flavones, isoflavones, and phlobaphenes [200,201]. Aurones,
yellow plant pigments, which are also synthesized from chalcones [202,203] are found in a
relatively small number of plant species, such as snapdragon, sunflower, and coreopsis.

Hydroxylation of naringenin by flavanone 3-hydroxylase (F3H) and flavonoid 3′-
hydroxylase (F3′H) produces dihydroflavonols, from which dihydroflavonol reductase
(DFR) produces leucoanthocyanidins (Figure 4). The role of the carrot F3H gene was tested
on model purple calli. Targeted knockout of this F3H gene using the CRISPR/Cas9 system
led to color loss of these calli (Table 2) [148].

With the help of the flavonol synthase (FLS) enzyme, dihydroflavonols are converted
into flavonols (Flavan-3-ols) [204] with kaempferol synthesized first, followed by the
subsequent formation of other flavonols. The transgenic tobacco mutant containing the FLS
gene from Camellia sinensis showed the accumulation of kaempferol and a decrease in the
anthocyanin content in flowers [205]. The other transgenic tobacco mutant, overexpressing
FLS from Allium cepa, possessed enhanced quercetin levels in roots [206]. Kaempferol is
also important for biosynthesis of 4-HBA, one of the main precursors of UQ synthesis [47].
A. thaliana plants with knocked-out genes encoding kaempferol 3-O-rhamnosyltransferase
and kaempferol 3-O-glucosyltransferase accumulated an increased amount of UQ [147].
This was due to the impaired glycosylation of kaempferol by these enzymes to form
kaempferol 3-O-glycosides that is a concurrent biochemical pathway for 4-HBA synthesis.
This increase in UQ levels is attributed to the absence of glycosylation of kaempferol by the
knocked-out enzymes, which normally form kaempferol 3-O-glycosides. These glycosides
are part of a parallel biochemical pathway that competes with the synthesis of 4-HBA, a
precursor for UQ.

F3′H is a cytochrome P450 monooxygenase responsible for the hydroxylation of
the 3′-position on the B-ring of flavonoids. This enzyme can catalyze the conversion of
dihydroflavonol dihydrokaempferol to dihydroquercetin or kaempferol to quercetin [184].
A site-specific mutation of the OsF3′H gene in rice with black grains led to a significant
decrease in flavonoid content and, accordingly, a change in grain color to ocher. The same
color with the same decrease in flavonoid content was observed in DFR gene knockout
plants (Table 2) [149]. The knockout of the F3′H gene in Euphorbia pulcherrima resulted in a
significant decrease in cyanidin levels and a consequent change in bract color from red to
yellow-red (Table 2) [150].

Flavanones are also the substrates in the flavone, isoflavone, and phlobaphene biosyn-
thetic pathways (Figure 4). F3H competes with flavone synthase (FNS), isoflavone synthase
(IFS), and flavanone 4-reductase (FNR), respectively, for these common substrates [207].
FNS is subdivided into two classes: FNSI and FNSII. FNSII comprises NADPH- and
oxygen-dependent cytochrome P450-membrane monooxygenases, widely distributed in
higher plants [208,209]. FNSI consists of soluble 2-oxoglutarate- and Fe2+-dependent dioxy-
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genases, which are predominantly found in Apiaceae [210]. Nevertheless, FNSI was also
identified and characterized in maize and Arabidopsis [185]. The biosynthesis of flavones
is similar in all higher plants, but in Scutellaria baicalensis, which is a traditional medici-
nal plant in China and is rich in flavones, the additional flavone synthetic pathway was
found [211]. In this pathway, cinnamic acid is converted directly by cinnamate–CoA ligase
(CLL-7) to cinnamoyl-CoA independently of C4H and 4CL enzyme activity (Figure 4), with
subsequent formation of flavones baicalein and norwogonin.

It has been shown that flavanones (naringenin and eriodictyol) are converted to flavan-
4-ols upon inhibition of F3H activity due to the catalytic activity of FNR [212]. Flavan-
4-ols are the immediate precursors of one more class of flavonoids, phlobaphenes [213].
Phlobaphenes are only synthesized in maize and other cereals [186,214] and this way is
controlled by the MYB (myeloblastosis)-type transcription factor (TF) P [215].

Anthocyanidin synthase (ANS), which is also called leucoanthocyanidin dioxygenase
(LDOX), converts leucoanthocyanidins to anthocyanins. It was also shown that this enzyme
takes part in the proanthocyanidin biosynthesis pathway, which is important for normal
vacuole development in Arabidopsis [216]. Proanthocyanidins (tannins) are synthesized
from leucoanthocyanidins and anthocyanidins due to the activity of anthocyanidin reduc-
tase (ANR) [13] and leucoanthocyanidin reductase (LAR) [217]. LAR, which is responsible
for reduction of leucoanthocyanidin to catechin (trans-flavan-3-ol), has been reported in
legumes [218], grapes [219] and Populus trichocarpa [220], but it has not been found in
Arabidopsis.

Flavonoid 3-O-glucosyltransferase (FGT) is involved in the glycosylation of unstable
anthocyanidins to stable anthocyanins [221]. Seven genes encoding this enzyme have been
identified in the Arabidopsis genome [188–191]. Their further modifications (acylation,
glycosylation, and methylation) lead to the formation of various anthocyanins [222].

Flavonoid biosynthesis is under the control of transcriptional regulator complex MBW,
composed of the basic helix–loop–helix (bHLH), MYB, and WD40 (tryptophan-aspartic
acid (W-D) dipeptide) proteins. The family of bHLH proteins, which is involved in many
essential biological processes, is very common in all eukaryotic organisms [223].

The ability of MYB TFs to bind to DNA and interact with other proteins is governed
by a conserved MYB domain at their N-terminus [224]. According to the number and
position of MYB domain repeats, MYB proteins can be divided into four groups (1R-,
R2R3-, 3R-, and 4R-MYB), where the most important TFs are R2R3-MYB (for a review,
see [225,226]). In A. thaliana, the R2R3-MYB gene family is formed by the genes MYB11,
MYB12, and MYB111 [227]. In Arabidopsis, the knockout of MYB12 (ATMYB12) resulted in
reduced amounts of quercetin and kaempferol in the seedlings, and the flavonoid content
was increased in ATMYB12-OX plants. However, the plants with either overexpressed or
knocked-out ATMYB12 gene did not show any significant difference in flavonoid content,
and there were no obvious changes in their phenotype compared to wild-type plants. The
bHLH TFs have also been shown to be involved in the regulation of multiple physiological
and developmental processes [223].

3.2. Activity of Flavonoids towards ROS

Flavonoids possess antioxidant, antimicrobial, anti-inflammatory, and many other
properties (see above). They are widely used in medicine, in industry as dyes, tanning
agents, etc. The antioxidant effect of flavonoids is to suppress the formation of ROS by
chelation of microelements involved in the formation of free radicals, removal of ROS, and
inhibition of enzymes that enhance the formation of free radicals. Flavonoids in plants also
possess the ability to absorb UV-solar waves, thus inhibiting the over-production of ROS,
and to quench ROS after their formation [228].

The antioxidant activity of flavonoids depends on the location of functional groups
in their structure. The antioxidant activity is mainly based on the presence of hydroxyl
groups (OH), presumably in the B and C rings (Figure 3), while hydroxyl groups in the A
ring seem to be less important [229–232]. Flavonoids, similar to quinones, were shown to
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efficiently scavenge ROS such as O2
•− and 1O2, with the constant rates in the latter case

ranging from ~106 M−1 s−1 to 108 M−1 s−1 in ethanol predominantly owing to physical
quenching [233,234]. The most abundant and largest subgroup of flavonoids in fruits and
vegetables are flavones and flavan-3-oles. The latter, along with leucoanthocyanins, are the
most reduced flavonoids and, in addition, these compounds are most often present in a
reduced form in plant cells. Their hydroxyl groups are responsible for biological activity,
especially antioxidant activity. Studies on A. thaliana mutants, which were genetically
modified to overexpress a number of genes related to flavonoid synthesis and its regulatory
transcription factors MYB12/PFG1 and MYB75/PAP1, showed increased resistance to
drought [235]. Excessive accumulation of anthocyanins with strong antioxidant activity
in vitro reduced the accumulation of ROS in vivo under drought conditions.

Detailed analysis of the antioxidant properties of flavonoids was performed in [232]
to understand which ring is the most important for antioxidant activity. In the study,
various flavonoids—flavonols, flavanones, flavones, anthocyanidins, hydroxycinnamates,
and flavanols—were studied. These compounds have structural similarities but differ
in the nature of their B and C rings. The focus was to understand their reactions with
2,2′-azinobis-(3-ethyl benzothiazoline 6-sulfonic acid) diammonium salt radical (ABTS•+).
ABTS•+ is known to be a reactive compound, e.g., the rate constant of ABTS•+ with ascorbic
acid at neutral pHs is 106 M−1 s−1 [236]. The study shows that the structure of the B ring,
namely the position of hydroxyl group(s), is the main factor determining the antioxidant
activity of flavonoids.

The distinctive feature of flavonoids is their ability to function as antioxidants both in
the aqueous phase and in lipophilic environments. Therefore, flavonoids neutralize O2

•−

in both water and membrane phases; in both phases, O2
•− can be produced at a high rate.

1O2 is mainly generated within PS II (see above) or by any free chlorophyll molecule in
chloroplasts to a very small extent. Flavonoids were found to be bound to the chloroplast
envelope, so 1O2, if produced by the free chlorophylls in the vicinity to the envelope, should
be accessible to these flavonoids [237].

The phenolic hydroxyl groups in flavonoid structure are responsible not only for
direct antioxidant activity of flavonoids but also for chelation of metals preventing their
interaction with H2O2 and therefore the generation of highly reactive oxidizer, hydroxyl
radical (OH•). Besides their direct antioxidant functions, flavonoids also act indirectly
by inhibiting ROS-generating enzymes, such as mitochondrial succinoxidase, NADH
oxidase, microsomal monooxygenase and others, as well as by upregulating and protecting
antioxidant systems [238].

3.3. Genetic Approaches for Boosting Flavonoid Production in Plants

Mutagenesis of plants for enhancement of flavonoid production is also a rapidly
developing area. There are two main approaches to increase the level of various flavonoids
in plants: the regulation of the activity of individual enzymes involved in flavonoid
metabolism or the regulation of the activity of TFs, which in vivo are involved in the
activation of the entire flavonoid biosynthesis pathway.

3.3.1. Regulation of the Expression of Individual Genes Encoding Key Enzymes in
Flavonoid Biosynthesis

Amplification of the expression level of the genes encoding the enzymes of the initial
stages of flavonoid biosynthesis sometimes gives ambiguous results. For instance, over-
expression of the CHI gene (Figure 4, Table 3) in tomato fruits led to a remarkable 78-fold
increase in flavonol content [239]. Overexpression of the CHI gene from Petunia hybrida in
potato plants resulted in a slight but significant increase in flavonoid content [240].

CHS is responsible for catalyzing the formation of chalcones—a distinct class of
flavonoids and a precursor to other flavonoid classes. When the CHS gene is overexpressed
in potato plants, it frequently results in unexpected outcomes. It often leads to reduction
in CHS levels in the plants [240]. Apparently, this effect was observed due to suppression
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of CHS gene expression by its extra copies. However, when the CHS gene from barley
was overexpressed in potato plants, this effect was not observed, although no significant
increase in anthocyanin accumulation was detected either [240].

Flavan-3-ols formation is directly catalyzed by FLS (Figure 4). The effect of the in-
tensification of FLS gene expression on flavonoid accumulation and the resistance of
resulting plants to various stresses was studied using different plant species. For instance,
overexpression of the FLS gene from Euphorbia kansui Liou in Arabidopsis resulted in an ap-
proximately 75% increase in flavonoid content compared to the wild-type plants [241]. The
transgenic Arabidopsis plants generated in this study demonstrated enhanced resistance
to salinity (200 mM NaCl) and drought induced by 20% PEG. These plants accumulated
lower levels of ROS compared to control plants. This was attributed to the antioxidant
activity of flavonoids and the increased activity of superoxide dismutase and peroxidase
in these plants [241]. Transgenic tobacco plants overexpressing FLS from Apocynum vene-
tum also contained a significantly higher amount of flavonoids, approximately 2.8 times
more than the wild-type plants [242]. These plants accumulated lower levels of ROS and
exhibited increased resistance to salinity (150 mM NaCl) [242]. Arabidopsis plants with
overexpression of FLS1 from Triticum aestivum were also more resistant to salt stress [243].
However, there are data in the literature that overexpression of FLS does not always lead
to an increase in the flavonoid content in plants. For example, in Arabidopsis plants with
an overexpressed FLS1 gene, the flavonoid content did not significantly differ from that
in the wild-type plants [244]. It appears that different FLS genes perform distinct roles in
flavonoid biosynthesis, and selecting the right gene variant is essential.

An increase in the content of flavonoids in the transgenic plants of tea and tobacco
was found after overexpression of the DFR gene [245], encoding the enzyme, catalyz-
ing the production of leucoanthocyanidins, an alternative class of flavonoids (Figure 4,
Table 3). The extract from these plants demonstrated the elevated ability to scavenge stable
diphenylpicryl hydrazyl free radicals (70–185%), indicating increased antioxidant activity
compared to wild-type plants. Furthermore, these tobacco plants exhibited an increased
resistance to biotic stress, particularly against Spodoptera litura infestation [245]. The growth
of larvae on the transgenic tobacco plants was inhibited by 10–40% compared to wild-type
plants, likely due to the reduced ability of the larvae to feed on tobacco with increased
flavon-3-ol content. Similar results were obtained in the same study for transgenic tobacco
plants overexpressing ANR, an enzyme involved in the synthesis of proanthocyanidins
from anthocyanidins, for which leucoanthocyanidins are the precursors (Figure 4). Overex-
pression of DFR from P. hybrida in potatoes resulted in an increase in anthocyanin content.
Pelargonidin content increased four-fold and petunidin content increased three-fold [240].
Furthermore, extracts from the tubers of these transgenic potato plants exhibited enhanced
antioxidant activity compared to that of wild-type plants [240].

Since anthocyanidins are also the precursors of anthocyanins (Figure 4), the DFR gene
is often used as a target for genome editing in various plant species. The genome of Ipomoea
nil contains three tandemly arranged copies (DFR-A, DFR-B, and DFR-C). All these copies
are expressed, but DFR-B is the dominant one responsible for stem and flower pigmentation.
Targeted knockout of the InDFR-B gene of I. nil resulted in a change in stem color to green
and to the appearance of white flowers without anthocyanins (Table 2) [154]. Editing of
the OsDFR gene in rice resulted in reduced anthocyanin accumulation and a change of
the rice grain color from black to ocher (Table 2) [149]. The tomato DFR gene was used for
two-stage editing in order to develop the technology of inserting a transgene into a given
region of the genome. Initially, the authors used CRISPR/Cas9 to obtain tomato plants
with a 1013 bp deletion of the DFR gene. In the second stage, this deletion was corrected by
restoring the original gene sequence through the use of donor DNA. Knockout of the DFR
gene led to green color of hypocotyls and calli of seedlings homozygous for the deletion,
which were able to regenerate in vitro. When the integrity of the gene was restored by
knocking, the purple color of these plants was also restored due to the accumulation of
anthocyanins (Table 2) [152].
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FNS catalyzes the final step in the formation of one more flavonoid class, flavones
(Figure 4, Table 3). Overexpression of FNS from the Antarctic moss Pohlia nutans in Ara-
bidopsis resulted in an increased flavone content in the transgenic plants [246]. These
transgenic plants demonstrated greater resistance to drought compared to wild-type plants.
For instance, seed germination on MS medium with mannitol (osmotic stress) was ap-
proximately 45% higher in the transgenic lines compared to the wild-type plants [246].
Transgenic tobacco plants overexpressing FNS from Morus notabilis also accumulated more
flavones and exhibited increased resistance to UV-B radiation [210].

Genome editing of gentian plants, which produce blue flowers due to the accumu-
lation of the polyacylated anthocyanin gentiodelphin, helped to identify the functions
of three genes of the FGT family: anthocyanin 5-O-glycosyltransferase (Gt5GT), anthocyanin
3′-O-glycosyltransferase (Gt3′GT), and anthocyanin 5/3′-aromatic acyltransferase (Gt5/3′AT). In
mutant gentian lines, the effect of gene knockouts on pigment accumulation was distinct
for each gene. When the Gt5GT gene was knocked out, delphinidin 3G became the primary
accumulated pigment. For lines with a Gt3′GT knockout, the dominant floral pigment was
delphinidin 3G-5CafG. Conversely, plants with a Gt5/3′AT gene knockout accumulated
two types of pigments: delphinidin 3G-5G-3′G as the primary pigment and delphinidin
3G-5G as the secondary pigment. Therefore, there are two possibilities for modification
of delphinidin 3G-5G in gentian flowers: one involves glycosylation by the 3′GT enzyme,
and the other involves acylation by 5/3′AT. The flowers of the knockout plants were pale
red-violet, dull pink, and lavender, in contrast to the bright blue flowers of wild-type
plants [156].

3.3.2. Regulation of Transcription Factor Activity to Enhance Flavonoid Biosynthesis

The regulation of flavonoid biosynthesis, which involves the participations of tran-
scription factors bHLH and the proteins of MYB family is described above. The genes of
the R2R3-MYB subfamily of transcription factors are actively used as targets for genome
editing to increase the level of flavonoids in plants [247,248]. Overexpression of AtMYB12
in Arabidopsis simultaneously increases the expression of AtCHS, AtCHI, AtF3H, and
AtFLS (Table 3) [247,248]. The resulting transgenic Arabidopsis plants exhibited enhanced
resistance to drought and salinity (25% PEG6000 or 200 mM NaCl for 2 weeks) [248]. The
levels of H2O2 and malondialdehyde (MDA) in the transgenic plants were 40–60% lower
compared to the wild-type plants, while the activities of SOD and peroxidase were 30–40%
higher [248].

Transgenic tobacco plants overexpressing AtMYB12 also demonstrated increased
resistance to biotic stress caused by insect pests, such as Spodoptera litura and Helicoverpa
armigera [10]. The enhanced resistance of transgenic plants is likely associated with the
accumulation of the flavonoid rutin, which is toxic to insects.

PAP1 (Production of Anthocyanin Pigment 1) is another transcription factor, a typ-
ical representative of the R2R3-MYB transcription factors. Overexpression of AtPAP1 in
tobacco led to increased accumulation of flavonoids in all parts of the plant [249]. In
these transgenic tobacco plants, the expression of genes PALs, CHS, CHI, F3H, F3′H, ANS,
and DFR (Table 3, Figure 4) was significantly higher compared to control tobacco plants.
Furthermore, these transgenic plants also demonstrated increased resistance to insect pests,
such as S. litura [249].

Arabidopsis double mutant WOX1, which simultaneously overexpresses both MYB12
and PAP1 TFs, contained up to 20 times more anthocyanins in all parts of the plants,
although the overall flavonoid content only increased two-fold [235]. The WOX1 plants
accumulated more anthocyanins and total flavonoids than the plants that individually
overexpress either MYB12 or PAP1. These double mutants demonstrated greater radical
scavenging activity and increased resistance to oxidative stress induced by methyl viologen,
approximately three-fold compared to the wild-type plants [235]. Additionally, the double
mutants showed enhanced drought resistance (no watering for 20 days) compared to the
wild-type plants.
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Simultaneous expression of two maize transcription factors, MYB type C1 and MYC
type LC, under the control of the fruit-specific tomato E8 promoter led to an increase in the
content of kaempferol (approximately 60-fold), naringenin (2-fold), and quercetin (3-fold)
in tomato fruits [250]. In C1/LC transgenic tomato plants, the expression of CHS, F3H, and
DFR increased by over 100-fold, while the expression of FLS and ANS was also higher in
transgenic plants, by 5 to 15 times compared to the wild-type plants [250].

The tomato genome contains four homologous R2R3-MYB transcription factors: SlAN2,
SlANT1, SlANT1-like, and SlAN2-like/Aft. Dark purple tomato plants were obtained by
inserting the 35S CaMV promoter into the promoter region of the SlANT1 gene using
the TALENs and CRISPR/Cas9 systems, and the bean yellow dwarf virus (BeYDV) vec-
tor for producing donor DNA. This strategy increased the expression level of the TFs,
which resulted in an increased expression level of genes responsible for flavonoid synthe-
sis [158]. Insertion of the CaMV 35S into the promoter region of the SlANT1 gene using
CRISPR/LbCpf1-based HDR resulted in pronounced plant pigmentation and allowed vi-
sual selection of edited plants [159]. Tomato SlAN2-like mutants generated by CRISPR/Cas9
accumulated less amounts of flavonoids and were dysregulated in the expression of many
flavonoid biosynthesis genes [160]. The SlAN2 mutation introduced using CRISPR/Cas9
into purple tomatoes cv. “Indigo Rose” led to a decrease in the content of flavonoids only in
the vegetative parts of plants and was accompanied by a number of morphological changes
(reduction in plant height, decrease in fruit size). In the fruits of the edited plants, the
flavonoid content was the same as in the unedited plants [161]. In carrots, the knockout of
the DcMYB113-like gene in the purple variety resulted in depigmented regenerants [54].

The R2R3-MYB transcription factor PtrMYB57 is a repressor of anthocyanin and
proanthocyanidin biosynthesis. In poplar, the CRISPR/Cas9 mutant PtrMYB57 was char-
acterized by high levels of anthocyanin and proanthocyanidin in leaves compared to
wild-type plants [162]. The R2R3-MYB transcription factor FtMYB45 suppresses flavonoid
biosynthesis in Tartary buckwheat (Fagopyrum tataricum). Knockout of this TF resulted in
increased content of rutin, catechin, and other flavonoids in hairy root mutants [163].

In the basic helix–loop–helix (bHLH) group of TFs, the Transparent Testa gene plays
an important role in the accumulation of flavonoids. CRISPR/Cas9 BnTT8 mutants in
Brassica napus possessed yellow seed color associated with a block in tissue-specific proan-
thocyanidin deposition in the seed coat, as well as increased protein and lipid content.
Transcriptome analysis showed that targeted mutations resulted in suppressed expression
of phenylpropanoid/flavonoids biosynthetic genes [167]. Targeted mutagenesis of homolo-
gous TT8 genes in tobacco (NtAn1a and NtAn1b) also resulted in seeds with a yellow seed
coat phenotype and increased lipid and protein accumulation [168].

In the MYB-bHLH-WD40 (MBW) complex, the repeat protein WD40 is involved in tran-
scriptional regulation of the flavonoid metabolic pathway in many plant species. The Trans-
parent Testa Glabra1 (TTG1) locus related to WD40 was knocked out using CRISPR/Cas9
gene editing technology in A. thaliana plants with different ploidy levels [165] and in rice
plants [166]. Mutations in the gene resulted in a decrease in the synthesis of flavonoids in
plants that led to light coloration of seeds and disturbances in the formation of trichomes.

The basic region/leucine zipper (bZIP) TF gene family also plays a key role in the
regulation of flavonoid biosynthesis in many plant species. Knockout of the VvbZIP36
gene in grapevine (Vitis vinifera) using CRISPR/Cas9 led to the accumulation of flavonoids
and a number of related metabolites (naringenin chalcone, naringenin, dihydroflavonols,
and cyanidin-3-O-glucoside), which was accompanied by the appearance of red pigmen-
tation on the leaves. Editing revealed that VvbZIP36 is a negative regulator of flavonoid
biosynthesis [164].

Thus, obtaining targeted mutations in various transcription factor genes makes it
possible to identify their functions in regulating the expression of flavonoid biosynthesis
genes (activation or repression) and clarify their role in other processes related to plant
development. Other TFs, such as PAP1, MYB1, MYB2, MYB10, DcMYB6, and the Lateral
Organ Boundary Domain (LBD) TF family are known to increase the accumulation of
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flavonoids. These TFs are potential candidates for genome editing [251,252]. An example
is FaMYB10-2, one of three MYB10 homologues responsible for fruit color in strawberries.
It is known that the insertion of a transposon into the promoter region of this gene can
alter the biosynthesis of flavonoids. Depending on the location, this insertion can either
enhance the biosynthesis of flavonoids in fruits or lead to its inhibition and the appearance
of white fruits [253]. Using genome editing, it becomes possible to obtain various types of
mutations with desired change in the phenotype of cultivar strawberry fruits.

Uridine diphosphate-dependent glucosyltransferases (UGTs) are responsible for the
transfer of monosaccharide residues to their acceptor molecules in plants. Two enzymes,
encoded by the UGT79B2 and UGT79B3 genes, were identified in Arabidopsis. These en-
zymes participate in modifications of flavonoids by adding UDP-rhamnose to cyanidin and
3-O-glucoside-cyanidin. The double mutants ugt79b2/b3 generated by the CRISPR/Cas9
system were characterized by reduced levels of flavonoids in plants and increased suscepti-
bility to abiotic stress. Thus, UGT79B2 and UGT79B3 are flavonoid rhamnosyltransferases,
and they mediate abiotic stress tolerance by modulating flavonoid accumulation [155].

4. Ascorbate and Glutathione
4.1. Biosynthesis of Ascorbate

Ascorbate, also known as vitamin C or L-ascorbic acid (Asc), is an important biologi-
cally active substance. Despite its importance, the pathway of its biosynthesis in plant cells
was described only in 2007 for A. thaliana and many aspects concerning the regulation of the
Asc biosynthetic pathway still need clarification. Plants synthesize Asc by four alternative
routes: D-mannose/L-galactose (Smirnoff–Wheeler) [254], L-Gulose, Myo-inositol, and
D-Galacturonic pathways [255–257]. The Smirnoff–Wheeler pathway is often referred to
as the primary or main pathway of Asc biosynthesis in plants [258]. However, in plant
species which produce fruits with high level of vitamin C, the other known pathways for
Asc biosynthesis can also be predominant. For example, the L-galactose pathway is the
main one in peaches and kiwis, while the D-galacturonic pathway is dominant in grapes
and strawberries [259]. Additionally, in a number of plants, such as citrus or tomato, the
predominant biosynthetic pathway can shift as the fruits ripen.

Most enzymes of the D-mannose/L-galactose pathway are localized in the cytosol.
This pathway starts from the conversion of D-glucose into L-galactose through eight stages,
which are necessary only to change the spatial position of the hydrogen and hydroxyl
groups at the fourth carbon atom in the structure of these carbohydrates (Figure 5). The
first step is the transformation of D-glucose to D-glucose-6-phosphate, followed by its trans-
formation into D-fructose-6-phosphate by phosphomannose isomerase (PMI). D-fructose-
6-phosphate is further converted into D-mannose-6-phosphate also by phosphomannose
isomerase. D-Mannose-6-phosphate is converted into D-Mannose-1-phosphate by phospho-
mannose mutase (PMM). D-Mannose-1-phosphate is then transformed to GDP-D-Mannose
by GDP-D-mannose pyrophosphorylase (GMP). Studies have indicated a correlation be-
tween PMI1 gene expression in Arabidopsis and ascorbate levels [260]. The same authors
have shown that the knockdown of PMI1 has led to decreased Asc levels. In transgenic
tobacco overexpressing the PMM, GDP, and GMP genes derived from Malpighia glabra
(a plant known for its remarkably high vitamin C content), the Asc levels were found to
be two-fold higher than in wild-type plants [261–263]. The information about the genes
encoding the main enzymes for Asc biosynthesis in A. thaliana is in Table 4.
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Table 4. Arabidopsis thaliana genes encoding the key enzymes involved in synthesis of glutathione
and ascorbate.

Genes Enzyme and Its Alternative Names in Arabidopsis Functions

At4g23100
γ-glutamylcysteine synthetase, γ-ECS, ATECS1, ATGSH1,

Cinnamyl Alcohol Dehydrogenase Homolog 2,
Glutamate-Cysteine Ligase, GSH1, GSHA

Catalysis of the first, and rate-limiting, step of
glutathione biosynthesis.

At5g27380 Glutathione Synthetase 2, ATGSH2, GSH2, GSHB Binding γ-glutamylcysteine and glycine together
to form glutathione

At4g29130 Hexokinase 1, HXK1, ATHXK1, GIN2

Hexose phosphorylation activityAt2g19860 Hexokinase 2, HXK2, ATHXK2

At1g47840 Hexokinase 3, HXK3
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Table 4. Cont.

Genes Enzyme and Its Alternative Names in Arabidopsis Functions

At4g24620 Phosphoglucose Isomerase, PGI, Glucose-6-phosphate
isomerase

Transformation of d-glucose-6-phosphate into
d-fructose-6-phosphate

At3g02570
At1g67070

Man-6-phosphate Isomerase, Phosphomannose
isomerase, PMI

D-mannose-6-P formation from
d-fructose-6-phosphate [264]

At2g45790 Phosphomannomutase, PMM Transformation of D-mannose 6-phosphate into
D-mannose 1-phosphate [265,266]

At2g39770
GDP-D-mannose pyrophosphorylase, GMP1, Vitamin C

Defective 1, VTC1, Cytokinesis Defective 1, CYT1, Embryo
Defective 101, EMB101, Sensitive To Ozone 1, SOZ1,

Guanosine monophosphate transfer from GTP to
GDP-D-Mannose [254,267,268]

At5g28840 GDP-D-mannose 3′,5′ Epimerase, GME

The conversion of GDP-D-mannose to
GDP-L-galactose. GME is also able to catalyze the

3′ epimerization of GDP-mannose, giving
GDP-L-gulose, which is the precursor of a possible

side-branch biosynthetic pathway (the gulose
pathway) for vitamin C synthesis [255,269]. Plays

a key role at the intersection of ascorbate and
non-cellulosic cell-wall biosynthesis

At5g55120 VTC5
GDP-L-Galactose

Phosphorylase, GGP

Encodes a novel protein involved in ascorbate
biosynthesis, which has been shown to catalyze

the transfer of GMP from GDP-galactose to a
variety of hexose-1-phosphate acceptors [270]

At4g26850 VTC2

At3g02870 L-Galactose 1-P-phosphatase,
GPP, VTC4 Conversion of l-Galactose-1-phosphate into

l-galactose [271–273]
At3g07130 Purple acid phosphatase with phytase activity, PAP15

At4g33670 L-Galactose Dehydrogenase, GDH Conversion of l-galactose into
l-galactono-1,4-lactone [254]

At3g47930 L-Galactono 1,4-lactone Dehydrogenase, GLDH Oxidation of L-galactono-1,4-lactone to Asc
[267,274]

At3g05620
At5g04970
At5g47500
At5g61680

Methyl Esterases
Conversion of Methyl-D-Galacturonate into

D-Galacturonate in the D-Galacturonate
pathway [275]

At1g14520
At4g26260 Myo-Inositol Oxygenase, MIOX1 Convertion of Myo-inositol into

L-Gulono-1,4-lactone Myo-inositol [257]

At1g65770 Ascorbic Acid Mannose Pathway Regulator 1, AMR1,
ATFDA7, F-BOX/DUF295 ANCESTRAL 7

Regulation of the mannose/L-galactose ascorbic
acid biosynthetic pathway in response to

developmental and environmental factors [276]

At3g23230
Ethylene Response Factor 98, ERF98, AtERF98,

Transcriptional Regulator of Defense Response 1, TDR1,
TTDR1

Enhancement of the tolerance to salt through the
transcriptional activation of ascorbic acid

synthesis [277]

Secondary metabolic reactions that facilitate the transformation of GDP-L-galactose
into Asc (Figure 5) are active mainly in mature plants. The rate-limiting step in this
metabolic pathway of vitamin C synthesis is the reaction that directly produces Asc, con-
trolled by the enzyme GDP-L-galactose phosphorylase. The enzyme GDP-D-mannose-
3′,5′-epimerase (GME) controls the mutual transformation of GDP-D-mannose and GDP-
L-galactose. In young, actively growing plants, most products from this reaction con-
tribute to primary metabolic reactions, specifically, the biosynthesis of cell wall polysac-
charides [278,279]. This suggests that the initial stages of this metabolic pathway are
mainly associated with the growth of plant organs. This implies that the first specific step
for L-Ascorbic acid biosynthesis in the Smirnoff–Wheeler pathway is the conversion of
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GDP-L-galactose into L-Galactose-1-phosphate, a reaction catalyzed by GDP-L-galactose-
phosphorylase (GGP) [280]. In Arabidopsis, this enzyme is encoded by two genes, VTC2
and VTC5 (Table 4) [281]. The plants with knockout of these genes had 20% and 80% of
the vitamin C content of wild-type plants, respectively [270]. The double vtc2 and vtc5
mutants were unable to grow beyond the cotyledon expansion. Adding galactose or Asc to
the seedlings compensated for the absence of both of these enzymes. These data suggest
that, at least in Arabidopsis, the D-mannose/L-galactose pathway is the main source of
vitamin C.

VTC4 in Arabidopsis encodes galactose-1-phosphate phosphatase (GPP), which con-
verts L-galactose-1-phosphate to L-galactose [271,282]. Knockouts of the VTC4 gene in Ara-
bidopsis resulted in only a partial decrease in GPP activity and vitamin C content [271,272].
This unexpected retention of activity can be attributed to the fact that, in Arabidopsis, this
reaction is also catalyzed by purple acid phosphatase AtPAP15 (Table 4) [273]. The conver-
sion of L-galactose to L-galacton-1,4-lactone is catalyzed by L-galactose dehydrogenase
(GDH), which is an NAD-dependent enzyme [254]. Overexpression of GDH in Arabidopsis
did not change the content of vitamin C, and in antisense plants, the content of vitamin C
decreased only under bright light [283], which suggests that it is not a crucial stage of Asc
biosynthesis. The last step of the L-galactose pathway is the oxidation of L-galactono-1,4-
lactone by L-galactono-1,4-lactone dehydrogenase (GLDH) into Asc (Figure 5). This step
takes place in mitochondria, and is coupled with the cytochrome c pathway that is present
there [284]. GLDH was identified as one of the proteins in mitochondrial complex I [285].
It acts as an essential plant-specific factor for complex I assembly [286]. Thus, stresses that
disrupt electron flow have significant effects on ascorbate biosynthesis [284].

The second important pathway for Asc biosynthesis in plants is the D-galacturonate
pathway, which involves methyl-D-galacturonate from pectin of cell walls (Figure 5).
In the first step of this pathway, methyl esterase catalyzes the conversion of methyl-D-
galacturonate into D-galacturonate, which is then transformed into L-galacturonate by
D-galacturonate reductase. It has been shown that D-galacturonate methyl ester supplied
exogenously to cell cultures, including those of Arabidopsis, caused an increase in ascor-
bate level [287,288]. The GalUR gene, which expression correlates with the increase in
Asc during fruit ripening, was cloned, and the recombinant enzyme was shown to have
NADPH-dependent D-GalUA reductase activity [257]. Its role in ascorbate biosynthesis
was confirmed by overexpression in Arabidopsis, which resulted in a several-fold increase
in foliar ascorbate. However, there is no evidence for this pathway operating under normal
conditions; it takes place only under conditions of cell wall breakdown [289].

Exogenous L-gulose addition also increased the Asc content of Arabidopsis cell cul-
tures but much less effectively than the addition of methyl galacturonate [287]. In the
L-gulose pathway of Asc biosynthesis, the precursor of L-gulose is GDP-D-mannose, a
compound also found in the Smirnoff–Wheeler pathway (Figure 5). The first step of the
L-gulose pathway is the conversion of GDP-D-mannose into GDP-L-gulose by GDP-D-
mannose-3′,5′-epimerase (GME), followed by the formation of L-gulose-1-phosphate by
GDP-L-gulose-1-phosphate phosphatase. In the last step of this pathway, AsA is formed
from L-gulono-1,4-lactone by L-gulono-1,4-lactone dehydrogenase in mitochondria.

The myo-inositol pathway includes conversion of myo-inositol into L-gulonic acid,
with its subsequent lactonization to L-gulono-1,4-lactone by aldono lactonase (Figure 5).
Then L-gulono-1,4-lactone dehydrogenase converts L-gulono-1,4-lactone into Asc, a step
also seen in the gulose and the Smirnoff–Wheeler pathways [264,290]. It was also shown
that the transformation of lettuce and tobacco by constitutive expression of the rat cDNA
encoding L-gulono-1,4-lactone oxidase resulted in a four- to seven-fold increase in the
content of vitamin C in the leaves of these plants [291].
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Experimental data demonstrating the significance of the myo-inositol metabolic path-
way for Asc synthesis are contradictory. The main enzyme in this pathway is myo-inositol
oxygenase (MIOX). Overexpression of the gene encoding this enzyme (At4g26260) in Ara-
bidopsis was reported to increase the content of foliar ascorbate [256]. Later, Endres and
Tenhaken [292] showed a decrease in myo-inositol with no changes in the Asc level in the
same transgenic plants. Nevertheless, in a later study, Arabidopsis lines overexpressing
MIOX exhibited an elevated level of foliar Asc, enhanced growth rate, higher biomass
accumulation, and increased tolerance to abiotic stresses [293]. MIOX4 overexpressing
lines also had an increased level of auxin, showing an increase in the expression of genes
involved in auxin metabolism, as well as an increased PS II efficiency and an increased
proton motive force [294].

Asc synthesis in higher plants is modulated on both transcriptional and post-transcrip-
tional levels. However, our understanding of the regulatory mechanisms both within and
between the Asc synthesis pathways remains limited. Ascorbic Acid Mannose Pathway
Regulator 1 (AMR1) is a negative regulator of Asc and mannose pathways. AMR1 neg-
atively affected the expression of the genes encoding GMP, GME, GGP, GPP, GDH, and
GLDH [276]. As the light intensity increased, the content of the AMR1 gene transcripts
decreased. With aging of plant leaves, the accumulation of AMR1 gene transcripts was
observed, which coincided with a decrease in Asc level. AMR1 knockout mutants showed
higher accumulation of Asc levels and were more tolerant to oxidative stresses. Ethylene
response factor ERF98, which is induced by ethylene, salt, and H2O2, transcriptionally
activates Asc synthesis [276]. Arabidopsis mutant plants with AtERF98 gene knockout and
knockdown exhibited decreased Asc levels, while mutants with overexpressed AtERF98
showed increased levels.

4.2. Biosynthesis of Glutathione

The glutathione molecule is a tripeptide consisting of three amino acids: glutamate, cys-
teine, and glycine. Glutathione synthesis takes place in chloroplasts and cytosol [295,296].
Once synthesized, glutathione can be found in various cellular compartments, including
mitochondria. Glutathione is primarily synthesized in chloroplasts, since both of the en-
zymes involved in this pathway, γ-glutamylcysteine synthetase (γ-ECS) and glutathione
synthetase (GSHS), are located in this compartment. The biosynthesis of glutathione con-
sists of two steps (Figure 6). In the first step, γ-ECS catalyzes the reaction between the
γ-carboxyl group of glutamate and α-amino group of cysteine, resulting in the formation
of γ-glutamylcysteine, which is partially exported to the cytosol. In the second step, GSHS,
which is located both in the cytosol and plastids, forms glutathione molecule by amide
bond formation between the α-carboxyl group of the cysteine moiety in γ-glutamylcysteine
and the α-amino group of glycine [297,298]. After that, glutathione is transported into the
mitochondria or reimported into the plastids [299].

The activities of various enzymes affect the reduced/oxidized glutathione ratio, which
is also significantly affected by various stresses. The rate of glutathione synthesis is con-
trolled by several factors with the most important one being the feedback inhibition of
γ-ECS by glutathione due to its binding to the glutamate site of the enzyme [300]. The
information about the genes encoding the main enzymes for glutathione biosynthesis in A.
thaliana is given in Table 4.
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4.3. Activity of Ascorbate and Glutathione towards ROS

Asc and glutathione are the main participants in the Foyer–Halliwell–Asada metabolic
pathway or the water–water cycle. This cycle serves to detoxify H2O2 with involvement of
Asc, glutathione, and NADPH [301–303]. The water–water cycle is initiated when electrons
are transferred from photosynthetic electron transport chain to oxygen, forming O2

•− (see
above) [304]. O2

•− further undergoes dismutation reaction catalyzed by SOD or O2
•− can

be reduced by PQH2 (see above), to produce H2O2, which in turn is reduced by Asc with the
involvement of ascorbate peroxidase (APX), generating H2O and monodehydroascorbate
radical (MDHA) (Figure 5). If MDHA is not reduced by the components of photosynthetic
electron-transport chain, it dismutates to form Asc and dehydroascorbate (DHA). DHA is
reduced to Asc by glutathione, and the oxidized glutathione is further reduced by NADPH
with the involvement of glutathione reductase [301]. Since glutathione, ascorbate, and
NADPH are present in plant cells at high concentrations, it is assumed that this cycle plays
a significant role in H2O2 detoxification [258].

Two isoforms of APX are present in chloroplasts, the thylakoid-bound (tAPX) and
the soluble stromal (sAPX) [305]. Compared to catalase (which is located in peroxisomes
and glyoxysomes in higher plants) with a Km value for H2O2 of 20–25 mM [306,307], APX,
having a lower Km value of 80 µM, can maintain a much lower concentration of H2O2 in
chloroplasts. This is important given the inhibitory effect of H2O2 on the Calvin–Benson–
Bassham cycle enzymes, with a half-inhibitory concentration as low as 10 µM [308,309].

In addition to the antioxidant activity against H2O2, both ascorbate and glutathione
can scavenge O2

•−. The rate constant of the reaction with O2
•− at neutral pH values is

~105 M−1 s−1 for ascorbate [310] and ~103 M−1 s−1 for reduced glutathione [311]. Both
reactions lead to the formation of H2O2 in the chloroplast stroma; however, they are much
less efficient than the dismutation reaction of O2

•− catalyzed by SOD (the rate constant
is ~109 M−1 s−1). Furthermore, ferredoxin, which is the electron acceptor from PSI, in
its reduced form is also known to reduce O2

•− to H2O2 [312]. However, in vivo, the
steady-state concentration of the reduced ferredoxin is low. Given that the addition of SOD
effectively inhibits this reaction, the rate constant of the reaction of reduced ferredoxin with
O2
•− is likely not very high [312].

Asc efficiently quenches 1O2 by chemical mechanism producing DHA and H2O2 with
the rate constant of this reaction estimated to be 3 × 108 M−1 s−1 [313], while the physical
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quenching rate is rather low [104]. Reduced glutathione and other thiols predominantly ex-
hibit a chemical quenching mechanism of 1O2; the rate constant for glutathione is estimated
to be 2.4 × 106 M−1 s−1 [314].

Asc and glutathione are involved not only in the water–water cycle operation and
direct scavenging of ROS to minimize the consequences of the oxidative stress in plant cells,
but also in regeneration and stabilization of several cell components. For example, Asc
plays a role in the regeneration of α-tocopherol from its radicals [11], which are produced
during the detoxification of lipid peroxide radicals. Glutathione is also the substrate for
phospholipid hydroperoxide glutathione peroxidase, which is one of the glutathione perox-
idase (GPX) isoforms. Under stress conditions, this peroxidase is upregulated to protect
against the accumulation of lipid hydroperoxides in various cell compartments [315].

Glutathione regulates multiple metabolic functions. It is involved in detoxification,
redox homeostasis, and acts as an antioxidant. It interacts with proteins in several ways,
affecting their structure and activity through changes in the thiol–disulfide balance and
preventing oxidative denaturation under stress conditions by protecting their thiol groups.
Glutathione protects membranes by maintaining the reduced state of antioxidants such as
α-tocopherol and zeaxanthin. The mechanism of glutathione detoxification of various toxic
compounds is based on the conjugation of the xenobiotics with glutathione, leading to the
formation of less reactive products. This conjugation reaction can occur spontaneously,
but in biological systems, it is presumably facilitated by glutathione S-transferase (GST)
(for review, see [316]). Detoxified xenobiotics are then transported to vacuoles for their
subsequent sequestration.

4.4. The Approaches for Boosting Ascorbate and Glutathione Production

Describing the discovery of enzymes involved in Asc biosynthesis, we have already
reported examples of the successful creation of mutants with its increased synthesis. One
more approach to obtain an increased production of the metabolites of interest in plants
is to regulate the target gene expression at the translational level. For this purpose, the
targeted mutations of nucleotide sequences are introduced in the region of upstream open
reading frames (uORFs) of the genes of interest. UORFs are cis elements located in the 5′

untranslated regions (UTR) of mRNA; they promote ribosome stalling and dissociation
during mRNA translation, thus acting as translation repressors. Introducing mutations into
the uORF regions can eliminate this suppressive effect, leading to an increased expression
of the gene [317]. This strategy was successfully tested on the uORF of the LsGGP2 gene,
encoding GDP-L-galactose phosphorylase, which is a key enzyme in the biosynthesis of
Asc through the Smirnoff–Wheeler pathway. Editing of the uORF led to an increase in
Asc content in lettuce (Lactuca sativa L.) leaves by approximately 150% and an increased
resistance to oxidative stress (Table 2) [173]. A similar study was done with tomato plants.
The mutations in the uORF region of the SlGGP1 gene in two independent CRISPR-edited
lines led to an increase in the Asc level in fruits (Table 2) [169]. In mutant tomatoes edited
in the uORF-GGP1 (single nucleotide transversion from C to T) region, the amount of Asc
increased by 2–5 times compared to the wild-type plants. However, these mutations led
to impaired flower fertility, resulting in the production of homozygous mutants with the
fruits having a small number of non-viable seeds or being completely seedless [169].

Another approach to increase the Asc level, which was confirmed experimentally, was
the editing of the transcription factors of genes encoding proteins involved in its synthesis.
The EIL2 protein controls carotenoid metabolism and Asc biosynthesis in tomatoes (Solanum
lycopersicum). As previously described, the fruits of the CRISPR/Cas9 eil2 mutants had
changes in fruit color and also showed an increase in ascorbic acid content. The authors
showed that SlEIL2 repressed the expression of the gene L-GALACTOSE-1-PHOSPHATASE
3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) at the transcriptional level,
resulting in a 1.6-fold increase in Asc synthesis through the L-galactose and myo-inositol
pathways in the mutants (Table 2) [67].



Antioxidants 2023, 12, 2014 37 of 53

To increase the level of Asc in plants, genes that regulate its metabolism were proposed
as candidates for genome editing. These are the ascorbic acid mannose pathway regulator 1
(AMR1), COP9 Signalosome Subunit 5B (CSN5B) and 8 (CSN8), and NBS-LRR 33 (NL33).
This strategy is supported by data from insertional mutagenesis and RNA interference,
demonstrating that reduced expression of these genes led to a higher concentration of Asc
and enhanced plant stress resistance [318].

Plants with elevated Asc content were obtained by overexpressing monodehydroascor-
bate reductase (MDHAR), an enzyme that maintains the reduced Asc pool (Figure 5).
Tobacco plants overexpressing the MDHAR gene from acerola accumulated approximately
1.6 to 2 times more Asc and exhibited greater resistance to salt stress [319]. The content of
MDA in the transgenic plants subjected to stress was about two times lower compared to
wild-type plants [319]. The co-overexpression of MDHAR and DHAR from Brassica rapa in
Arabidopsis resulted in an increased glutathione content and an enhanced resistance to
freezing (16 h at −5 ◦C) [320].

Regulating the activity of GR, GST, and GPX, the enzymes directly affecting the levels
of reduced/oxidized glutathione ratio, is an effective approach to increase the content of
glutathione and the resistance of plants. Overexpression of bacterial GR in chloroplasts
of a poplar hybrid (Populus tremula × Populus alba) led to a 100- to 500-fold increase in GR
activity compared to wild-type plants [321]. This resulted in a two-fold increase in the total
glutathione content in the leaves and an increase in the reduced fraction of glutathione. The
engineered plants exhibited greater resistance to photoinhibitory conditions (1000 µmol
quanta/m2 s, 5 ◦C) and oxidative stress induced by leaf incubation in the presence of
MV [321].

Overexpression of tomato GR in tobacco plants also led to a 1.9- to 2.3-fold increase
in GR activity compared to the wild-type plants [322]. The resulting transgenic plants
exhibited higher germination rates and increased root length compared to the wild-type
under normal conditions. Moreover, these plants demonstrated better growth under salinity
conditions (100 mM NaCl), and lower hydrogen peroxide accumulation [322]. Arabidopsis
plants overexpressing AtGR1 had a higher glutathione level and a higher reduced/oxidized
glutathione ratio. Such transgenic plants exhibited greater resistance to the toxic effects of
aluminum: H2O2 production in transgenic plants was 26% lower compared to wild-type
plants [323].

Noteworthy results were reported in the study by Raja et al. In this research, tomato
plants were engineered with a cassette of genes encoding enzymes of the ascorbate-
glutathione cycle. Genes, which were used in this study, included MDHAR, DHAR, GR,
APX, and SOD from Pennisetum glaucum, under the control of stress-inducible promot-
ers [324]. These transgenic tomato plants accumulated approximately 50% more ascorbate
and 90% more DHA compared to the wild-type plants and demonstrated enhanced resis-
tance to salinity (200 mM NaCl) and drought stress [324]. Furthermore, these engineered
plants exhibited increased resistance to mercury (Hg) toxicity, accumulating significantly
lower levels of H2O2 and maintaining higher photosynthetic activity compared to wild-
type plants [325]. Notably, the transgenic tomato plants accumulated 20% less Hg in their
leaves but 40% more in their roots than the wild-type plants [325].

Similar to the case with flavonoids and ascorbate, a promising approach for glutathione
level increase involves the regulation of transcription factor activity. For instance, it has been
demonstrated that overexpressing the transcription factor NAC2 from Solanum lycopersicum
L. in Arabidopsis plants leads to increased expression of enzymes involved in glutathione
biosynthesis (γ-ESC, GS, and GR) under abiotic stress conditions [326]. These engineered
plants accumulated fewer ROS, exhibited improved growth, and demonstrated better
water retention in tissues during drought and salinity stress compared to the wild-type
plants [326].

As mentioned above, glutathione together with GST is involved in binding heavy met-
als. Thus, transgenic plants with increased glutathione content can be used to remediate soil
contaminated with heavy metals. For instance, Indian mustard plants with overexpression
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of glutathione synthetase from E. coli and elevated glutathione levels accumulated three
times more cadmium in their shoots than wild-type plants [327]. Rice plants overexpress-
ing the GST gene OsGSTU5 contained higher levels of glutathione compared to wild-type
plants. In the presence of cadmium in the soil, these transgenic plants accumulated 1.5 times
more cadmium than the wild-type plants [328].

Overexpression of GST from Suaeda salsa (halophytic plant adapted to saline-alkali
soils) in Arabidopsis under the control of the 35S promoter led to a significant increase in
the expression of GST and GPX [329]. The resulting plants also showed enhanced tolerance
to salinity stress (100 mM NaCl). Under saline conditions, transgenic plants did not exhibit
an increase in accumulation of MDA, whereas wild-type plants experienced a substantial
increase in MDA levels under salinity stress compared to control conditions [329].

Overexpression of tobacco GST led to approximately a 2-fold increase in GST activity
and an approximately 1.8-fold increase in the total glutathione content [330]. Constitutive
expression of RcGPX from Rhodiola crenulatea in Salvia miltiorrhiza under the control of the
35S promoter also led to an increase in the total glutathione content and the increase in
activity of the enzymes GR, APX, and GPX [331]. The resulting plants exhibited greater
resistance to a two-week drought compared to the wild-type plants [331]. Tobacco plants
expressing GPX from Chlamydomonas exhibited increased resistance to oxidative stress
induced by methyl viologen, photoinhibitory stress (1000 µmol quanta/m2 s, 4 ◦C), and
salt stress (250 mM NaCl) [332]. In Arabidopsis, there are eight isoforms of glutathione
peroxidase-like enzymes. Overexpression of one of them, AtGPXL5, in Arabidopsis led to
an increase in glutathione content. The resulting transgenic plants were more resistant to
the effects of 100 mM NaCl compared to the wild-type plants [333].

Analysis of the gene encoding GST, carried out using CRISPR/Cas9 mutant gentian
lines, showed that the functioning of this enzyme is associated not only with glutathione,
but also with the transport of flavonoids and their accumulation in flowers and leaves [334].
In octoploid strawberries, it was confirmed that the Reduced Anthocyanins in Petiole (RAP)
gene, which encodes GST, plays a crucial role in binding and transporting flavonoids into
fruits and leaves. In the initial generation (T0), when six copies of the RAP gene were
simultaneously knocked out in the strawberry genome, it resulted in a green stem and
white fruit phenotype [172].

In gene editing, knocking out the genes which encode enzymes of biosynthesis of
colored antioxidants is also employed as a morphological selective marker. For example,
tomato plants with male sterility were created by simultaneously knocking out the male
sterile 1035 (Ms1035) and GST genes. This allowed the creation of a male-sterile tomato
line that was selected for the green color of the hypocotyl [170]. Double knockout mutants
for both the GST gene and the Ms10 locus, which mediates male sterility and is closely
linked to GST, had a green hypocotyl and were easily scanned at the seedling stage [171].
In the other study, the authors used a double knockout mutant for the TM6 (male sterile
locus) gene and the gene encoding DFR, one of the enzymes of flavonoid synthesis (see
above). These mutations were also inherited in a linked manner, and selected for a green,
non-pigmented hypocotyl that indicated the desired mutation variants [153].

To increase transcriptional level of PAP1, dCas9 activation system with addition of
p65 transactivating subunit of the TF nuclear factor (NF)-kappa B and a heat shock factor 1
(HSF) activation domain, was tested. Editing led to an increase in the expression level of
the PAP1 gene by two to three times and stained A. thaliana leaves purple, which confirmed
the success of the generated dCas9 construct with modified p65-HSF as a transcription
activator [157].

5. Conclusions

The versatility of oxidative stress occurrence in response to environmental conditions,
like extreme temperatures, drought, soil salinity, pests, and diseases, highlights the impor-
tance for developing crops which are able to withstand various environmental challenges
simultaneously. In the present review we have provided evidence that enhancing the
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content of various low molecular weight antioxidants, isoprenoids, flavonoids, ascorbate,
or glutathione increases the sustainability of higher plants under those factors, which are
accompanied by the elevated ROS level.

The major knowledge presented in the literature about the role of enzymes in the syn-
thesis of non-enzymatic antioxidants, as well as the characteristics of plant transformants
with increased content of these antioxidants, was obtained using classical transgenes. The
main aim of the present review was to summarize the information on existing techniques
of plant engineering that have led to successful increases in non-enzymatic antioxidant
production in order to identify the most promising future strategies. This review describes
plenty of the examples of experimental works dedicated to overexpression of genes of
the antioxidant’s biosynthesis. The review highlights that the most relevant strategy is to
create overexpression of the genes, encoding the enzymes of the final stages of antioxidant
biosynthesis. The attempts for overexpression of the genes of initial stages led to a rapid
depletion of the common precursor for the biosynthesis of these antioxidants and to a
decrease in their content and, as a consequence, to creation of stress-sensitive plants.

The described strategies for creating mutants by regulating the intensity of TF func-
tioning are of importance, since the creation of such mutants can lead to intensified expres-
sion of a number of antioxidants. In this case, both overexpression of TF-activators and
Crispr/Cas9 knockout of TF-repressors were successfully used [163,164]. When choosing
tools for editing genes involved in the biosynthesis of antioxidants, it is worth paying
attention to the characteristics of plant transformation and the target organs for increased
antioxidant production. The widely used 35S promoter of cauliflower mosaic virus does
not always lead to the desired effect, for example, when increasing the level of antioxidants
in seeds. In such cases it is more relevant to use a seed-specific promoter. In addition to
increasing the synthesis of the antioxidants itself, the strategy of parallel intensification
of the production of corresponding chaperone proteins and storage sites for these sub-
stances is preferable, such as chromoplasts for carotenoids or plastoglobules for PQ and
plastochromanol storage.

The current actively developing techniques of creating mutants using various genome
editing methods significantly expands the capabilities of researchers. These techniques
allow both the gene sequences and regulatory elements to be inserted into a certain given
region of the plant genome. In addition, it makes it possible to introduce mutations into one
or several target genes with an accuracy of one nucleotide. The genome editing methods
are based on the manipulations of the nucleotide sequences in a strictly specified location
and with a minimum number of off-target changes in the genome, and are supposed to be
environmentally friendly. Nevertheless, transgenesis and genome editing are not mutually
exclusive, but can complement each other. However, considering the above information
concerning gene editing, it seems likely that the developing dCAs9 technique will displace
the classical transgenesis for the creation of overexpressing mutants.

Overall, we have considered that the most prospective approach is the complex multi-
strategy engineering, which, in addition to all of the above, also takes into account the fact
that antioxidants are the precursors of some hormones and other metabolites. In this case,
expression cassettes can be designed in such a way that some genes are overexpressed,
while others are CRISPR/Cas9 knocked out or contain genes for RNA silencing. This
was done, for example, in [146], where editing was carried out in relation to carotenoid
synthesis genes, taking into account the possibility that carotenoid overproduction is able
to delay seed germination [335], since carotenoids serve as precursors for ABA synthesis.

In addition to the versatility of such plants in terms of increased resistance to oxidative
stress conditions, they also exhibit specific characteristics. This is a consequence of the
fact that the non-enzymatic antioxidants discussed in this review perform other protective
and signaling functions in plants, in addition to antioxidant functions. We have here
described that creating plants with increased flavonoid content appears to be an effective
means of combating biotic stresses, especially insect pests, since some of the flavonoids are
toxic for herbivorous insects. Increasing glutathione content in plants may be an effective
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approach for phytoremediation of soils contaminated with heavy metals. Enhancing the
content of ascorbic acid and of isoprenoids including UQ, PQ, and carotenoids improves
the nutritional value of plants and increases the shelf life of fruits and seeds. Moreover, it is
possible that under photoinhibitory conditions, the replacement of oxidized PQ derivatives
in the thylakoid membrane by PQ molecules from plastoglobules can be facilitated in
plants with increased PQ content. An increase in the carotenoid content, particularly of
xanthophylls, is also important for plants, owing to their participation in the dissipation of
excess energy into heat. This suggests that the creation of mutant plants with enhanced
biosynthesis of antioxidants can be an effective strategy to increase the acclimatory potential
of plants not only by reducing the level of ROS, but also by using the other defined internal
potential reserves of plants.

As described in this review, the main pool of studies is devoted to the creation of plants
with increased production of tocopherols, flavonoids, carotenoids, and ascorbate, while
only a few articles have been published on the overexpression of PQ or UQ biosynthesis.
These quinones are able to freely diffuse along the membranes, increasing the probability of
their encountering ROS, which are produced by the photosynthetic and respiratory electron
transport chain components. It can be predicted that their chemical and physical properties
are the appropriate basis for manipulating the level of these components to improve plant
sustainability.

Moreover, employing strategies for enhancement of biosynthesis of several antioxi-
dants can lead to the development of plants with novel traits, addressing multiple chal-
lenges at once: enhancing plant resistance, elevating the nutritional value of crops, and
aiding in the remediation of polluted soils.
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