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Abstract: Amyotrophic lateral sclerosis (ALS) is considered a fatal progressive degeneration of motor
neurons (MN) caused by oxidative stress and mitochondrial dysfunction. There are currently no
treatments available. The most common inherited form of ALS is the C9orf72 mutation (C9-ALS).
The proline–arginine dipeptide repeat protein (PR-DPR) produced by C9-ALS has been confirmed to
be a functionally acquired pathogenic factor that can cause increased ROS, mitochondrial defects,
and apoptosis in motor neurons. Pectolinarigenin (PLG) from the traditional medicinal herb Linaria
vulgaris has antioxidant and anti-apoptotic properties. I established a mouse NSC-34 motor neuron
cell line model expressing PR-DPR and confirmed the neuroprotective effect of PLG. The results
showed that ROS production and apoptosis caused by PR-DPR could be improved by PLG treatment.
In terms of mechanism research, PR-DPR inhibited the activity of the mitochondrial fusion proteins
OPA1 and mitofusin 2. Conversely, the expression of fission protein fission 1 and dynamin-related
protein 1 (DRP1) increased. However, PLG treatment reversed these effects. Furthermore, I found
that PLG increased the expression and deacetylation of OPA1. Deacetylation of OPA1 enhances
mitochondrial fusion and resistance to apoptosis. Finally, transfection with Sirt3 small interfering
RNA abolished the neuroprotective effects of PLG. In summary, the mechanism by which PLG
alleviates PR-DPR toxicity is mainly achieved by activating the SIRT3/OPA1 axis to regulate the
balance of mitochondrial dynamics. Taken together, the potential of PLG in preclinical studies for
C9-ALS drug development deserves further evaluation.

Keywords: amyotrophic lateral sclerosis (ALS); C9orf72; proline–arginine dipeptide repeat protein
(PR-DPR); pectolinarigenin; ROS; mitochondrial dynamics; apoptosis; OPA1; acetylation; SIRT3

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a relatively common rare disease characterized
by progressive degeneration of the upper and lower motor neurons. Most ALS cases are
sporadic and may be related to environmental pollution, poisons, trauma, and infection.
Only approximately 10% of cases are familial ALS [1]. The most prevalent of these is
the C9orf72 (Gene ID: 203228) mutation (C9-ALS) [2]. C9-ALS is a large expansion of the
GGGGCC hexanucleotide repeat sequence (HRE) in intron 1. Current research shows
that this amplification can downregulate C9orf72 expression (loss of function), leading to
functional defects in immunity, autophagy, actin, and endocytosis. Moreover, the HRE
portion produces RNA or protein factors with toxic repeat sequences (gain of function).
The interaction of these three effects may result in a toxic gain. HRE sequences are known
to generate five dipeptide repeat protein sequences (DPR) in either sense or antisense
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orientation via the repeat-associated non-ATG translation (RAN) mechanism [3]. Research
shows that PR-DPR, a protein with a strong positive charge, is the most toxic. It mainly
enters the cell nucleus to form aggregates and affects various physiological functions of
cells [4,5].

A previous study showed that C9-ALS causes neuronal mitochondrial damage [6,7].
These damages included (1) Decreased mitochondrial DNA (mtDNA) synthesis [8].
(2) Downregulated expression of genes encoding the electron transport chain [9–12].
(3) Induced ubiquitination and degradation of ATP5A1 in electron transport chain complex
V [13]. (4) Decreased mitochondrial membrane potential (MMP) [14]. (5) Destruction
of the mitochondrial inner membrane structure [15]. (6) Loss of mitochondrial calcium
homeostasis [16–18]. (7) Inhibition of mitophagy activity [19]. In addition, C9-ALS reduced
the expression of the mitochondria-protecting antioxidant enzyme NRF2 [14]. In some
studies, C9-ALS has been shown to increase p53 phosphorylation, Bax/Bak protein levels,
caspase-3 cleavage, and cytochrome c release, thereby promoting apoptosis. In contrast, it
inhibits the expression of anti-apoptotic Bcl-xL mRNA [11,20]. All these defects reduce ATP
synthesis, oxidative stress, and apoptosis in motor neurons [21]. DPR has also been shown
to affect mitochondrial function, particularly those DPR containing arginine. Shorter and
less active mitochondria have been observed in the cortical neurons of glycine-agarine
(GR)-DPR mice [13].

The homeostasis of mitochondrial dynamics is essential for maintaining the quality
and shape of mitochondria, which is accompanied by fission and fusion [22]. Its defects
can affect the survival of cells, particularly neurons. Mechanistically, optic atrophy 1
(OPA1, Gene ID: 4976) and mitofusin 1 (Gene ID: 55669) and 2 (Gene ID: 9927) (MFN1
and MFN2) mediate mitochondrial fusion. Conversely, dynamin-related protein 1 (DRP1,
Gene ID: 10059) and fission 1 (Fis1, Gene ID: 51024) are involved in the regulation of
mitochondrial fission [23]. OPA1 is a mitochondrial guanosine triphosphatase (GTPase)
that is widely distributed in the inner membrane of mitochondrial cristae. Its physiological
and functional roles include regulating mitochondrial fusion, controlling mitochondrial
cristae structure, maintaining mitochondrial integrity, and inhibiting apoptosis-related
cytochrome c release [24]. Mitochondrial disruption, respiratory complex I inactivation,
and reduced ATP production have been observed in neural cells derived from OPA1-
mutated induced pluripotent stem cells [25]. Increased DRP1 expression and suppression
of OPA1 activity were observed in the cortical neurons of GR-DPR mice. Regulation of
OPA1 activity is affected by acetylation, proteolysis, and SUMOylation [26,27]. Acetylation
modification of OPA1 at lysine 926 and 931 reduces the GTPase activity of the protein.
Mitochondrial deacetylase SIRT3 can deacetylize OPA1 and increase its GTPase activity [28].

NAD-dependent deacetylase SIRT3 (Gene ID: 23410) is a member of the mammalian
sirtuin protein family and is located in the mitochondrial soluble matrix [29]. Research has
shown that SIRT3 plays a central role in the regulation of aging, mitochondrial activity,
autophagy, and oxidative stress [30]. SIRT3 can inhibit mitochondrial dysfunction, reduce
the production of ROS, induce mitophagy, and inhibit apoptosis; therefore, it can be used
to treat neurodegenerative diseases. [31].

The natural flavonoid pectolinarigenin (PLG, Figure 1) was derived from Linaria
vulgaris, a traditional medicinal herb. It has been shown to possess anti-oxidative [32],
anti-inflammatory [33], neuroprotective [34], and anti-cancer properties. [35]. However,
the therapeutic utility of PLG in C9-ALS has not yet been evaluated. Mouse NSC-34
motor neuron cell lines are commonly used to construct pharmacological and transgenic
ALS in vitro models. It can be used to evaluate the effectiveness and mechanism of ALS
treatment strategies [36]. In this study, I established an NSC-34 motor neuron cell line
expressing PR50. I found that PR50 overexpression increases intracellular ROS production
and causes mitochondrial dynamics defects that cause apoptosis. Treatment with PLG
ameliorates these damages. This ability may be achieved in part by enhancing the SIRT3-
OPA1 axis to maintain the dynamic balance of mitochondria.
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Figure 1. Molecular structure diagram of the flavonoid compound pectolinarigenin (PLG) derived
from Linaria vulgaris.

2. Materials and Methods
2.1. Experimental Reagents, NSC-34 Cells and Culture Media

Synthetic pectolinarigenin (PLG) and other chemicals were obtained from Sigma-
Aldrich (St. Louis, MO, USA) unless otherwise indicated. PLG was prepared into 10 mM
stock solution. Culture media and various supplements were purchased from Gibco
(Thermo Fisher Scientific, Waltham, MA, USA). The NSC-34 cell line (mouse motor neuron-
like hybrid cells) provided by Professor Shinn-Zong Lin (Tzu Chi University, Hualien,
Taiwan) was cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin (100 units/mL)/streptomycin (100 µg/mL)
in an incubator with a humidified atmosphere of 5% CO2 at 37 ◦C.

2.2. PR50-Expressing Plasmid Construction and Transfection of NSC-34 Cells

DNA fragments of PR50 were generated by gene synthesis (Genewiz, South Plainfield,
NJ, USA). The fragment was digested by the restriction enzymes Xho I and Hind III and
inserted into the pcDNA 3.1/myc-His vector (Invitrogen, ThermoFisher Scientific, Carlsbad,
CA, USA). Finally, according to the manufacturer’s instructions, Lipofectamine 2000 reagent
(Invitrogen) was used to transfect the plasmid into the NSC-34 cell line. Transfected cells
were selected and maintained using G418 (1.5 mg/mL).

2.3. Immunofluorescence Staining of NSC34 Cells

NSC-34 cells grown on coverslips were washed and treated with paraformaldehyde
(4%) and Triton X-100 (0.2%). The blocking solution and anti-Myc antibody (Cell Signaling
Technology, Beverly, MA, USA) were then added to the coverslip for reaction overnight
at 4 ◦C. The next day, cells were washed and incubated with Alexa Fluor 488-conjugated
goat anti-rabbit IgG secondary antibody (Invitrogen) for 1 h at room temperature. The
washed cells were then stained with DAPI for nuclei. Fluorescent signals were detected
using a Zeiss Axio Imager A1 fluorescence microscope (Carl Zeiss MicroImaging GmbH,
Göttingen, Germany).

2.4. Mitochondrial Membrane Potential Determination of NSC-34 Cells

First, I replaced the cultured NSC-34 cells with fresh medium and added
3,3’-dihexyloxycarbocyanine iodide (DiOC6) (1 µM) for staining. After 30 min, an Axio
Observer inverted fluorescence microscope (Carl Zeiss MicroImaging GmbH, Göttingen,
Germany) was used to detect the green fluorescence associated with the MMP intensity,
and the fluorescence intensity was quantified using ImageJ software (version 1.53, National
Institutes of Health).

2.5. TUNEL Assay of NSC-34 Cells

After the NSC-34 cells on the coverslip were fixed and permeabilized, the Click-
iT™ Plus TUNEL detection kit (Invitrogen) was used according to the manufacturer’s
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instructions to detect in situ cell apoptosis using fluorescence microscopy and calculate the
proportion of apoptotic cells.

2.6. Flow Cytometry of Annexin V (FITC) and Propidium Iodide Staining of NSC-34 Cells

NSC-34 cells were subjected to apoptosis detection using the FITC Annexin-V Apop-
tosis Detection Kit I (BD Biosciences Pharmingen, San Diego, CA, USA) according to
the manufacturer’s instructions. Cell staining results for FITC-labeled Annexin V and
propidium iodide were determined using a BD LSRII flow cytometer (Becton Dickin-
son, Heidelberg, Germany). The instrument sets a collection gate limit of 10,000 events
per sample.

2.7. Western Blotting Analysis of Protein Expression in NSC-34 Cells

NSC-34 cells were washed using fully formulated RIPA buffer (ThermoFisher Scien-
tific) to collect cell lysates and determine total protein concentration using the Coomassie
Plus Protein Assay Kit (Pierce, Rockford, IL, USA). I ran 50 µg of cell lysate through SDS-
PAGE (7.5–12.5%) and transferred it to a PVDF membrane (Merck Millipore, Carrigtwohill
Co. Cork, Ireland). Next, the membrane was incubated with specific antibodies overnight.
The next day, I washed the membrane and added horseradish peroxidase (HRP)-conjugated
secondary antibody for reaction at room temperature for 1 h. Finally, the location and
levels of specific proteins in the membrane were determined using an Amersham enhanced
chemiluminescence kit (Amersham Biosciences, Piscataway, NJ, USA) and a BioSpec-trum
imaging system (UVP, Upland, CA, USA). Caspase 3, poly ADP ribose polymerase (PARP),
GAPDH, OPA1, MFN2, Fis1, DRP1, SIRT3, and acetylated lysine antibodies were obtained
from Cell Signaling Technology. HRP-conjugated goat anti-mouse and goat anti-rabbit
secondary antibodies were purchased from PerkinElmer, Inc. (Boston, MA, USA).

2.8. Viability Analysis of NSC-34 Cells

NSC-34 cells transfected with PR50 or empty vector were incubated in 96-well culture
plates (4 × 103cell/pre well) to reach 70% confluence. Next, serially diluted PLG was
added and treated for 24 h. CellTiter-Blue® Reagent (Promega, Madison, WI, USA) was
used according to the manufacturer’s instructions. Finally, the survival ratio of cells was
quantified using the SpectraMax M2 system (Molecular Devices, Silicon Valley, CA, USA).

2.9. Quantitative Analysis of ROS in NSC-34 Cells

NSC-34 cells were cultured on a black 96-well plate, and then fresh medium was
placed and 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA, 25 µM) was added.
After incubation at 37 ◦C in the dark for 30 min, the cells were washed and the fluorescence
intensity was measured every 15 min with a spectrophotometer for 150 min.

2.10. Citrate Synthase Activity Assay of Mitochondrial in NSC-34 Cells

NSC-34 cells were washed and lysed using low-strength complete formulation RIPA
buffer (Thermo Fisher Scientific, Waltham, MA, USA) to obtain whole-cell extracts. Next, I
analyzed 50 µg of the extract using a citrate synthase assay kit (Sigma-Aldrich, St. Louis,
MO, USA) according to the manufacturer’s instructions and measured the values with
a spectrophotometer.

2.11. Immunoprecipitation (IP) Assay of NSC-34 Cells

NSC-34 cells were washed and lysed using low-strength complete formulation RIPA
buffer (Thermo Fisher Scientific, Waltham, MA, USA) to obtain whole-cell extracts. Next,
cell extracts were cleared using Protein A-Sepharose beads and incubated overnight at 10 ◦C
with anti-OPA1 antibody or normal rabbit immunoglobulin G (Cell Signaling Technology).
The next day, the cell extract/OPA1 antibody was added to Protein A-Sepharose beads
(0.1 g/L) and incubated at 10 ◦C for 4 h. Finally, the immunoprecipitate-bound Protein
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A-Sepharose beads were collected by centrifugation, and the acetylation level of OPA1 was
determined by Western blotting using an acetylated lysine antibody.

2.12. Transient Transfection of Small Interfering RNAs of NSC-34 Cells

NSC-34 cells (2.0 × 105) were seeded on a 6-well culture plate. When 70% confluence
was reached, transfection with sirt3 or non-targeting control small interfering RNA (siRNA;
75 nM) was performed for 16 h. Transfection was implemented using Lipofectamine
2000 transfection reagent (Invitrogen) according to the manufacturer’s instructions. siRNA
targeting mouse sirt3 and control siRNA were purchased from Thermo Fisher Scientific.

2.13. Statistical Analysis of the Experimental Results

Each experiment was repeated at least three times. Statistical analysis of data was
performed using SAS software (version 9.4, SAS Institute Inc., Cary, NC, USA). Data are
presented as mean± standard deviation (SD). Statistical significance was determined using
one-way ANOVA and Tukey’s post hoc test. A p value < 0.05 was considered significant.

3. Results
3.1. PR50 Expression Causes Apoptosis of Mouse NSC-34 Motor Neuron Cells

First, I established a mouse NSC-34 motor neuron cell line model with temporary PR50
expression. Immunofluorescence staining showed that PR50 mainly formed punctates in
the nucleus (Figure 2A). Next, I evaluated the effect of PR50 on the induction of apoptosis. I
used DiOC6 staining to observe changes in the mitochondrial membrane potential (MMP)
of cells. The results showed that PR50 expression caused a loss of MMP compared with the
empty vector (p < 0.01, Figure 2B). In observing the fragmentation of chromatin DNA in
situ, the TUNEL assay revealed that PR50 expression significantly caused chromosomal
DNA fragmentation compared with the empty vector group (p < 0.001, Figure 2C). On
the quantitative apoptotic cell population, flow cytometry analysis of cells co-stained with
annexin V and propidium iodide indicated that the PR50 expression group significantly
promoted cell apoptosis compared with the empty vector group (p < 0.001, Figure 2D).
Finally, I assessed the activation of apoptosis-related core proteins using Western blotting.
The results showed that PR50 expression caused a significant increase in the ratios of cleaved
caspase 3/pro caspase 3 (p < 0.001) and cleaved PARP/pro PARP (p < 0.001) (Figure 2E).
According to the above results, PR50 expression can induce mitochondrial damage and
apoptosis in NSC-34 motor neuron cells. This is consistent with the results observed in the
motor neurons of patients and mice with C9-ALS.

3.2. Pectolinarigenin (PLG) Treatment Improves the Viability of PR50-Expressing NSC-34 Cells
and Prevents Apoptosis

Because pectolinarigenin (PLG) is known to have antioxidant and neuroprotective
properties, I aimed to evaluate its effect on improving apoptosis induced by PR50 expression
in NSC-34 motor neurons. First, I confirmed the appropriate concentration for PLG treat-
ment. Cell viability analysis showed that treatment with PLG at concentrations lower than
10 µM did not affect the survival of NSC-34 cells (Figure 3A). In addition, compared with
the empty plasmid group, PR50 expression significantly inhibited cell survival (p < 0.001,
Figure 3B), which confirmed that PR50 can cause cytotoxicity. I further found that PLG
treatment dose-dependently increased the viability of PR50-expressing cells at concentra-
tions above 1 µM compared with the PR50/DMSO group (5 µM group, p < 0.01, Figure 3B).
However, there was no significant difference in the effect on cell survival rate when treated
with 10 µM PLG compared with 5 µM. Therefore, we selected PLG concentrations of 2.5
and 5 µM for analysis in subsequent experiments.
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Figure 2. PR50 expression causes apoptosis of mouse NSC-34 motor neuron cells. PR50 plasmids were
transfected into NSC-34 cells for 24 h. (A) immunofluorescent staining using anti-myc-tag antibody
(green). The position of the nucleus was confirmed by DAPI staining (blue). Microscope magnification
is 400x. PR50 mainly forms punctates in the nucleus. (B) DiOC6 staining and fluorescence microscopy
were used to detect changes in mitochondrial membrane potential (MMP). Microscope magnification
is 100x. Quantitative values were obtained using ImageJ software (version 1.53). (C) the proportion
of cells with chromatin fragmentation was assessed by fluorescence microscopy using the TUNEL
assay. Microscope magnification is 100x. (D) cells co-stained with FITC-conjugated annexin V and
propidium iodide (PI) were analyzed by flow cytometry to quantify the proportion of apoptotic cell
populations. (E) the expression of apoptosis-related proteins was determined by Western blotting.
GAPDH was used to normalize the total protein loading in each group. Quantitative values were
obtained using ImageJ software (version 1.53). The results of Western blotting show the presence of
the active form of the proteins since they are activated by proteolysis.

In the fluorescence analysis of the DiOC6 probe, compared with the PR50/DMSO
group, PLG restored the mitochondrial membrane potential (MMP) of PR50-expressing
cells (5 µM group, p < 0.001, Figure 3C). TUNEL assay analysis revealed that compared
with the PR50/DMSO group, the number of positive cells in the PR50/PLG group decreased



Antioxidants 2023, 12, 2008 8 of 18

(5 µM group, p < 0.001, Figure 3D). Furthermore, flow cytometry was used to analyze
cells co-stained with annexin V and propidium iodide. The results indicated that the total
number of early and late apoptotic cells in the PR50/PLG group was significantly reduced
compared with that in the PR50/DMSO group (5 µM group, p < 0.001, Figure 3E). Finally,
Western blot analysis displayed that compared with the PR50/DMSO group, expressions
of the cleaved apoptotic core proteins, cleaved caspase 3/pro caspase 3 (5 µM, p < 0.001)
and cleaved PARP/pro PARP (5 µM, p < 0.001), were lower in the PR50/PLG group than
in the PR50/DMSO group (Figure 3F). According to the above results, PLG treatment can
significantly reduce the apoptosis of NSC-34 motor neuron cells caused by PR50 expression.
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Figure 3. PLG treatment can alleviate PR50-induced apoptosis of NSC-34 motor neuron cells. (A) NSC-
34 cells were treated with different concentrations of PLG for 24 h, and cell viability was determined
using the CellTiter Blue Cell Viability Assay. (B) PR50-expressing NSC-34 cells were treated with
different concentrations of PLG for 24 h, and cell viability was measured. (C–F) PR50-expressing
NSC-34 cells were treated with 2.5 and 5 µM PLG for 24 h. (C) DiOC6 probe was used to detect
changes in mitochondrial membrane potential (MMP) through fluorescence microscopy. Microscope
magnification is 100x. The signal intensity was quantified using ImageJ software (version 1.53).
(D) the number of cells with chromatin fragmentation was counted by fluorescence microscopy using
the TUNEL assay. Microscope magnification is 100x. (E) FITC-conjugated Annexin V- and propidium
iodide (PI) co-stained cells were used to count the number of apoptotic cell populations using flow
cytometry. (F) the expression of apoptosis-related proteins was determined by Western blotting.
GAPDH was used to normalize the total protein loading in each group. Quantitative values were
obtained using ImageJ software (version 1.53). The results of Western blotting show the presence of
the active form of the proteins since they are activated by proteolysis.
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3.3. PLG Inhibits the Enhancement of ROS Production and Mitochondrial Fission in NSC-34 Cells
Caused by PR50

On the basis of the aforementioned results showing that PLG can reduce motor neu-
ron apoptosis caused by PR50, I explored the possible mechanism. Because studies have
shown that C9-ALS can cause loss of mitochondrial function, including abnormalities in
mitochondrial dynamics, I wanted to clarify whether the neuroprotective effects of PLG
are accompanied by this pathway. First, H2DCFDA probe analysis showed that PR50
expression increased ROS levels in NSC-34 cells (p < 0.001, Figure 4A). This reveals that
PR50 can damage mitochondria and cellular antioxidant mechanisms, thereby leading to
an increase in ROS levels. Next, I compared the PR50/PLG group with the PR50/DMSO
group, and the results indicated that PLG could reduce ROS production (5 µM group,
p < 0.001, Figure 4A). I also evaluated the effect of PLG on the mitochondrial activity
of PR50-expressing NSC-34 cells by detecting mitochondrial citrate synthase activity. As
shown in Figure 4B, PR50 expression significantly diminished the mitochondrial activity of
NSC-34 cells (p < 0.01). However, compared with the PR50/DMSO group, the data showed
that PLG restored the mitochondrial activity of PR50-expressing NSC-34 cells (5 µM group,
p < 0.001, Figure 4B). I also wanted to determine whether the restoration of mitochondrial
activity is related to the promotion of fusion in mitochondrial dynamics. Western blotting
revealed that PR50 inhibited the expression of the mitochondrial fusion proteins OPA1
(p < 0.001) and MFN2 (p < 0.001) in NSC-34 cells and promoted the expression of the fission
proteins Fis1 (p < 0.001) and DRP1 (p < 0.001) (Figure 4C). However, PLG treatment reversed
the effects of PR50 on the expression of these proteins. Compared with the PR50/DMSO
group, PLG augmented the expression of OPA1 (5 µM group, p < 0.001) and MFN2
(5 µM group, p < 0.001) in PR50-expressing NSC-34 cells (Figure 4C). The expressions of Fis1
(5 µM group, p < 0.01) and DRP1 (5 µM group, p < 0.01) were inhibited (Figure 4C). These
results indicate that ROS production and mitochondrial dynamics defects caused by PR50
expression can be improved by PLG treatment.

3.4. PR50-Induced Acetylation of OPA1 Is Inhibited by PLG

SIRT3 is a deacetylase that broadly regulates mitochondrial homeostasis in vivo, in-
cluding directing mitochondrial dynamics toward fusion. Western blotting showed that
PR50 expression lessened SIRT3 expression in NSC-34 cells (p < 0.001, Figure 5A). However,
compared with the PR50/DMSO group, PLG treatment increased SIRT3 levels in PR50-
expressing cells (5µM group, p < 0.001, Figure 5A). Studies have presented that acetylation
inhibits the activity of OPA1 and leads to a diminution in mitochondrial fusion ability.
Therefore, I evaluated the effect of PLG on the acetylation of OPA1. I immunoprecipitated
protein extracts from PR50-expressing NSC-34 cells using OPA1 antibodies and then used
antibodies against lysine residue acetylation to detect the degree of OPA1 acetylation. The
results are shown in Figure 5B. After normalizing the expression of OPA1 in each group
compared with that in the empty vector group, PR50 expression significantly enhanced the
acetylation of OPA1 (p < 0.01). Compared with the PR50/DMSO group, PLG inhibited the
acetylation of OPA1 in PR50-expressing NSC-34 cells (5µM group, p < 0.01).

3.5. SIRT3 Downregulation Abolishes the Ability of PLG to Enhance Mitochondrial Fusion and
Resist Apoptosis in PR50-Expressing NSC-34 Cells

Because SIRT3 is the major deacetylase of OPA1, I wondered whether SIRT3 was the
major upstream event for the neuroprotective effect of PLG on PR50-expressing motor
neuron cells. I used siRNA to inhibit SIRT3 expression in PR50-expressing cells. Western
blotting showed that compared with the control siRNA group, Sirt3 sRNAi inhibited 95%
SIRT3 expression in PR50-expressing cells (p < 0.001, Figure 6A). In the analysis of protein
expression related to mitochondrial dynamics, I found that the downregulation of SIRT3
abolished the ability of PLG to promote mitochondrial fusion-related proteins and inhibit
fission-related white matter in PR50-expressing NSC-34 cells (Figure 6B). Similarly, SIRT3
downregulation also hinders the ability of PLG to prevent expression of the PR50-activated
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cleaved apoptotic core proteins (Figure 6B). These data may demonstrate that PLG reverses
mitochondrial dynamics defects and apoptosis induction in PR50-expressing NSC-34 cells
by regulating SIRT3 activity.
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Figure 4. PLG treatment reduced cellular ROS production and increased mitochondrial fusion in
PR50-expressing NSC-34 cells. PR50-expressing NSC-34 cells were treated with PLG for 24 h. (A) the
H2DCFDA probe was used to measure the ROS level in each group. (B) citrate synthase activity
assay was used to determine intracellular mitochondrial activity in each group. (C) expression of
fusion (OPA1 and MFN2) and fission (Fis1 and DRP1)-related proteins on mitochondrial dynamics
was assessed using Western blotting. GAPDH was used as the control for total protein loading in
each group. The signal intensity was quantitatively analyzed using ImageJ software (version 1.53).
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Figure 5. PLG enhances SIRT3 expression and OPA1 deacetylation in PR50-expressing NSC-34 cells.
PR50-expressing NSC-34 cells were treated with PLG for 24 h. (A) Western blotting was used to
analyze expression. (B) determination of the degree of OPA1 acetylation using immunoprecipitation
with an OPA1 antibody and Western blotting with a lysine acetylation-specific antibody. GAPDH was
used to normalize the loading of all protein extracts from each group. The degree of OPA1 acetylation
was corrected by normalizing OPA1 expression levels. The signal intensity was quantified using
ImageJ software (version 1.53).
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Figure 6. Downregulation of SIRT3 expression eliminates the facilitation of mitochondrial dynamics
fusion and the anti-apoptotic activities of PLG in PR50-expressing NSC-34 cells. Control or Sirt3
siRNA was delivered to PR50-expressing NSC34 cells for 16 h. This was followed by PLG (5 µM)
treatment for 24 h. Finally, Western blotting was used to detect the expression of mitochondrial
dynamics-related proteins (A) and the activity of the apoptotic core protein (B). GAPDH served as an
internal control for loading total proteins in each group. The signal intensity was quantified using
ImageJ software (version 1.53).

4. Discussion

ALS is a fatal degenerative disease of the motor neurons. Although riluzole and
edaravone have been approved for the clinical treatment of ALS, their effects are extremely
limited. Therefore, it is urgent to develop new therapeutic drugs [1]. C9-ALS accounts for
the highest proportion of familial ALS and is present in some patients with sporadic ALS.
Therefore, it is a suitable entry point for the development of new drugs for C9-ALS [37].
One of the cytopathological features of C9-ALS is the toxic PR-DPR that occurs via the
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RAN mechanism. PR-DPR mainly exists in the nucleus and damages various physiological
functions of the nucleus, including gene transcription/modification and nucleocytoplasmic
transport [38,39]. However, the effects of PR-DPR on many physiological functions outside
the nucleus have also been widely reported [40–42]. Among them, it has been confirmed
that PR-DPR causes mitochondrial function defects, leads to the production of ROS, and
finally induces apoptosis [5,43]. Here, I established a mouse NSC-34 motor neuron cell
line model expressing PR-DPR (PR50) and used it for drug screening and research on its
mechanism of action. In this model, I observed that PR50 expression caused significant
damage and apoptosis in NSC-34 cells and increased the production of intracellular ROS.
This result is similar to that observed in induced pluripotent stem cell lines producing
motor neurons in C9-ALS patients and mouse models [6,44]. Therefore, this model can be
used to evaluate the efficacy of C9-ALS drugs and to explore related mechanisms.

Pectolinarigenin (PLG) is a flavonoid compound derived from the traditional medic-
inal herb Linaria vulgaris. It has antioxidant, anti-inflammatory, neuroprotective, and
mitochondrial protection functions [45–47]. Wu and Liang’s research showed that PLG can
improve functional recovery after spinal cord injury in rats and lessen neuronal damage
and apoptosis. In addition, PLG prevents the activation of caspase-3, caspase-9, and PARP
and decreases the Bax:Bcl2 ratio [48]. Li et al. found that PLG alleviated oxidative stress and
cell apoptosis induced by liver ischemia/reperfusion by activating the PI3K/AKT/Nrf2
signaling pathway [46]. Here, I confirmed that PLG also has a significant alleviating effect
on ROS production and apoptosis in NSC-34 cells induced by PR-DPR.

The maintenance of mitochondrial morphology, quality, and function requires the bal-
ance of mitochondrial dynamics through the fine regulation of fission and fusion processes.
Disruption of this homeostasis is associated with neuronal loss in various neurodegener-
ative diseases such as ALS [49]. Core regulators of mitochondrial fusion include OPA1
and MFN [50]. The initiating factor of the mitochondrial outer membrane fusion pro-
cess is MFN1/MFN2, whereas the fusion of the mitochondrial inner membrane is mainly
related to OPA1. Conversely, DRP1 and Fis 1 promote mitochondrial fission [51]. The
accumulation of the ALS-related SOD1G93A mutant protein in mitochondria will cause the
downregulation of OPA1, resulting in multiple mitochondrial defects, including ultrastruc-
tural disorder, fusion inhibition, maturation obstruction, and cristae swelling, ultimately
leading to the loss of mitochondrial membrane potential, reduced respiratory capacity,
and increased production of ROS [52]. In Drosophila models, C9-ALS-associated GR-DPR
can enter mitochondria and interact with components of the mitochondrial contact site
and cristae organizing system (MICOS) and OPA1, altering MICOS dynamics and subunit
interactions. This impairs the mitochondrial inner membrane structure, ion homeostasis,
mitochondrial metabolism, and energy production [15]. ALS-linked CHCHD10 and TDP-43
mutations disrupt mitochondrial OPA1–mitofilin complex formation, thereby impairing
mitochondrial fusion and respiration [53]. My study showed that PR-DPR promotes the
upregulation of DRP1 and Fis 1 and inhibits the expression of OPA1 and MFN, leading to
an imbalance in mitochondrial dynamics. Finally, it causes cellular oxidative stress and
apoptosis. Treatment with PLG can reverse this damage.

The activity of the mitochondrial fusion core protein OPA1 is regulated by deacety-
lation, proteolysis, and SUMOylation [26,27]. The most important regulatory factor is
SIRT3-induced deacetylation [54]. SIRT3 is a mitochondrial NAD-dependent deacetylase
involved in the tricarboxylic acid cycle, energy production, and oxidative stress [30]. SIRT3
functions by regulating the level of mitochondrial DNA repair activity, resisting oxidative
stress, avoiding cell apoptosis, and maintaining mitochondrial metabolic homeostasis and
energy production. It can prevent or alleviate mitochondrial dysfunction and has neuro-
protective effects [31]. Modulation of SIRT3 activity now represents a powerful strategy
for treating neurodegenerative diseases [55]. A previous study showed that increasing
NAD+ levels upregulates SIRT3 activity [56]. SIRT3 is usually a SUMOylated protein whose
deacetylase activity is temporarily inhibited. Under the stimulation of external factors,
the upstream regulatory molecule Sentrin-specific protease 1 (SENP1) de-SUMOylates
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and activates SIRT3, promoting the deacetylation of downstream target mitochondrial
proteins [57]. Mitochondrial defects caused by hyperacetylation of mitochondrial proteins
have been found in spinal motor neurons differentiated from induced pluripotent stem
cells from patients with familial and sporadic ALS. Activating SIRT3 using nicotinamide or
small molecule initiators reverses these defects and corrects a range of ALS-related pheno-
types [58]. In SOD1G93A transgenic mice and primary cortical neuronal cells, SIRT3 protects
against mitochondrial fragmentation and neuronal cell death in mutant SOD1G93A [59]. In
Sirt3 transgenic mice, SIRT3 overexpression increases NADPH levels and protects against
oxidative stress-induced cell death [60]. In this study, I found that PLG can enhance
the expression of SIRT3, cause OPA1 deacetylation, and finally promote mitochondrial
fusion and improve PR50-induced apoptosis. Downregulation of SIRT3 abolished this
ability of PLG. This confirms activation of the SIRT3–OPA1 axis as a major contributor
to the neuroprotective potential of PLG. In a primary cortical neuronal cell model, grape
wine polyphenols prevent axonal apoptosis and act via mitochondrial SIRT3 activation in
axons [61]. In addition to PLG, a variety of bioactive compounds in plants can regulate
the expression of proteins related to mitochondrial dynamics to reduce mitochondrial
abnormalities after exposure to neurotoxicants. For example, the decrease in mitochondrial
membrane potential and mitochondrial DNA content in PC12 cells exposed to 6-OHDA can
be improved by inhibiting DRP1 and Fis 1 proteins and inducing OPA1 protein expression
with allicin in garlic [62]. Carnosic acid isolated from rosemary reverses 6-OHDA-induced
mitochondrial dynamic disorders. It can enhance the expression of OPA1, prevent the
release of cytochrome c, and inhibit the activation of apoptosis-related proteins [63].

Neuroinflammation is also an important pathological factor in C9-ALS [64]. Neu-
roinflammation may be an upstream cause of disease, and the sustained initiation of
an inflammatory response resulting from neuronal damage may also be detrimental to
the remaining neurons and exacerbate the disease process. Some reports suggest that
PLG also has anti-inflammatory properties. It can inhibit NF-κB [33] and JAK2/STAT3
activity [47] and initiate Nrf2 and PPARα signaling pathways [32]. Therefore, in addition
to improving mitochondrial function, PLG can also inhibit the inflammatory response to
the neuronal microenvironment.

5. Conclusions

On the basis of the above, I established a C9-ALS drug screening model expressing
PR-DPR in mouse NSC-34 motor neurons. In this model, I observed defects in mitochon-
drial dynamics caused by PR-DPR and apoptosis induced by ROS production. Using this
model, I found that PLG promotes mitochondrial fusion and inhibits ROS production and
apoptosis. Mechanistically, the neuroprotective effect of PLG is partly achieved by regulat-
ing SIRT3 activity and enhancing the deacetylation of OPA1. Therefore, PLG alleviates the
toxicity of PR-DPR derived from C9-ALS, and its efficacy can be further evaluated using
motor neurons derived from induced pluripotent stem cell lines from C9-ALS patients or
transgenic mice in the future.
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