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Abstract: There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogen-
esis and progression of Alzheimer’s disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in
the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR),
including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression
of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity.
However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear.
Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which
ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative
to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation
of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the
idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress
and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly,
transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone
deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters
the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and
addressed as part of VA supplementation.
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1. Introduction

Approximately 6.7 million Americans are currently living with Alzheimer’s disease
(AD) [1]. As the aging US population grows, 13.8 million Americans are projected to
have AD by 2060 [1]. Currently, two treatments for AD are approved by the Food and
Drug Administration, but there are no cures that are capable of reversing or halting the
neurodegenerative progression of AD. Genetic predisposition and age are unmodifiable
risk factors for AD. However, several environmental and lifestyle risk factors, such as
diet, smoking, and physical activity, are modifiable. Poor diet is a leading cause of death
in the US and worldwide [2,3], and is associated with a number of comorbidities (e.g.,
cardiovascular disease, obesity, diabetes) that increase the risk for AD [4–8]. Observational
studies and clinical trials have demonstrated the protective benefits of a healthy diet in
relation to AD pathogenesis [9,10]. Moreover, dietary intake of vegetables is associated
with high levels of serum antioxidants (AOs) and reduced Aβ accumulation [11].
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It is widely accepted that the toxic accumulation of amyloid beta (Aβ) and neurofibril-
lary tangles leads to progressive cognitive decline, ultimately culminating in AD-induced
death [12]. The Mitochondrial Free Radical Theory of Aging proposes that reactive oxygen
species (ROS), produced as a product of normal mitochondrial metabolism, cause oxidative
damage to proteins, lipids, and nucleic acids which accumulates across the lifespan [13].
Antioxidants (AOs), both diet-derived, and Nrf2-mediated endogenous AOs, help pre-
vent ROS-induced damage. The condition in which cellular AO capacity is insufficient to
neutralize ROS is termed oxidative stress (OS). Therefore, the preconditions necessary for
ROS-induced oxidative damage require not only ROS generation, but also the depletion of
dietary and/or endogenous AO defenses. AO replenishment is an intuitive therapeutic
strategy to attenuate, delay, or altogether prevent age-related cognitive decline (ARCD)
and AD. Paradoxically, the use of generic ROS scavengers, such as vitamin E, as AO
monotherapies have failed in clinical trials [14–16]. These failures have revealed that faulty
assumptions and major knowledge gaps exist in our models of the biological etiology and
mechanisms of AD.

We hypothesize that the progression of AD may involve deficiencies in specific AOs
that have roles beyond that of generic ROS scavengers. In this study, we highlight the
multifaceted roles of all-trans retinoic acid (ATRA) with particular emphasis on the growing
evidence of ATRA deficiency in AD. Moreover, we present transcriptomic evidence of ATRA
deficiency in human AD reflecting its in vivo roles as both a transcription factor and an AO.

2. Results and Discussion
2.1. ATRA Transport and Metabolism

Under healthy physiological conditions, ATRA sufficiency promotes health through
the scavenging of excess ROS and by inducing the expression of genes critical for synaptic
function and neuroprotection (Figure 1A). Retinol (a form of VA) is first transported from
liver stores to the hippocampus through the bloodstream, bound to a carrier complex
that consists of retinol binding protein 4 (RBP4) [17] and transthyretin (TTR) [18]. Retinol
crosses the blood brain barrier, facilitated via RBP4 binding to its receptor, signaling
receptor and transporter of retinol STRA6 (STRA6) [19]. Retinol also enters neurons via
STRA6, which catalytically dissociates retinol from RBP4 and transports it across the
plasma membrane [19]. Once within the cytoplasm, retinol binds to cellular retinol binding
protein 1 (RBP1) and is converted into retinal by one of several retinol dehydrogenase
enzymes (RDH). RBP1-bound retinal is then converted into ATRA by a retinaldehyde
dehydrogenase enzyme (ALDH1a1/2/3) and is transferred to several binding proteins:
cellular retinoic acid binding protein 1/2 (CRABP1/2) or fatty acid binding protein 5
(FABP5). As shown in cell lines, the binding of ATRA to either CRABP1/2 or FABP5 is a
defining step because it determines nuclear receptor localization and, subsequently, which
genes are transcriptionally activated [20–22].

2.2. Cellular Binding Proteins Traffic ATRA to Distinct Nuclear Receptors, Collectively Promoting
Activation of the Nonamyloidogenic Pathway

When bound to CRABP2, ATRA is transported into the nucleus and transferred
to retinoic acid receptor (RARs), as has been shown in astrocytes [23,24]. ATRA-RARα
becomes heterodimerized with the retinoid X receptor (RXR). The ATRA-RARα/RXR com-
plex enables activation of transcription, as RXR is a non-permissive partner [25]. However,
RXR can also bind many co-agonists, including docosahexaenoic acid (DHA), 9-cis-RA,
and others [26–28]. ATRA binding to RARα/RXR results in the dissociation of bound
co-repressors and recruits transcriptional activators and histone acetyltransferases (HATs).
This heterodimer binds to promoter retinoic acid response elements (RAREs) to increase
the transcription of ATRA-responsive genes, including the α-secretase ADAM10 [29] which
mediates processing of amyloid precursor protein (APP) into non-amyloidogenic fragments,
as well as additional genes involved in synaptic plasticity that are neuroprotective against
AD pathogenesis. Unlike the toxic amyloid-β peptides that result from β-secretase (BACE1)
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cleavage, these cleavage products do not aggregate to form plaques or catalyze the aberrant
formation of ROS (Figure 1A).
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ROS causes oxidation of the Nrf2-KEAP1 complex, resulting in a compensational increase in endog-
enous AO defenses. 
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Figure 1. Distinct roles of ATRA and Nrf2-mediated AO defenses in the hippocampus proposed
during normal aging and AD. (A) The non-amyloidogenic pathway and the transcription of neu-
roprotective proteins is promoted by ATRA suffiency, in coordination with the RXR agonist DHA.
(B) The amyloidogenic pathway is promoted by ATRA deficiency. The subsequent rise in ROS
causes oxidation of the Nrf2-KEAP1 complex, resulting in a compensational increase in endogenous
AO defenses.

When bound to FABP5, ATRA is transported into the nucleus and transferred to
peroxisome proliferator-activated receptor β/δ (PPARβ/δ), which also dimerizes with
RXRs [30]. The PPARβ/δ-RXR heterodimer then binds to peroxisome proliferator response
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elements (PPREs) to express genes important for neuroprotection [31–34] (Figure 1A).
ATRA binding to PPARβ/δ-RXR induces transcription of genes that function to minimize
OS, neuroinflammation, and neurotoxicity, and to decrease Aβ and hyperphosphorylated
tau (p-tau) levels [30,35–38]. PPARβ/δ knockout mice exhibit increased expression of β-
secretase (BACE1), receptor for advanced glycation endproducts (RAGE), proinflammatory
and proapoptotic mediators, and tau hyperphosphorylation [30,35], implicating PPARβ/δ
receptors in AD pathology. Mice treated with GW0742, a selective PPARβ/δ agonist,
showed a reduction in parenchymal Aβ plaque deposition, diminished neuroinflammatory
and apoptotic states, and decreased activation of microglia [39–41]. Similarly, T3D-959, a
synthetic agonist of both PPARβ/δ and PPARγ, with 15-fold higher selectivity for PPARβ/δ,
has shown promise in clinical trials [42–44]. Other PPARs outside of PPARβ/δ, such as
PPARα and PPARγ, have also been linked to neuroprotection against AD [45,46].

Similarly to the ATRA-mediated activation of RARα, the activation of PPARα promotes
the non-amyloidogenic processing of APP by inducing the transcription of the α-secretase
ADAM10 [47–49]. Activation of PPARγ results in decreased levels of neuroinflammation,
OS, and Aβ; however thiazolidinedione drugs which are agonists for PPARγ have not
shown promise in clinical trials due to poor BBB penetration [50]. Interestingly, both
PPARα and PPARβ/δ are downregulated in AD brains, whereas PPARγ is upregulated [51].
Although PPARα and PPARγ are not directly activated by ATRA, their dimer partner RXR
is activated by 9-cis-retinoic acid [52,53], an isomerization product of ATRA, suggesting a
mechanism by which ATRA and/or retinol levels may affect these pathways.

Transcription of RARα- and PPARβ/δ-sensitive genes is dependent on the levels of
CRABP2 and FABP5, respectively [21,22]. Increased expression of CRABP2 yields higher
transcription of RARα-regulated genes, whereas increased expression of FABP5 yields
increased expression of PPARβ/δ-regulated genes [21,54]. ATRA has a similar binding
affinity for CRABP2 and FABP5, though the agonism depends on competing fatty acids [20].
Therefore, many factors depend on how the two pathways are tuned to be differentially
responsive to different ATRA concentrations, suggesting that the key regulatory activities of
each pathway are relevant under distinct physiological states [31]. Additionally, PPARβ/δ
polymorphisms in patients do not seem to be significant risk factors for AD, arguing
against a central role of ATRA-PPARβ/δ in brain neuroprotection [55,56]. In summary,
ATRA-responsive RARα and PPARβ/δ pathways appear to converge on mechanisms
which reduce OS and Aβ accumulation, which should, in principle, delay AD onset and
progression. If ATRA concentrations remain too low for significant binding interactions to
occur, then PPARβ/δ polymorphisms would not be expected to influence AD progression.
However, PPARβ/δ agonists may still be able to provide neuroprotective benefits in
patients treated with PPARβ/δ agonists or retinol supplementation.

2.3. The Role of ATRA in AD Animal Models

Our current understanding of the role ATRA in the hippocampus of rodent AD mod-
els come from six lines of converging evidence. First, VA plays an important role in
hippocampal-dependent learning. VA deficiency in the brain is associated with impairment
in hippocampal-dependent learning [57–60]. In contrast, ATRA sufficiency stimulates
neurogenesis, hippocampal dendritic growth, and hippocampal learning and memory
operations [57,61,62]. Second, ATRA deficiency increases Aβ levels in the normal rat brain
by decreasing expression of the α-secretase enzyme ADAM metallopeptidase domain 10
(ADAM10), disrupting the balance between non-amyloidogenic and amyloidogenic APP
processing pathways [63,64]. Moreover, direct activation of RARs upregulates ADAM10
and promotes activation of the non-amyloidogenic pathway, reducing Aβ generation and
deposition [65–67]. Third, ATRA or retinol supplementation can restore hippocampal ATRA
levels, preserve learning capability, rescue hippocampal-dependent learning impairment,
and reduce amyloid load in AD mouse models [57,68,69]. Fourth, even when liver stores of
VA are sufficient, hippocampal ATRA levels are dramatically reduced with hepatic inflam-
mation and/or age, suggesting liver-brain dysregulation in the hepatic release, vascular
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transport, or hippocampal processing of VA [57,59,70]. Fifth, chronic neuroinflammation in
microglia upregulates the expression of CYP26, an enzyme involved in ATRA degradation,
implying that chronic neuroinflammation, as observed in AD, is associated with reduced
hippocampal ATRA levels [71]. Treatment with ATRA or a RARα agonist exerts potent
anti-inflammatory effects [68,71–73]. Finally, ATRA plays a non-genomic role in home-
ostatic plasticity by balancing excitatory and inhibitory synaptic strength, mediated by
postsynaptic calcium-dependent regulation of ATRA synthesis [74–77]. In contrast, RARα
conditional knockout mice, which are deficient in ATRA signaling in the hippocampal CA1
region, display runaway Hebbian synaptic plasticity [78].

2.4. The Role of ATRA in Human AD

There is growing evidence for a role of ATRA in the human hippocampus with regards
to cognitive function [79]. First, there is a negative correlation between retinol/carotenoid
intake or serum levels and AD-related cognitive decline [11,80–94]. Second, there is a
negative correlation between serum retinol/carotenoid levels and biomarkers of OS [95,96].
On the other hand, a positive correlation has been shown between serum carotenoids levels
and telomere length in leukocytes, which is considered a biomarker of heathy aging [84,97].
Third, genes involved in retinol metabolism and function have been linked to late-onset
AD [98–100]. Moreover, loss of function mutations in the α-secretase ADAM10 result in
seizures, further strengthening the association between AD and epilepsy [101,102]. Consis-
tent with this association, ADAM10 overexpression suppresses seizures and inflammation
in epilepsy animal models [103]. Fourth, VA/ATRA dysregulation is associated with envi-
ronmentally induced comorbidities that are now recognized as leading risk factors for AD,
including cardiovascular disease, obesity, hepatosteatosis, and diabetes [104,105]. Lastly, a
randomized control trial demonstrated that treatment with the RAR agonist isotretinoin
increased activation of the nonamyloidogenic pathway, as indicated by increased cere-
brospinal fluid levels of APPsα, a neuroprotective cleavage product of APP [106].

2.5. A Critical Knowledge Gap: ATRA-Sensitive Gene Expression in Postmortem Human
AD Hippocampus

Despite the considerable amount of correlative evidence for ATRA deficiency in AD
patients and accompanying hippocampal-related learning deficits, there is currently no
direct evidence that ATRA is deficient in the hippocampus of AD patients. We surmised
that hippocampal ATRA deficiency could be inferred through the dysregulation of ATRA-
sensitive genes, essentially making use of ATRA-sensitive genes as endogenous ATRA
sensors (Figure 2). Therefore, using a previously published RNAseq dataset from the
hippocampi of postmortem AD and control brains [107], we performed a secondary analysis
of publicly available hippocampal transcriptomic data that was generated from 20 AD cases
and 10 controls, originally acquired from the Netherlands Brain Bank by van Rooij and
colleagues [107]. This data set contains a heterogeneous population of AD hippocampal
tissue samples that included both sexes and multiple APOE genotypes [107]. We examined
genes known to possess RAREs and/or known to be transcriptionally controlled by ATRA
(the VA transcriptome) [108–111], which included 297 genes that were shown to possess
RARβ binding sites [112]. In addition, we also consulted the web-accessible transcription
factor databases TF2DNA [113] and Enrichr [114–116] for ATRA-sensitive genes and ATRA-
related transcription factors.

Collectively, this study provides new evidence that numerous ATRA-sensitive genes
are differentially expressed (DE) in AD compared to control hippocampus. We discovered
that RAR co-repressors were upregulated, suggesting that, in addition to ATRA deficiency,
downstream ATRA-responsive transcription is actively blocked. We also found indirect
evidence for ATRA depletion via Nrf1 and Nrf2, master OS-responsive transcription factors.
Nrf1 and Nrf2 were upregulated in the hippocampus of human AD brains, consistent with
ATRA depletion and its activity as an antioxidant. Interestingly, we discovered that tran-
scriptional targets of Nrf2 were downregulated, providing evidence that even though Nrf2
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was upregulated in AD hippocampus, this transcription factor was unable to successfully
induce the expression of AO defenses. Finally, we found that several histone deacetylases
(HDACs) were upregulated. This finding, along with the finding that Nrf2-responsive
genes were downregulated despite Nrf2 upregulation, suggests that epigenetic silencing
may interfere with the capability of transcription factors such as RAR and Nrf2 to trans-
activate their target genes, resulting in the depletion of both exogenous and endogenous
antioxidants and collectively contributing to oxidative stress and neurodegeneration. In
this review, we discuss some of the transcriptomic findings supporting the dysregulation
of retinoid signaling in the hippocampus of AD patients.
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Figure 2. Theoretical detection of ATRA deficiency through gene expression analysis of human
brain transcriptomics data. (A) Activation of RAR-RXR heterodimers induces increased transcription
of genes that possess retinoic acid response elements (RAREs; red star). (B) In the case of ATRA
sufficiency in unimpaired control brains, transcription is maintained across ATRA-sensitive genes
(red stars). (C) Deficiency in ATRA leads to transcriptional repression of ATRA-sensitive genes (blue
star). (D) In the case of ATRA deficiency in Alzheimer’s disease brains, transcription is decreased
across ATRA-sensitive genes (blue stars).

2.6. Genes Mediating Retinol Transport, ATRA Synthesis, and ATRA Metabolism Are
Dysregulated in Hippocampal Tissue from Post-Mortem AD Brains

We first examined the expression of genes involved in retinoid transport and metabolism,
as well as retinoid responsive transcription factors (Table 1). Retinol binding protein 4
(RBP4) and transthyretin (TTR) are retinol carriers produced by the liver (Figure 1). In-
terestingly, RBP4 and TTR transcripts were detected in postmortem hippocampal tissue.
Moreover, RBP4 was significantly downregulated in human AD. If hippocampal RBP4
transcript is reflective of the level of RBP4 protein in circulation, the dysregulation of
hippocampal RBP4 transcript may signify changes in liver RBP4 expression, suggesting
impaired retinol transport along the liver-brain axis. Alternatively, brain and liver RBP4
transcript expression may be completely independent of each other; future research is
needed to determine relationships in RBP4 expression between liver and brain. RBP1
(frequently designated CRBP1), the intracellular retinol carrier that accepts retinol from
the STRA6 transporter [20], was also found to be transcriptionally downregulated in the
hippocampus of AD brains (Table 1). Both RBP1 and RBP4 are known to be transcriptionally
regulated by ATRA [108,110,111,117,118]. Retinol dehydrogenase 12 (RDH12) is one of the



Antioxidants 2023, 12, 1921 7 of 30

major cytoplasmic enzymes used in the conversion of retinol to retinal and was significantly
downregulated. ADLH1A1, ADLH1A2, and ADLH1A3 are involved in the cytoplasmic
conversion of retinal to ATRA. ALDH1A3 was significantly downregulated, suggesting
reduced production of ATRA. CRABP2 transfers ATRA to RARα, whereas FABP5 trans-
fers ATRA to PPARβ/δ [31]. CRABP2 and FABP5 transcripts were both detected in the
hippocampus but not significantly dysregulated.

Table 1. Evidence for transcriptional dysregulation of ATRA transport, synthesis, and metabolism in
the hippocampus of human AD. Downregulated mRNA transcripts are shown in blue, upregulated
mRNA transcripts are shown in red, and transcripts that show no significant change are in shown in
gray. Each gene includes log fold-change (logFC), p value, false discovery rate (FDR), and differential
expression (DE) score, as performed by van Rooij and colleagues [107].

Gene Function logFC pValue FDR DE Score
RBP4 Retinol transport −1.30 7.9 × 10−13 3.4 × 10−11 0.43
TTR Retinol transport 0.57 1.7 × 10−1 2.6 × 10−1 0.01

STRA6 Retinol neuronal import −0.72 6.4 × 10−2 1.1 × 10−1 0.02
RDH12 Retinal synthesis −0.92 9.8 × 10−4 3.2 × 10−3 0.08
RBP1 Retinol transport −0.78 3.2 × 10−9 4.7 × 10−8 0.19

ADLH1A1 ATRA synthesis −0.18 3.2 × 10−1 4.2 × 10−1 0.00
ADLH1A2 ATRA synthesis −0.47 1.2 × 10−1 1.9 × 10−1 0.01
ADLH1A3 ATRA synthesis −0.71 5.0 × 10−5 2.3 × 10−4 0.09
CRABP1 Nuclear translation 0.38 3.1 × 10−1 4.1 × 10−1 0.00
CRABP2 Nuclear translocation −0.41 9.6 × 10−2 1.6 × 10−1 0.01
FABP5 Nuclear translocation −0.19 2.5 × 10−1 3.4 × 10−1 0.00

CYP26A1 ATRA-sensitive ATRA catabolism −1.09 6.7 × 10−3 1.7 × 10−2 0.06
CYP26B1 ATRA-sensitive ATRA catabolism −0.97 2.5 × 10−6 1.7 × 10−5 0.15

RARA α retinoic acid receptor −0.05 7.4 × 10−1 8.1 × 10−1 0.00
RARB β retinoic acid receptor 0.25 7.2 × 10−2 1.3 × 10−1 0.01
RARG γ retinoic acid receptor 0.68 6.3 × 10−7 4.9 × 10−6 0.12

SP1 RARG transcriptional regulator 0.63 1.0 × 10−8 1.3 × 10−7 0.14
LRAT ATRA into AT-retinyl ester 0.61 1.2 × 10−2 2.7 × 10−2 0.03

CYP26A1 and CYP26B1 transcripts encode ATRA-metabolizing enzymes. CYP26A1 is
known to contain canonical DR5 RARE motifs within its promoter region [111,119], enabling
feedback control of ATRA levels. CYP26A1 and CYP26B1 cause hydroxylation of ATRA,
which promotes the clearance of ATRA used for intracellular and paracrine homeostatic
balancing, as well as the formation of other bioactive retinoids that bind to RAR isoforms
with lower but variable affinities: 4-OH-RA, 18-OH-RA, 16-OH-RA, and 4-oxo-RA [120,121].
CYP26A1 and CYP26B1 transcripts were significantly downregulated in AD hippocampus.
One simple interpretation of the downregulation of these CYP26 enzymes is that it is likely
reflective of ATRA deficiency, as both are induced by ATRA through feedback regulation to
protect neurons against excessive accumulation of ATRA [120,122].

Expression levels of several RARs (RARA, RARB) were not significantly changed in
the AD condition. However, the interpretation is complicated by the fact that both RARA
and RARB have distinct isoforms with different transcription start sites, some of which
are directly regulated by RAREs, while some are regulated through indirect means. For
example, the promoter sequence regulating the transcripts encoding the RARα1 isoform
lacks a RARE, while the promoter regulating expression of the RARα2 isoform does contain
a RARE [123,124]. Unfortunately, RNA-sequencing results do not discriminate between
these two transcripts. RARG was upregulated. However, RARG is unconventional in
that the RARE in the promoter is flanked by SP1 transcription factor binding sites [125].
SP1 has been shown to be upregulated in AD [126], which is also the case here (Table 1).
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Overall, despite these caveats, we interpret these observations to be generally indicative of
ATRA deficiency.

2.7. Transcriptional Upregulation of RAR-Related Co-repressor Genes in the Post-mortem
Hippocampus in AD

In the absence of ATRA, RAREs are normally repressed by a number of RAR co-
repressors, thereby interfering with the transcription of ATRA-sensitive genes [127]. We
detected the RAR-related co-repressors NCOR1, NCOR2, ZBTB16, TNIP1, RIF1, and LCOR
in postmortem AD hippocampal tissue. Importantly, most of these co-repressors [127,128]
were significantly and uniformly upregulated (Table 2), consistent with impaired transcrip-
tion of RAR-dependent downstream signaling. Nuclear Receptor Corepressor 1 (NCOR1)
is involved in ATRA-independent transcriptional repression [129], which complexes with
histone deacetylases (HDACs) to promote condensation of chromatin and epigenetic si-
lencing. Similarly, promyelocytic leukemia zinc finger protein (PLZF, currently known as
ZBTB16) complexes with RARα, resulting in transcriptional repression likely by preventing
RXR-RARα heterodimerization [130,131]. However, ZBTB16 also represses the transcrip-
tional activity of other Class II (RXR heterodimer) nuclear receptors, so it is not restricted to
RXR-RARα [131]. Interestingly, TNIP1 is also a co-repressor of RARα and PPARs. However,
it atypically represses these nuclear receptors when they are bound to ATRA [128,132].
This observation suggests that TNIP1 upregulation may interfere with ATRA-sensitive
transcription of RAR genes [128,132]. RIF1 has also been shown to have RAR co-repressor
activity, but it is not clear to what extent it has co-repressor activity at other nuclear recep-
tors [133]. We detected a modest upregulation of RIF1, though the significance did not meet
the false positive rate threshold. Finally, LCOR is a co-repressor of RARs and other types of
nuclear receptors [134], which was significantly upregulated. Generally, the upregulation
of RAR-related co-repressors is consistent with transcriptional block of RAR signaling in
human AD, corroborating the transcriptional downregulation of ATRA-sensitive genes,
collectively converging on a strong scientific premise for ATRA deficiency.

Table 2. Evidence for transcriptional block of ATRA signaling in the hippocampus of human AD. Red
highlighting indicates upregulated mRNA transcripts. Each gene includes log fold-change (logFC), p
value, false discovery rate (FDR), and DE score, as performed by van Rooij and colleagues [107].

Gene Function logFC pValue FDR DE Score
NCOR1 Class II nuclear receptor co-repressor 0.32 9.5 × 10−4 3.1 × 10−3 0.03
NCOR2 Class II nuclear receptor co-repressor 0.10 2.6 × 10−1 3.5 × 10−1 0.00
ZBTB16 Class II nuclear receptor co-repressor 0.96 3.5 × 10−9 5.0 × 10−8 0.23
TNIP1 RAR co-repressor 0.35 5.9 × 10−6 3.6 × 10−5 0.05
RIF1 RAR co-repressor 0.23 2.6 × 10−2 5.2 × 10−2 0.01

LCOR Class I/II nuclear receptor co-repressor 0.49 7.7 × 10−4 2.6 × 10−3 0.04

2.8. Increased Expression of OS and Neuroinflammatory Genes Is Consistent with ATRA Depletion

Depletion of antioxidants in AD are likely to shift redox balance toward elevated
OS [135–137]. In addition to being a hormone-like nuclear receptor [138,139], ATRA, as well
as Pro-VA carotenoids and retinol, is thought to possess intrinsic antioxidant/ROS scaveng-
ing properties [140–142]. Therefore, we hypothesize that enhancement of OS biomarkers,
as well as compensatory increases in endogenous AO defenses, should accompany the
downregulation of ATRA-sensitive genes. We found significantly upregulated transcrip-
tion of the major OS-responsive transcription factors Nrf1 (NFE2L1) and Nrf2 (NFE2L2).
Nrf1/2 bind to antioxidant response elements (AREs) to activate enzymes and molecules
involved in endogenous AO defenses [141]. To be consistent with Nrf2-mediated gene ex-
pression, these findings should be accompanied by downstream increases in the expression
of Nrf1/2 target genes. Interestingly, we found a significant downregulation in transcripts
of Nrf2-regulated endogenous AO defense genes (Table 3), including NADPH Quinone oxi-
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doreductase enzyme 1 and 2 (NQO1 and NQO2), glutathione s-transferase alpha 4 (GSTA4),
glutathione s-transferase mu 4 (GSTM4), prostaglandin reductase 1 (PTGR1), heme oxyge-
nase 2 (HMOX2), superoxide dismutase type 1 (SOD1), and glutaredoxin (GLRX). These
results are consistent with the hypothesis that aberrant AD-related epigenetic silencing
may limit the ability of transcription factors such as Nrf2 or RAR/RXR to initiate and/or
maintain transcription. This downregulation of Nrf2-mediated endogenous AO defenses
was not generally uniform, with catalase (CAT) transcription being modestly upregulated.
This observation may indicate that epigenetic silencing in AD is not a uniform process, or
that CAT upregulation could have been driven by other transcription factors which act at
the promoter of the CAT gene [143]. This latter scenario seems unlikely—it is difficult to
envision how silenced promoters would maintain selective responsiveness to only certain
transcription factors.

Table 3. Indirect evidence for hippocampal ATRA depletion-induced increases in oxidative stress,
inflammation, and mitochondrial dysfunction in human AD. Downregulated mRNA levels are shown
in blue; upregulated mRNA levels are shown in red. Each gene includes log fold-change (logFC), p
value, false discovery rate (FDR), and DE score, as performed by van Rooij and colleagues [107].

Gene Function logFC p Value FDR DE Score
NFE2L1 ROS sensor-transcription factor 0.54 2.0 × 10−10 3.9 × 10−9 0.15
NFE2L2 ROS sensor-transcription factor 0.46 1.0 × 10−4 4.5 × 10−4 0.05
NFKB1 Inflammation 0.80 2.6 × 10−14 1.9 × 10−12 0.27
NFKB2 Inflammation 0.64 1.1 × 10−7 1.1 × 10−6 0.13
NQO1 Endogenous AO −0.22 4.2 × 10−1 5.2 × 10−1 0.00
NQO2 Endogenous AO −0.36 2.7 × 10−3 7.7 × 10−3 0.03
GSR Endogenous AO −0.25 2.5 × 10−3 7.2 × 10−3 0.02

GSTA4 Endogenous AO −0.92 7.6 × 10−16 1.1 × 10−13 0.31
GSTM4 Endogenous AO −0.39 7.1 × 10−4 2.4 × 10−3 0.03
GSTO1 Endogenous AO −0.32 3.4 × 10−3 9.2 × 10−3 0.02
GSTO2 Endogenous AO −0.47 8.0 × 10−3 1.9 × 10−2 0.03
GSTZ1 Endogenous AO −0.80 5.0 × 10−5 2.4 × 10−4 0.10

SLC7A11 Cysteine/glutamate transporter −0.26 6.4 × 10−2 1.1 × 10−1 0.01
PTGR1 Endogenous AO −0.59 1.3 × 10−4 5.3 × 10−4 0.06
HMOX2 Endogenous AO −0.55 4.5 × 10−8 4.7 × 10−7 0.12

SOD1 Endogenous AO −0.31 2.8 × 10−2 5.7 × 10−2 0.01
GLRX3 Endogenous AO −0.16 4.7 × 10−2 8.7 × 10−2 0.01

CAT Endogenous AO 0.42 1.6 × 10−3 4.9 × 10−3 0.03
TOMM20 Protein targeting to mitochondria −0.61 3.1 × 10−11 7.8 × 10−10 0.19
TOMM40 Protein targeting to mitochondria −0.56 1.8 × 10−8 2.1 × 10−7 0.12

OPA1 Regulates mitochondrial fusion −0.81 1.9 × 10−14 1.5 × 10−12 0.27
DNM1L Regulates mitochondrial fission −0.79 1.3 × 10−13 7.2 × 10−12 0.26
RORA Retinoic acid-related orphan receptor α 0.48 3.2 × 10−4 1.2 × 10−3 0.05

Together with Nrf1 and Nrf2, the family of homodimeric and heterodimeric tran-
scription factors known as Nuclear Factor Kappa B (NF-κB) regulates and coordinates
cellular responses to OS and neuroinflammation. We found that the NF-κB family genes
NFKB1 (also called p105) and NFKB2 (also called p52) were upregulated in the hippocam-
pus of AD patients (Table 3), indicative of neuroinflammation and OS seen in the AD
condition [144,145]. Proinflammatory cytokines such as Tumor Necrosis Factor-Alpha
(TNF, commonly called TNF-α) and Interleukin 1 Beta, (IL1B, commonly called IL-1β),
present at elevated levels in the blood of the AD patients, are activators of NF-κB [146].
RELA (also known as p65, also a transcription factor of the NF-κB family), transcription-
ally represses ARE-sensitive gene expression by competition with Nrf2 for binding of the
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CBP/p300 co-activator and by recruiting HDAC3 to AREs [147]. This prevents the produc-
tion of endogenous antioxidants, further activating NF-κB in a potentially pathological
positive-feedback cycle [147]. Furthermore, NF-κB can translocate Keap1 into the nucleus to
facilitate Nrf2 degradation and can even regulate Nrf2 expression by binding to its promoter
region [148]. On the other hand, Nrf2 regulates NF-κB activity by reducing levels of ROS
and inhibiting RAC1-mediated activation of NF-κB [148]. Moreover, studies have shown
that ATRA counteracts neuroinflammation by reducing pro-inflammatory cytokines and
modulating NF-κB activation, suggesting that upregulation of NF-κB transcription factors,
and possibly neuroinflammation in general, are promoted by ATRA deficiency [149–157].

2.9. Crosstalk between RAR and Nrf2 Signaling

As part of homeostatic balance in the healthy brain, redox balance should be achieved
by a combination of exogenous and endogenous antioxidants. Therefore, Nrf2- and RAR
signaling pathways should have mechanisms for cross-sensing their activation states.
Nrf2 signaling and AO defenses are sensitive to oxidative stress, which we argue may
be accompanied by depleted ATRA availability. However, sufficient bidirectional control
mechanisms should be in place such that sufficient ATRA bioavailability suppresses Nrf2
signaling in the nucleus by trapping Nrf2 in the cytoplasm through Keap1-Nrf2 interac-
tions, facilitating Nrf2 degradation (Figure 3A). Indeed, there is also evidence that Nrf2
can also be directly sequestered by ATRA-liganded RARα by binding to the Neh7 domain
on Nrf2, thereby reducing transcription of Nrf2-mediated AO defenses [158,159]. Simi-
lar to RARα agonists, RXRα agonists can repress ARE-dependent gene expression [160].
Moreover, the minimization of ROS accumulation, contributed by ATRA sufficiency, fa-
cilitates Keap1-Nrf2 association, which inactivates downstream actions of Nrf2 through
subsequent ubiquitination and proteasomal degradation [161]. Interestingly, RXRα has also
been shown to sequester Nrf2 without needing to be liganded to ATRA or heterodimerized
to RARα [162]. Additionally, it has been shown that in acute myeloid leukemia (AML) cells,
ATRA suppress Nrf2 translocation into the nucleus by an unspecified mechanism, further
repressing Nrf2-mediated effects [163]. Moreover, ATRA may even directly prevent Nrf2
translocation into the nucleus [163,164], which indicates a complex relationship between
exogenous AO sources (i.e., ATRA) and endogenous AOs in maintaining redox balance
(Figure 3A). However, further study is required to confirm that this response occurs with
neuronal Nrf2. Together, these findings suggest that RAR- and Nrf2-mediated signaling
are in homeostatic equilibrium, in which redox balance is in part determined by ATRA
availability and cellular expression of Nrf2-mediated endogenous AO defense mechanisms.
With ATRA sufficiency, multiple mechanisms exclude Nrf2 from entering the nucleus
through direct binding of liganded RARα as well as through Nrf2-Keap1 interactions,
ultimately resulting in repressed expression of Nrf2-mediated endogenous AOs. This is
not to suggest a complete deactivation of Nrf2-induced expression, rather a coordinated
attenuation dependent on hippocampal ATRA concentration which modulates cellular
antioxidant mechanisms to counteract ROS accumulation.

By contrast, ATRA deficiency or RARα antagonism promotes Nrf2 binding to AREs [159].
Moreover, the resulting increase in OS mediated by ATRA depletion leads to the dissociation
of Nrf2 from Keap1 (Figure 3B). This mechanism occurs via oxidation of the thiol groups
(-SH) of cysteine residues on Keap1 by ROS, facilitating the release and translocation of the
transcription factor Nrf2 from the cytosol to the nucleus [165]. Nrf2 subsequently dimerizes
with small Maf (sMaf) and binds to AREs, inducing the upregulation of endogenous
AO pathways that counteract ROS accumulation and limit further oxidative damage to
cellular machinery [166–168]. Given this intimate association between RARα and Nrf2
signaling, the dysregulation of ATRA-sensitive genes combined with the engagement of
Nrf2-sensitive endogenous AO defenses corroborates the idea of ATRA deficiency. In some
circumstances, the mechanism of ATRA-induced downregulation of Nrf2 signaling could
exacerbate oxidative damage. In the context of leukemia therapy, dismantling AO defenses
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through ATRA-induced downregulation of Nrf2 signaling can be exploited to help kill
cancer cells [163].
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Figure 3. Crosstalk between RAR/RXR and Nrf2 signaling. (A) In ATRA sufficiency, a reduced
intracellular environment promotes binding of Nrf2 to KEAP1, facilitating degradation of Nrf2.
In addition, Nrf2 is sequestered by RARα and RXR receptors. The availability of ATRA leads to
sustained transcription of ATRA-sensitive genes, promoting neuroprotection. (B) In ATRA deficiency,
a relative absence of antioxidants causes the generation of reactive oxygen species (ROS). Oxidative
stress causes the liberation of Nrf2 from KEAP1, allowing Nrf2 to enter the nucleus. Within the
nucleus, Nrf2 dimerizes with sMaf at antioxidant response elements (AREs), leading to increased
transcription of endogenous antioxidants that serve to counteract ROS and ROS-induced damage.
The relative absence of ATRA diminishes RAR/RXR-mediated signaling, leading to a downregulation
of ATRA-sensitive genes that mediate neuroprotection.

We propose that the bioavailability of ATRA and endogenous AOs work in a co-
ordinated fashion to maintain a homeostatic equilibrium of redox balance in the hip-
pocampus. However, in aging and AD, this interplay between ATRA- and Nrf2-mediated
regulation may be complicated by epigenetic changes that include changes in histone
acetylation/deacetylation balance and RARE/PPARE/ARE related transcription, render-
ing RAREs, PPAREs, and AREs progressively inaccessible to the RAR-, PPAR- and/or
Nrf2-mediated transcription needed to finely tune redox balance within memory circuits
(Figure 4A). The eventual homeostatic collapse of this redox balance may hasten AD onset
and progression (Figure 4B).

2.10. Dysregulation of Mitochondria-Related Genes Is Consistent with ATRA Depletion, Increased
Oxidative Stress, and Mitochondrial Aβ Accumulation

A number of genes involved in mitochondrial (mt) function (TOMM20, TOMM40,
OPA1, DNM1L) were significantly downregulated in AD in the human hippocampus
(Table 3), suggestive of mt dysfunction induced by OS. Translocase of outer mitochondrial
membrane 20 (TOMM20) and 40 (TOMM40) exist at the outer mitochondrial membrane
and function to import mitochondrial preproteins synthesized within the cytosol [169–171].
Both TOMM20 and TOMM70 have previously been shown to be decreased in the AD
hippocampus, indicative of mitochondrial respiration dysfunction [172,173]. The TOMM
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import machinery is also used in the translocation and accumulation of Aβ into the mi-
tochondrial cristae, which is associated with synaptic deficits [174–176]. Therefore, the
downregulation of the TOMM proteins may be attributed to active protective mechanisms
in addition to transcriptional inactivity due to the absence of agonist. Optic atrophy 1
(OPA1) exists in the inner mitochondrial membrane (IMM) and normally functions in the
fusion of the IMM [177]. OPA1 also plays a role in combating ROS accumulation and is
similarly decreased in hippocampal AD brains [178,179].
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Figure 4. Proposed effects of age-related epigenetic changes in ATRA-sensitive and Nrf2-sensitive
gene transcription, and AD progression. (A) ATRA deficiency is accompanied by a co-repressor
complex that includes HDAC3. The accompanying age-related upregulation of class I/II HDACs and
DMNTs further ensures transcriptional silencing of both ATRA- and Nrf2-sensitive genes. (B) The
activity of ATRA as a dietary exogenous AO and transcriptionally active ligand is lost in the hippocam-
pus, thereby increasing oxidative stress and Nrf2-mediated gene expression until epigenetic changes
silence the transcription of Nrf2-driven pathways, resulting in expedited ARCD and AD progression.
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Finally, dynamin-1-like protein (DNM1L; DRP1) is a GTPase that promotes mitochon-
drial fission, distribution of mitochondria throughout the neuron, neuronal differentiation,
synapse formation, and dendrite formation [180–182]. ATRA has recently been shown to
upregulate DNM1L protein expression [183]. Interestingly, DNM1L mRNA downregula-
tion in the AD hippocampus is correlated with upregulation of retinoic acid receptor-related
orphan receptor alpha (RORA) mRNA [184]. In accordance with this study, we observed
that DNM1L mRNA was significantly downregulated and RORA mRNA upregulated in
the human AD hippocampus (Table 3). The underlying molecular mechanisms are unclear
because unlike RORβ, RORα is not activated by ATRA [185]. Furthermore, multiple studies
allude to increased expression of DNM1L as a causative factor in AD pathogenesis due to
increased mitochondrial fragmentation; beneficial effects of DNM1L inhibition have been
observed in AD models [186–189]. Other studies have proposed that Aβ and phosphory-
lated tau interact abnormally with DNM1L, resulting in mitochondrial dysfunction and
hastening AD progression [190–198]. Due to the integral role that DNM1L plays in normal
neuronal function in the relative absence of Aβ and phosphorylated tau [199], ATRA may
indirectly beneficially modulate DNM1L activity by α-secretase-mediated prevention of
Aβ accumulation. Further investigation into the transcriptional control of DNM1L, the
causes of its dysregulation, and its distinct roles in neuroprotection or neurotoxicity in AD
and non-AD brains is needed before drawing definitive conclusions [200].

2.11. The Upregulation of Histone Deacetylases (HDACs) Suggests Epigenetic Changes That
Interfere with RAR-and Nrf2-Mediated Transcription

Rates of transcription of ATRA-dependent genes involve mechanistic, epigenetic, and
co-repressor factors. The inconsistency between the upregulation of Nrf2 mRNA expression
and the downregulation of Nrf2-dependent gene targets (Table 3) led us to suspect that
epigenetic mechanisms could play a role. Histone deacetylases (HDACs), together with
histone acetyltransferases (HATs), set acetylation/deacetylation balance, allowing tight
control over chromatin structure and gene transcription [201]. Among Class I HDACs,
we found the most significant dysregulation in HDAC1 transcript from post-mortem AD
hippocampus (Table 4). To a lesser extent, Class II HDACs, HDAC4 and HDAC7, were
significantly upregulated. Together, we observed AD-related increases in HDAC expression,
suggesting that relatively global epigenetic silencing of gene transcription underlies AD-
related learning impairments. Therefore, even if ATRA were to be locally present at
sufficient levels, histone deacetylation may preserve the closed chromatin conformation
and promoter inaccessibility that downregulate critical ATRA- and Nrf2-induced gene
expression. The finding of HDAC upregulation across class I/II HDACs suggests that
a pan-HDAC inhibitor may counteract epigenetic changes, offering hope in treating AD
onset and progression [202,203]. Indeed, HDAC inhibition has shown promising effects in
AD mouse models [203,204].

Table 4. Indirect evidence for transcriptional dysregulation via upregulation of histone deacetylases
(HDACs) in human AD. Upregulated mRNA levels are shown in red. Each gene includes log
fold-change (logFC), p value, false discovery rate (FDR), and DE score.

Gene Function logFC pValue FDR DE Score
HDAC1 Class I histone deacetylase 0.50 8.3 × 10−8 8.1 × 10−7 0.10
HDAC2 Class I histone deacetylase 0.09 2.7 × 10−1 3.7 × 10−1 0.00
HDAC4 Class II histone deacetylase 0.26 1.2 × 10−2 2.8 × 10−2 0.01
HDAC5 Class II histone deacetylase 0.14 9.1 × 10−2 1.5 × 10−1 0.00
HDAC7 Class II histone deacetylase 0.66 1.4 × 10−9 7.7 × 10−3 0.03

2.12. Age-Related Epigenetic Changes Associated with RARE, PPARE, and ARE

Histones 3 and 4 (H3 and H4, respectively) have been implicated in the regulation
of Nrf2 gene expression. H4 acetylation has been shown to increase transcription of Nrf2-
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dependent genes [205], while H3 and H4 deacetylation have been shown to reduce Nrf2
gene expression in microglia [206]. H3 acetylation is associated with unmethylated CpG
islands in the Nrf2 promoter [207]. These results suggest that a HDAC inhibitor may
optimally restore repressed Nrf2 expression. However, this therapeutic intervention only
accounts for Nrf2 gene silencing attributed to epigenetic changes and does not account for
Nrf2 inhibition or downregulation attributed to dysregulation of Nrf2 at the protein-protein
interaction or transcription factor levels of regulation, such as by Keap1, GSK-3β, Bach1,
p53, Hrd1, and miRNAs [208,209].

In addition to the decline in hippocampal ATRA levels due to age-related homeostatic
collapse of the liver-brain axis [57], AD-related epigenetic changes may directly interfere
with RAR- and PPAR-mediated transcriptional activity. In post-mortem AD brains and
mouse models, histone deacetylation has been heavily implicated in the progression of
AD [210–215]. Furthermore, VA deficient mice have lower levels of histone acetylation due
to dysregulation of CBP-dependent mechanisms [216]. The therapeutic employment of
class I/II HDAC inhibitors has shown wide-spread promise in treating AD by improving
learning, memory, and behavioral functions, reducing neuroinflammation, and decreasing
levels of Aβ and phosphorylated tau [203,204,217–227].

On the basis of these observations, we propose the following working model. Under
conditions of ATRA deficiency, the unliganded RAR/RXR heterodimer binds to HDAC3
via co-repressors nuclear receptor corepressor (NCOR) or Silencing Mediator of Retinoid
and Thyroid Hormone Receptors (SMRT) as well as corepressor CDK2-associated cullin
domain 1 (CACUL1) [228–230]. HDAC3 functions by deacetylating nearby histones, further
ensuring transcriptional inactivity of ATRA- and PPAR-sensitive genes [231] (Figure 4A).
In the presence of ATRA, the liganded RAR/RXR heterodimer complex binds to histone
acetyltransferases (HATs) such as CREB binding protein/p300 (CBP/p300), steroid recep-
tor coactivator/p160 (SRC/p160), and p300/CBP-associated factor (P/CAF) (Figure 5A).
Acetylation of histones by HATs promotes an open chromatin structure, increasing tran-
scription. Histone methyltransferases (HMTs) such as coactivator associated arginine
methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 (PRMT1) are also
recruited, responsible for methylating arginine residues on histones that can further acti-
vate the complex and increase gene expression [232], although histone methylation can
also be silencing, with the effects depending on context and methylation pattern [233].
The association of PRMT1 with a RAR/RXR heterodimer bound to a RARE allows for a
localized open chromatin conformation and subsequent transcription of ATRA-sensitive
genes (Figure 5A).

ATRA depletion is also predicted to negatively affect PPARβ/δ-mediated gene ex-
pression. Unliganded RARα recruits NCOR or SMRT, decreasing ATRA-PPARβ/δ gene
transcription [234] (Figure 4A). Similarly to RARα, these co-repressors are removed with the
binding of ATRA to PPARβ/δ. Subsequent heterodimerization with RXR recruits numer-
ous co-activators: peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α),
switch/sucrose non-fermentable (SWI/SNF), CBP/p300, and steroid receptor coactivator 1
(SRC-1), the latter two of which are HATs [235,236]. The recruitment of these transcriptional
co-activators and histone acetyltransferases increases ATRA-PPARβ/δ-RXR-sensitive gene
expression, ultimately enhancing neuroprotection against inflammation and OS (Figure 5A).

Finally, when ATRA is present and bound to RARα, the complex binds to the Neh7
region on Nrf2, sequestering bioavailable Nrf2 and functioning as an ARE-bound co-
repressor. We hypothesize that ATRA depletion, as well as depletion of other antioxidants,
causes an increase in OS due to the lack of exogenous AO effect, resulting in the activation
of compensatory Nrf2-mediated endogenous AO defenses (Figure 3B). However, histone
deacetylation may progressively reduce Nrf2-sensitive gene expression, despite elevated
OS. We propose a model in which the degree to which ATRA-RARα-Nrf2 sequestration
occurs is contingent on cellular concentrations of ATRA. Under this model, excessive
levels of ATRA lead to Nrf2 sequestration, but moderate ATRA levels do not, allowing
Nrf2 to exert its homeostatic effects by recruiting c-Jun, JunD, activating transcription



Antioxidants 2023, 12, 1921 15 of 30

factor 4 (ATF4), and the HAT CBP/p300. It has been shown that CBP/p300 not only
acetylates nearby histones to promote an open chromatin conformation, but also directly
acetylates Nrf2 to augment the formation of the transcriptional complex [237]. By recruiting
these transcription factors, there is increased gene expression of endogenous AOs such as
NQO1/2, HO-1, GSTM4, and SOD1, providing neuroprotection that counteracts OS and
attenuates the neurodegenerative process of AD [238] (Figure 5D).
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Figure 5. Working model of therapeutic effects of HDAC inhibitors on the activation of RAR-, PPAR-,
and Nrf2-mediated gene transcription. (A) ATRA sufficiency removes the co-repressor complex
and recruits histone acetylases, histone methyltransferases, and transcription factors. Therapeutic
employment of a class I/II HDAC inhibitor results in an open chromatin conformation and accessible
promotor region that augments the beneficial effects of ATRA sufficiency. Also, Nrf2 is transcrip-
tionally active in circumstances of ATRA deficiency combined with a HDAC inhibitor. (B) Sufficient
hippocampal ATRA concentration staves off AD progression until age-related epigenetic changes
silence ATRA- and Nrf2-sensitive gene expression. (C) With ATRA insufficiency, epigenetic interven-
tion alone will increase compensatory Nrf2-mediated AO defenses, aiding in delaying MCI and AD,
but ATRA-deficiency remains, preventing the expression of ATRA-induced neuroprotective pathways.
(D) HDAC inhibition, in combination with retinoid supplementation, lifts the epigenetic silencing
of RAREs, PPAREs, and AREs, and allows for the activation of both ATRA- and Nrf2-responsive
neuroprotective genes.

3. Limitations, Open Questions, and Future Directions

Although we cover a variety of mechanistic aspects, there are a number of limita-
tions associated with our assessment of human hippocampal transcriptomics and open
questions remaining.

First, as we solely focused on the human dataset originally created by van Rooij and
colleagues [107], we have not incorporated additional human datasets to compare and vali-
date specific genes and RAR/PPARδ/β signaling pathways. Moreover, this data represents
a snapshot in time during which AD has significantly progressed (Braak stage 5.5). The
examination of the human hippocampal transcriptome earlier in AD pathogenesis (i.e., in
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mild cognitive impairment and/or earlier Braak stages) in the future will provide addi-
tional insights on the temporal relationship of VA status with respect to AD pathogenesis
and progression. Nevertheless, the van Rooij et al. human dataset was adequately powered,
statistically sound, and was highly heterogeneous, including both sexes and a mixture of
APOE4 phenotypes. Therefore, observing these robust effects for the genes examined, even
in the face of considerable heterogeneity, suggests that the involvement of VA mechanisms
and ATRA-sensitive genes could be generalizable to additional time points and datasets.

Second, transcriptomics data is invaluable in providing data on thousands of mRNA
transcripts; however, it is important to remember that gene expression may not perfectly
correlate with protein expression. We assume that the binding of RARα/RXR to RAREs
increases gene transcription at RARE sites on the promoter region of any given ATRA-
sensitive gene (Figure 2), but this is most likely an oversimplification, as this is not always
the case for any given ATRA-sensitive gene. We are acutely aware that additional bioin-
formatics resources exist on ATRA-sensitive gene expression. Several databases, such
as TF2DNA and Enrichr, can provide detailed information on potential RAREs/PPAREs
associated with specific genes. This work is limited in that it does not incorporate all of
the available resources on ATRA-sensitive gene expression. A brief foray into Enrichr for
any given ATRA-sensitive gene reveals a seemingly overwhelming number of additional
transcription factors that may or may not be active with RARα-mediated gene transcrip-
tion at RAREs, implying a complexity that is not yet well understood. Moreover, this
study is based solely on RNA-seq data, which lacks cell type-specific information. We
suspect that downregulation of ATRA-dependent mRNA transcripts is likely to occur in
neuronal populations, whereas upregulation of ATRA-dependent mRNA transcripts could
involve non-neuronal populations that relate to neuroinflammatory signaling mechanisms.
Therefore, much work remains in determining how ATRA-sensitive gene expression in
specific neuronal cell types is impacted by global ATRA deficiency that may be present in
AD pathology.

Third, it is important to remember that VA plays important roles not only in the brain
but also in other organ systems. A landmark rodent study demonstrating that age-related
VA dysregulation involves disruption of the liver-brain axis [57] is a reminder that our
understanding of the liver-brain axis in humans is at a nascent stage. The functional
roles of retinoids in the brain could be impaired by insufficient dietary intake of VA,
defective hepatic storage of VA, impaired hepatic release of retinol and RBP4, impaired
transport of retinol-RBP4-TTR from liver to brain, and/or defective processing of retinol
into ATRA in the human hippocampus [98]. In this study, we showed that there is a highly
significant downregulation of hippocampal RBP4 (Table 1), which suggests impaired
vascular transport of retinol from the liver to distant tissues, including the brain, assuming
that hippocampal RBP4 downregulation is reflective of a similar downregulation in the
liver. Although further study is needed to explore this possibility; such a finding is
consistent with hepatic trapping of VA and dysregulation of the brain-liver axis as a
potential upstream mechanism of ATRA deficiency in AD hippocampus. Therefore, it is
likely that VA deficiency in brain is preceded by liver damage and hepatic trapping of
VA stores in liver. Malabsorption of VA in gut, as well as dysbiosis, could contribute to
early stages of disease pathogenesis, inducing local ATRA deficiency and inflammatory
signaling. There is no doubt that co-morbidities occurring in midlife may increase the risk
of AD-related dementia later in life. Therefore, a greater understanding of VA dysregulation
in other disease processes (i.e., non-alcoholic fatty liver disease, cardiovascular dysfunction,
obesity, diabetes) may provide important key insights into AD pathogenesis. These areas
of research are exciting future directions but fall beyond the scope of this review.

Fourth, ATRA has many pleiotropic functions in the CNS. Not only is it consid-
ered an endogenous antioxidant with free radical scavenging capabilities like retinol and
carotenoids [140–142,239], it is also a receptor ligand for RARs and PPARδ/β [31,139,240].
However, in addition to acting as hormone-like transcription factors at the genomic level,
RARs also are known to exhibit non-genomic actions [79,241,242]. At a synaptic level,
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ATRA balances excitatory and inhibitory synaptic strength as part of its role in homeostatic
plasticity and in preventing runaway Hebbian synaptic plasticity [242]. ATRA has also
been shown to contribute to the cellular regulation of kinases and protein translation [164].
Moreover, ATRA synthesis appears to be tightly controlled by intracellular calcium dynam-
ics [243]. Finally, ATRA plays an important role in neurogenesis, but these actions may
be, in part, mediated by RAR-independent, non-genomic actions of ATRA [244], which
have implications for neurodegenerative diseases [245]. These non-genomic mechanisms
of ATRA are interesting and relevant to Alzheimer’s disease pathogenesis. We have limited
this review to focus on the genomic actions of ATRA. However, it is likely that ATRA
deficiency in AD would alter non-genomic aspects of ATRA signaling. These are interesting
directions that can be examined in the future.

Fifth, although our foray through ATRA-sensitive genes and RAR co-repressors make
a good case for ATRA deficiency, not all ATRA-sensitive genes exhibit downregulation
consistent with ATRA deficiency. To this point, our initial examination of ATRA-sensitive
transcripts does not directly support changes in the balance between amyloidogenic vs.
non-amyloidogenic pathways in human AD. In this human dataset, based on previous
studies (see above), we had predicted that the most critical of ATRA-sensitive genes to be
the α-secretase ADAM10. Under amyloidogenic conditions, we predicted that ADAM10
mRNA would be downregulated relative to BACE1 mRNA, setting the stage for amy-
loidogenic pathway activation, accounting for AD progression. Surprisingly, we found
ADAM10 mRNA to be significantly upregulated relative to BACE1 in this AD dataset
(Table 5). As there is a known RARE within the ADAM10 promoter, this observation is
inconsistent with a simple interpretation of ATRA deficiency. However, both ADAM10
and BACE1 had fairly weak DE scores (0.03 and 0.01, respectively), raising the question
as to whether additional ADAM family members and/or BACE genes may contribute
(Table 5). Given the constraint that we are primarily examining late-stage AD, additional
compensatory mechanisms may be at play that complicate the interpretation of ADAM10
mRNA expression. We suspect that alternative transcriptional activators of ADAM10, such
as PPARα, and especially SIRT1 [29,47,246], may partly account for this discrepancy, since
both transcripts are significantly upregulated in this AD dataset (Table 5). Additional
proteolytic ADAM family metalloproteinases are detected in this dataset (i.e., ADAM8,
ADAM17, ADAM33), but these are also significantly upregulated similarly to ADAM10. It
is possible that there are additional unknown compensatory mechanisms that come into
play in an attempt to restore homeostasis. Finally, transcriptional upregulation may be a
compensatory mechanism and may not necessarily translate to protein expression, giving
no insight into potential downstream mechanisms. Further analysis, using additional
datasets, and especially earlier timepoints, is necessary to interpret the broader meaning of
this finding. That this simple prediction fails suggests that intrinsic transcriptional mecha-
nisms are far more complex and will take more time and effort to unravel the underlying
molecular mechanisms.

Sixth, HDAC inhibitors are not the only useful agents in reversing age-related epi-
genetic changes. For example, sulforaphane, a DNA methyltrasferase (DNMT) inhibitor
found in cruciferous vegetables, upregulates Nrf2 expression by decreasing the methylation
of cytosine residues in promoter CpG dinucleotides, lifting the epigenetic suppression of
Nrf2 as well as many other genes. This action was also found to decrease levels of Aβ,
ROS, and neuroinflammation in mouse models [247]. Similarly, resveratrol downregulates
the expression of DNMTs, which decreases methylation at the Nrf2 promoter site. This
increases Nrf2 expression and decreases levels of OS [248]. Interestingly, resveratrol has
also been shown to reverse ATRA resistance by demethylating the CRABP2 gene, responsi-
ble for nuclear import of ATRA and its subsequent transfer to RARα [249]. There is even
some evidence that the herbal supplement curcumin and exercise may also contribute
to the demethylation of CpG islands in the promoter site of the Nrf2 gene and increase
transcriptional expression [250,251]. Therefore, the incorporation of epigenetic changes
into our working model is far from complete, with future drug combinations between
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nuclear receptor ligands, HDAC inhibitors, and DNMT inhibitors worthwhile to explore in
future studies.

Table 5. ADAM- and BACE-family members in human AD. Upregulated mRNA levels are shown in
red. Each gene includes log fold-change (logFC), p value, false discovery rate (FDR), and DE score.

Gene Function logFC pValue FDR DE Score
ADAM10 proteolytic α-secretase 0.34 2.9 × 10−4 1.1 × 10−3 0.03

PPARα ADAM10 activator 0.37 6.7 × 10−3 1.7 × 10−2 0.02
SIRT1 ADAM10 activator 0.77 1.8 × 10−10 3.7 × 10−9 0.22
BACE1 β-secretase −0.19 9.3 × 10−2 1.6 × 10−1 0.01

ADAM8 proteolytic α-secretase 0.63 7.5 × 10−3 1.8 × 10−2 0.04
ADAM9 proteolytic α-secretase 0.18 1.2 × 10−1 1.9 × 10−1 0.00

ADAM15 proteolytic α-secretase −0.06 6.7 × 10−1 7.5 × 10−1 0.00
ADAM12 proteolytic α-secretase 0.44 3.9 × 10−2 7.5 × 10−2 0.02
ADAM17 proteolytic α-secretase 0.37 1.3 × 10−3 3.9 × 10−3 0.03
ADAM19 proteolytic α-secretase 0.37 7.4 × 10−2 1.3 × 10−1 0.01
ADAM33 proteolytic α-secretase 1.55 8.3 × 10−12 2.6 × 10−10 0.49
ADAM11 non-proteolytic ADAM −1.36 5.5 × 10−9 7.4 × 10−8 0.32

BACE2 neuroprotective β-secretase 1.63 1.1 × 10−11 3.2 × 10−10 0.52

Finally, SIRT1, a class III HDAC, has been proposed to be neuroprotective against AD
by deacetylating CRABP2 and RARβ, resulting in increased expression of α-secretase and
reducing amyloidogenesis [252–254]. Moreover, it has even been proposed that SIRT1 has
a direct agonist effect on RARβ that activates transcription of α-secretase [255]. Despite a
previous retraction [256], this area of research has been extremely active. However, because
these mechanisms likely involve DNA hypermethylation [257–264], we feel that these
areas are beyond the scope of this review and best saved for a future article dedicated to
this focus.

4. Conclusions

This is the first review to explicitly discuss ATRA-sensitive genes within the context
of a human hippocampal transcriptomics dataset. We have explored possible molecular
mechanisms stemming from select dysregulated genes in a publicly available hippocampal
transcriptomic dataset from postmortem AD and control brains [107]. First, we demon-
strate that a number of genes mediating retinol transport, ATRA synthesis, and ATRA
metabolism are dysregulated in hippocampal tissue from post-mortem AD brains, sup-
porting the hypothesis that ATRA deficiency occurs in the human hippocampus in AD.
Second, we discovered transcriptional upregulation of RAR-related co-repressor genes,
corroborating the idea of transcriptional repression of RAR-mediated transcription. Third,
we noted increased expression of OS and neuroinflammatory genes is consistent with ATRA
depletion. Interestingly, we encountered evidence from the cancer field of crosstalk between
Nrf2- and RAR-mediated signaling, supporting the idea that oxidative stress-mediated
Nrf2 upregulation is consistent with depletion of VA and other lipophilic vitamins (i.e., E
and K) thought to have ROS scavenging activity. Moreover, increased NFKB1 and NFKB2
transcripts are associated with neuroinflammation which may be caused in part by oxida-
tive stress. Interestingly, we noted that many targets of Nrf2 were not upregulated (Table 3),
suggesting an inability of Nrf2 to modulate transcription. These observations raised the
possibility that HDAC upregulation (Table 4) may partly account for the failure of Nrf2
targets to respond to Nrf2 upregulation.

Based on these observations, we have developed a working model of transcriptional
mechanisms in AD, centering on ATRA deficiency and age-dependent epigenetic silencing
(Figure 5). We propose that VA sufficiency combined with HDAC inhibition could sustain
cognition and potentially avoid AD. Interestingly, we found sparse evidence for downregu-
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lation of ADAM10 in AD, as expected from ATRA deficiency (Table 5). However, given
the limitations stated above, potential compensation effects late in the disease process may
explain this observation, as well as other ADAM family members that may complicate this
interpretation. Alternatively, our findings suggest renewed appreciation in ATRA as a ROS
scavenger and the role of antioxidant depletion, generally, in causing oxidative stress and
triggering of antioxidant defenses. Nevertheless, we feel that disruption of the balance
between non-amyloidogenic and amyloidogenic pathways is an essential component of
AD and should still be considered as a working model of AD (Figure 1). Furthermore, since
ATRA binds to PPARδ/β receptors with high affinity [31], targets of PPARδ/β signaling
also would be dysregulated, further contributing to OS elevation, neuroinflammation, Aβ

plaque formation, and phosphorylated tau, which together accelerate AD onset and pro-
gression [51]. Lastly, we predict that Nrf2-mediated endogenous AOs are indeed engaged
early in AD to combat the rising ROS. However, increased expression of HDACs and aber-
rant epigenetic silencing may explain global downregulation of RAR- and Nrf2-dependent
genes in AD.

Overall, our mechanistic insights point towards VA supplementation, combined with
HDAC inhibition, as a plausible AD prevention strategy (Figure 5D). Although several
HDAC inhibitors are approved for use as drugs (i.e., vorinostat), a growing number of
naturally occurring active metabolites in food are appreciated as HDAC inhibitors [265,266],
many of which are associated with Mediterranean diet and healthy aging. Therefore, it is
possible that a particular combination of nutrients, including not only VA sufficiency but also
HDAC inhibition across lifespan, promotes healthy aging, longevity, and AD prevention.
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