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Abstract: Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy
hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide
(H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive
disorders of pregnancy. Therefore, PVAT-derived H2S-induced vasodilation was investigated in
pregnancy hypertension-induced endothelial dysfunction. Non-pregnant (Non-Preg) and pregnant
(Preg) rats were submitted (or not) to the deoxycorticosterone (DOCA)-salt protocol and assigned as
follows (n = 10/group): Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Systolic blood
pressure (SBP), angiogenesis-related factors, determinant levels of H2S (PbS), NO (NOx), and oxida-
tive stress (MDA) were assessed. Vascular changes were recorded in thoracic aortas with PVAT and
endothelium (intact and removed layers). Vasorelaxation responses to the substrate (L-cysteine) for
the H2S-producing enzyme cystathionine-γ-lyase (CSE) were examined in the absence and presence
of CSE-inhibitor DL-propargylglycine (PAG) in thoracic aorta rings pre-incubated with cofactor for
CSE (pyridoxal-5 phosphate: PLP) and pre-contracted with phenylephrine. Hypertension was only
found in the Preg+DOCA group. Preg+DOCA rats showed angiogenic imbalances and increased
levels of MDA. PbS, but not NOx, showed increased levels in the Preg+DOCA group. Pre-incubation
with PLP and L-cysteine elevated determinants of H2S in PVAT and placentas of Preg-DOCA rats,
whereas no changes were found in the aortas without PVAT. Aortas of Preg-DOCA rats showed
that PVAT-derived H2S-dependent vasodilation was greater compared to endothelium-derived H2S,
whereas PAG blocked these responses. PVAT-derived H2S endogenously stimulated with the amino
acid L-cysteine may be an alternative to induce vasorelaxation in endothelial dysfunction related to
pregnancy hypertension.

Keywords: hydrogen sulfide; perivascular adipose tissue; endothelial dysfunction; pregnancy
hypertension

1. Introduction

Strategies that aim to prevent or mitigate hypertensive disorders during pregnancy
are being increasingly addressed by researchers; thus, a thin layer of fat that surrounds
the important systemic arteries, named perivascular adipose tissue (PVAT), has become
the target of all attention [1]. Studies suggest that PVAT may modulate vascular tone
through the release of adipocyte-derived relaxing factors (ADRFs) under physiological
conditions [2]. PVAT-derived factors have been shown to act as vasoactive agents that
promote anticontractile effects [3]. Hence, reductions in vasoconstrictive responses
induced by phenylephrine, angiotensin II, and serotonin have been found in systemic
arteries with PVAT [4]. In normotensive pregnant rats, it has also been shown that PVAT
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plays an important role in controlling blood flow [5]. However, it remains unknown
whether PVAT-released vasodilator factors are affected by endothelial dysfunction-
associated pregnancy hypertension.

Endothelium-dependent vasodilation is also an essential mechanism for controlling
blood pressure in healthy gestation [6]. Thereby, impaired endothelial function has been
shown to be an aggravating factor for cardiovascular diseases, including gestational hy-
pertension [7]. Previous evidence suggests that under endothelial dysfunction, the body
activates compensatory mechanisms, in which PVAT may be of extreme relevance [8].
PVAT-dependent vasodilation may also involve the action of ADRFs through the activation
of potassium channels; thus, it is essential to study molecules that act through this pathway
and that are synthesized by PVAT, such as sulfide hydrogen (H2S) [9]. Importantly, H2S
is produced by the endothelium, smooth muscle, and PVAT [9]. H2S was considered a
gas with harmful effects, but recent studies indicate that H2S is an important molecule for
stabilizing inflammatory processes and oxidative stress [10].

Studies demonstrate that PVAT-derived H2S plays a crucial role in cardiovascular
homeostasis, while other findings have suggested that PVAT-derived H2S may also act
negatively on cardiovascular diseases [11]. Interestingly, Golas et al. (2022) demonstrated
that H2S synthesized by PVAT and the vascular wall had pro-contractile effects that may
contribute to vascular dysfunction in hypertension in male rats [12]. However, the H2S
from the vascular wall has also been shown to have a pro-relaxation effect, suggesting a
compensatory mechanism for counteracting the dysfunctional vascular tone [12]. Accord-
ingly, it has been suggested that the H2S produced by smooth muscle and the endothelium
in pathological conditions may continue to exert a role in vascular homeostasis [13,14].
Regarding this, previous findings in male rats have demonstrated that H2S may be a PVAT-
derived ADRF and that H2S may be involved in the anti-contractility presented on the
face of stimulation with phenylephrine and serotonin [15,16]. The mechanism by which
H2S exerts a vasodilator function seems to differ according to the anatomic location of the
vessel [17,18].

Previous evidence suggests that H2S is synthesized enzymatically, involving three
enzymes: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), and 3-
mercaptopyruvate sulfur transferase (3-MPST) [19]. Earlier studies have demonstrated
that CSE-derived H2S synthesis may be stimulated by its substrate (L-cysteine) and co-
factor (pyridoxal 5-phosphate) in the vascular system [20,21]. To demonstrate that H2S
is synthesized by CSE in the PVAT, experimental studies have used an inhibitor of CSE,
propargylglycine (PAG), and authors showed that PAG inhibited the anticontractile effects
of PVAT, and reductions in the synthesis of H2S were also found in preadipocytes and
adipocytes of rats, further confirming the extreme importance of PVAT-derived H2S in
vasodilation [15,22,23]. However, vasodilatory effects dependent on PVAT induced by H2S
stimulation in pregnancy hypertension-associated endothelial dysfunction warrant further
investigation.

Recent findings suggest that, in physiological situations, H2S is elementary in the
maintenance of vascular tone and that H2S may even be conceptualized as an essential
ADRF [24]. Moreover, in healthy pregnancy, there are marked transformations in the
arrangement of adipose tissue [25] and several other physiological adaptations, including
reductions in systemic vascular resistance [26]. Hence, it is extremely relevant to understand
how the PVAT-derived H2S regulates vascular tonus in gestational hypertension, which is
the focus of the present study.

We and others have examined the role of PVAT-derived H2S in anticontractility, and
in healthy pregnancy, there were no disturbances in PVAT [1,27]. Moreover, in pregnancy
hypertension-induced endothelial dysfunction, the PVAT had its anticontractile effect
enhanced by H2S stimulation, while the endothelium showed no anticontractile response,
and the anticontractile effect attributed to PVAT was dependent on ATP-sensitive potassium
channels [27]. However, the PVAT-derived H2S-dependent vasodilation is still unclear in
endothelial dysfunction induced by pregnancy hypertension.
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Therefore, in search of understanding the vascular function focusing on vasorelaxation
in the face of stimulation in the synthesis of PVAT-derived H2S, the objective of this study
was to evaluate the vasodilator responses of the PVAT-derived H2S under endothelial
dysfunction induced by gestational hypertension.

2. Materials and Methods
2.1. Experimental Design

The experimental protocol was approved by the Ethics Committee on the Use of
Animals (CEUA), Institute of Biosciences of Botucatu (IBB), São Paulo State University
(CEUA/IBB, protocol number: 1083/2018, June, 2018), which complied with the Animal Re-
search: Reporting of In Vivo Experiments (ARRIVE) guidelines and with the U.K. Animals
(Scientific Procedures) Act, 1986 and associated guidelines, and EU Directive 2010/63/EU
for animal experiments. All experiments were carried out and analyzed by blind and
trained operators.

Age-timed male and female Wistar rats (200–250 g) from our institutional vivarium
were used. Animals were housed in cages on a 12 h light/dark cycle (at 22 ± 2 ◦C) and had
free access to rat chow and drinking water.

Female rats (n = 10 per group) were equally randomized and assigned as follows: non-
pregnant rats not submitted to the DOCA-salt protocol (Non-Preg group), non-pregnant
rats submitted to the DOCA-salt protocol (Non-Preg+DOCA), pregnant rats not submitted
to the deoxycorticosterone acetate (DOCA)-salt protocol (Preg group), and pregnant rats
submitted to the DOCA-salt protocol (Preg+DOCA group).

Female virgin rats were used in the Non-Preg and Non-Preg+DOCA groups. In the
Preg and Preg+DOCA groups, each female virgin rat was separately mated overnight. The
1st day of pregnancy was defined as the day on which the spermatozoa were found in a
vaginal smear containing anucleated cornified squamous cells.

The DOCA-salt protocol consisted of three intraperitoneal (i.p.) injections of DOCA
(#D7000; Sigma, St. Louis, MO, USA) and the replacement of drinking water by saline (0.9%
NaCl) solution throughout rat pregnancy.

Preg+DOCA rats received an i.p. injection of DOCA (12.5 mg/kg) in depot form on
the first day of pregnancy and i.p. injections of DOCA (6.25 mg/kg) on the seventh and
fourteenth days of pregnancy. Preg rats received i.p. injections of saline on the respective
days corresponding to the Preg+DOCA group.

Non-Preg+DOCA rats received an i.p. injection of the first dose of DOCA (12.5 mg/kg)
and i.p. injections of DOCA (6.25 mg/kg) on the seventh and fourteenth days later. Non-
Preg rats received i.p. injections of saline on the respective days corresponding to the
Non-Preg+DOCA group.

The DOCA-salt protocol induces hypertension in pregnancy in rodents, as previously
described [28,29].

2.2. Euthanasia, Blood Sampling, and Fetal and Placental Parameters

Preg and Preg+DOCA rats were weighed and euthanized on the nineteenth day of
pregnancy. Non-Preg and Non-Preg+DOCA rats were weighed and euthanized on the
nineteenth day after starting the protocol. All animals were euthanized with an isoflurane
overdose (5%) followed by exsanguination.

After euthanasia, all rats underwent a cesarean section to access the uterus. Then, the
individual weights of fetuses and placentas, and the total number of pups were recorded.

Blood samples were collected in lyophilized heparin-containing tubes (Vacutainer;
Becton Dickinson, Oxford, UK) and immediately centrifuged for plasma separation.

Plasma, placenta, and thoracic aorta segments were stored at −80 ◦C until used for
biochemical analysis. The thoracic aorta segment was excised and placed in cold Krebs
solutions to perform the vascular reactivity experiments.
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2.3. Systolic Blood Pressure Measurements

Systolic blood pressure was measured using tail-cuff plethysmography (Insight,
Ribeirão Preto, São Paulo, Brazil, catalog #EFF 306) on the 1st (baseline), 14th, and 19th
days of pregnancy in the Preg and Preg+DOCA groups, and on the 1st day of the proto-
col (baseline) and the 14th and 19th days after starting the protocol in the Non-Preg and
Non-Preg+DOCA groups.

To record systolic blood pressure measurements, conscious rats were first acclimated,
for 10 min, in a quiet room, conditioned, and contained in heated boxes (Insight, Ribeirão
Preto, São Paulo, Brazil, catalog #EFF 307). Systolic blood pressure was determined as the
mean of cuff inflation–disinflation cycles (three measurements).

2.4. Vascular Reactivity Experiments

The thoracic aorta was dissected and cut into 8 rings of 4 mm in length, totaling
80 aortic rings from each group. Then, we analyzed the vascular function as follows: an
aortic ring with intact PVAT and endothelium (+PVAT+E), an aortic ring with intact PVAT
and denuded endothelium (+PVAT-E), an aortic ring without PVAT and intact endothelium
(-PVAT+E), and an aortic ring without PVAT and endothelium (-PVAT-E).

With the aid of a dissection microscope, the surrounding PVAT was carefully dissected
and separated from the thoracic aorta. The endothelium was carefully removed by scraping
(5 times) the interior of the thoracic aorta around the tip of the forceps.

Thoracic aortic rings were placed in a 10 mL organ bath chamber containing Krebs-
Henseleit nutrient solution (in mmol/L): NaCl 130; KCl 4.7; CaCl2 1.6; KH2PO4 1.2; MgSO4
1.2; NaHCO3; glucose 11.1; gassed continuously with a mixture of 95% O2/5% CO2; and
maintained at 37 ◦C (pH 7.4). The thoracic aorta rings were suspended between two wire
hooks. One hook was attached to a fixed support and the other hook was connected to an
isometric force transducer. All thoracic aorta rings were stretched until an optimal basal
tension of 1.5 g, which was determined by length–tension relationship experiments [30,31].
Then, aortic rings were allowed to equilibrate for 60 min, with the bath physiological
solution being changed every 15–20 min. Changes in the tension of thoracic aorta rings
were recorded using FORT10 isometric force transducers connected to a PC-based MP100
System and analyzed offline, using AcqKnowledge software (version 3.5.7, Biopac Systems
Inc., Goleta, CA, USA). After the equilibration, each thoracic aorta ring was challenged to
potassium chloride (KCl; 96 mM) as a test contraction and viability of the tissue. Once a
reproducible and maximum KCl contraction was reached, all aortic rings were washed out
(3 times) with Krebs–Henseleit solution (10 min intervals each), and the aortic rings returned
to the baseline tension. Then, endothelium removal was determined by the absence of
acetylcholine (ACh)-induced relaxation in the preparations +PVAT-E and -PVAT-E. PVAT
removal was confirmed by the lower concentrations of phenylephrine (Phe) required to
achieve the level of contractile tone observed in the thoracic aorta rings with PVAT, which
was consistent with the anticontractile effect of PVAT, as previously demonstrated [27].
Each aortic ring was rinsed with Krebs–Henseleit physiological solution 3–5 times (10 min
each) to avoid biases possibly caused by the KCl and ACh used.

To assess the vasorelaxation induced by PVAT and the endothelium, thoracic aorta rings
were pre-contracted with phenylephrine (Phe; 10−6 M). Once a steady state was reached, a
pre-incubation (10 min) with pyridoxal-5 phosphate (PLP; 2 mM) was performed. Then, a
concentration–response curve was performed using L-cysteine (L-Cys; 10−9–10−4 M).

To investigate the involvement of CSE-synthesized H2S, thoracic aorta rings were pre-
contracted with Phe (10−6 M). Once a steady state was reached, a pre-incubation (10 min)
with PLP (2 mM) in the presence of DL-propargylglycine (PAG; 1 mM) was made. Then, a
cumulative concentration curve of L-Cys (10−9–10−4 M) was assessed.

To examine the involvement of the endothelium in vasorelaxant responses, the thoracic
aorta rings were pre-contracted with Phe (10−6 M). Once a plateau state was noticed, a
cumulative concentration curve using ACh (10−9–10−4 M) was performed.
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To assess the contribution of NO synthesized by the NO synthase, thoracic aorta rings
were pre-incubated (10 min) with the inhibitor of the NO synthase Nω-Nitro-L-arginine
methyl ester (L-NAME) hydrochloride (10−4 M). Then, thoracic aorta rings were pre-
contracted with Phe (10−6 M). Once a steady state was reached, a cumulative concentration
curve using ACh (10−9–10−4 M) was assessed.

Anticontractile effects of PVAT and the endothelium were also examined. In this
experimental setup, a pre-incubation (10 min) with PLP (2 mM) and L-Cys (10 mM) was
performed. Then, a cumulative concentration curve using Phe (10−12–10−4 M) was as-
sessed.

2.5. Determination of Fms-like Tyrosine Kinase 1 (sFlt-1) and Placental Growth Factor (PLGF)
Levels in Plasma

Plasma levels of anti-angiogenic factor sFlt-1 (#ELM-VEGFR1, RayBiotech Inc., Nor-
cross, GA, USA) and angiogenic factor PLGF (#E-EL-R0742, Elabscience Inc., Houston,
TX, USA) were determined according to the manufacturer’s instructions of the commer-
cial enzyme-linked immunoassay (ELISA) kits. Plasma levels of sFlt-1 and PLGF were
expressed in pg/mL.

2.6. Determination of H2S in Plasma

Determinants of H2S levels in plasma were analyzed, as previously described [32,33].
Briefly, plasma samples (75 µL) were mixed with zinc acetate 1% (250 µL) and distilled
water (425 µL). In this mixture, 150 µL (20 mmol/L) of N-dimethyl-p-phenylenediamine
sulfate in HCl (7.2 M) and 150µL (30 mmol/L) of FeCl3 in HCl (1.2 M) were added. Then, an
incubation (10 min), at room temperature, with trichloroacetic acid 10% (250 µL) was added
to remove proteins, and the reaction mixture was centrifuged (15 min) at 12,000× g. The
absorbance of the resulting supernatant (200 µL) was read (670 nm) in a spectrophotometer
(Synergy 4, BioTek, Winooski, VT, USA) in a 96-well microplate. The concentration of
H2S in the solution was calculated against a calibration curve (3.13–100 µM) of sodium
hydrosulfide (NaHS). Determinants of H2S levels were expressed as µmol/L.

2.7. Determination of NO Metabolites in Plasma

NO metabolites were examined with Griess reagents, as previously described [34].
Briefly, plasma (190 µL) was deproteinized by adding zinc acetate (10 µL) solution (300 g/L)
and centrifuged (30 min) at 10,000× g (4 ◦C). In a microplate, 50 µL of plasma supernatant
was incubated (3 h) at 37 ◦C with 50 µL of sulfanilamide (2%, m/v), 50 µL (0.1%, v/v) of N-
(1-naphthyl)-ethylenediamine dihydrochloride—NED), and 100 µL of vanadium chloride
III (5%, m/v) solution in a mixer (Eppendorf, Darmstadt, Germany) under agitation and
in the absence of light. A calibration curve (1.56–100 µmol/L) was pipetted by incubating
prepared nitrite solutions with deionized water and Griess reagents. Absorbance was read
at 535 nm in a spectrophotometer (Synergy 4, Biotek, Winooski, VT, USA). Nitrite and
nitrate (NOx) levels were expressed as µmol/L.

2.8. Determinants of Oxidative Stress in Plasma

Lipid peroxidation was determined using the measurements of thiobarbituric acid
(TBA)–reactive species (TBARS), as previously described [35]. Briefly, TBA reacts with the
end product of lipid peroxidation malondialdehyde (MDA), and a colorimetric reaction
is produced. This product is read (at 532 nm) in a spectrophotometer (Synergy 4, Biotek,
Winooski, VT, USA). Briefly, plasma samples (100 µL) were added in testing tubes con-
taining a reaction mixture of distilled water (100 µL), 50 µL of sodium dodecyl sulfate
(SDS, 8.1%), 375 µL of acetic acid (20%), and 375 µL of TBA (0.8%), and incubation was
performed in a water bath (1 h) at 95 ◦C. Then, testing tubes were centrifuged (10 min) at
15,000× g. The standard curve was prepared in a similar manner, in which plasma samples
were replaced by 25 µL of MDA (known concentrations). Plasma levels of TBARS were
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calculated against a standard curve of MDA (20–320 nmol). The results were expressed in
mmol/mL.

2.9. Determination of H2S Levels in PVAT, The Aorta without PVAT, and the Placenta

Determinants of H2S levels in tissue samples were assessed using the method of lead
sulfide (PbS) formation, as previously described [36,37]. The PVAT, the aorta without PVAT,
and the placentas were excised, homogenized in cold sterile phosphate buffer saline (PBS),
and centrifuged (10 min) at 10,000× g (4 ◦C). In a microplate, supernatants (0.2 mg/mL
protein) diluted with PBS (100 mM, pH 7.4) were mixed with CSE cofactor PLP (2 mM)
and substrate L-Cys (10 mM). A filter paper was used to cover the microplate, which was
pre-embedded with lead (Pb) acetate (100 mM). Then, the covered microplate was allowed
to dry (3 h) at 37 ◦C. The PbS formed a dark brown precipitate, and dark spots on the
filter paper were read by the optical density, analyzed, and quantified using the ImageJ
software (NIH, Bethesda, MD, USA). To calculate the concentrations, a calibration curve
(7.8–500 mM) was generated with the H2S donor (NaHS). Determinants of H2S levels in
tissue samples were expressed as nmol/mg protein.

2.10. Statistical Analysis

Shapiro–Wilk tests were applied to verify the normality of data distribution, using the
GraphPad Prism® (8.0) software (San Diego, CA, USA). Student’s t-tests were used, and
one-way analysis of variance (ANOVA) and repeated-measure two-way ANOVA followed
by Tukey’s post hoc tests were applied for multiple comparisons. A value of probability
(p) < 0.05 was considered statistically significant. The results are expressed as mean ± SEM.

2.11. Drugs and Chemicals

Deoxycorticosterone acetate (DOCA, D7000), L-cysteine (w326305), pyridoxal 5-phosphate
(P9255), DL-propargylglycine (P7888), acetylcholine (A6625), L-NAME (N5751), phenyle-
phrine (P6126), and sodium hydrosulfide (NaHS-161527) were used in this study.

DOCA was dissolved in propylene glycol (1883), whereas all other compounds were
dissolved in distilled water. Propylene glycol was purchased from Dinamica Chemicals
(São Paulo, Brazil), and other compounds were purchased from Sigma Aldrich (St. Louis,
MO, USA).

3. Results
3.1. Systolic Blood Pressure Measurements in Non-Pregnant and Pregnant Rats Submitted (or
Not) to the DOCA-Salt Protocol

Baseline values showed no differences in the systolic blood pressure measurements,
while significant increases were recorded on pregnancy days 14 and 19 of the Preg+DOCA
group compared to the other groups (Figure 1; Supplementary Table S1).

3.2. Placental and Fetal Parameters of Pregnant Rats Submitted (or Not) to the DOCA-Salt Protocol

Pregnant rats submitted to the DOCA-salt protocol clearly showed significant reduc-
tions in fetal and placental weights and decreased number of pups in the Preg+DOCA
group compared to the Preg group (Figure 2; Supplementary Table S2).

3.3. Angiogenesis Biomarker Levels in Plasma from Non-Pregnant and Pregnant Rats Submitted
(or Not) to the DOCA-Salt Protocol

The sFlt-1/PLGF ratio was calculated and was greater in the Preg+DOCA rats com-
pared to the Preg group (Figure 3A; Supplementary Table S2). Plasma PLGF levels were
lower in the Preg+DOCA rats compared to the Preg group, while both non-pregnant groups
showed no PLGF in plasma (Figure 3B; Supplementary Table S2). Plasma sFlt-1 levels were
higher in the Preg+DOCA group compared to the Preg group (Figure 3C; Supplementary
Table S2).
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growth factor: PlGF) factors in plasma. sFlt-1/PlGF ratio (A), plasma levels of PlGF (B), and sFlt-1
(C) in Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Values are means ± SEM. Symbols
indicate significant differences (* p < 0.05) versus Preg group.

3.4. Plasma Level Determinants of H2S, NO, and Oxidative Stress in Non-Pregnant and Pregnant
Rats Submitted (or Not) to the DOCA-Salt Protocol

Reductions in plasma level determinants of H2S were found in the Preg group com-
pared to the non-pregnant groups, and elevated levels were found in the Preg+DOCA
group compared to the Preg group (Figure 4A; Supplementary Table S2). Plasma levels of
NO metabolites showed a significant increase in the Preg group compared to the others
(Figure 4B; Supplementary Table S2). Plasma levels of MDA were higher in both Preg and
Preg+DOCA groups compared to the others (Figure 4C; Supplementary Table S2).
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Figure 4. Plasma level determinants of H2S (A), NO (B), and oxidative stress (C) in Non-Preg, Non-
Preg+DOCA, Preg, and Preg+DOCA groups. Values are means ± SEM. Symbols indicate significant
differences (* p < 0.05) versus Non-Preg and Non-Preg+DOCA groups (A); # p < 0.05 versus Preg
group (A); * p < 0.05 versus other groups (B), and * p < 0.05 versus Non-Preg and Non-Preg+DOCA
groups (C).

3.5. Stimulated H2S Synthesis in the PVAT, the Aorta without PVAT, and the Placenta

Incubation with PLP and L-cysteine showed increases in the PVAT level determinants
of H2S in the Preg+DOCA group compared to the others (Figure 5A), while no significant
differences among all groups were found in the aortas without PVAT (Figure 5B). Increases
in placental level determinants of H2S were found in the Preg+DOCA group compared to
the Preg group (Figure 5C).
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Figure 5. Level determinants of H2S in PVAT (A) and aorta without PVAT (B) from Non-Preg,
Non-Preg+DOCA, Preg, and Preg+DOCA groups. Level determinants of H2S in the placenta of the
Preg and Preg+DOCA groups. Values are means ± SEM. Symbols indicate significant differences
(* p < 0.05) versus other groups (A) and * p < 0.05 versus Preg group (C).

3.6. Vasodilation Responses via Endogenous H2S Stimulation in Aortas with Intact (or Removed)
PVAT and/or Endothelium from Non-Pregnant and Pregnant Rats Submitted (or Not) to the
DOCA-Salt Protocol

L-cysteine, the substrate for H2S synthesis, showed similar concentration-dependent
vasodilation responses in aortic rings with PVAT and endothelium, without endothelium,
and without PVAT, whereas lower and similar vasorelaxation responses were found in the
aortic rings without PVAT and endothelium from the Non-Preg, Non-Preg+DOCA, and
Preg groups (Figure 6A–C; Supplementary Table S3).

In aortic rings from the Preg+DOCA group in which PVAT was preserved, L-cysteine-
induced vasorelaxation maximal responses were significantly higher compared to the
aortas without PVAT in which the endothelium was preserved or removed (Figure 6D;
Supplementary Table S3).

3.7. Vascular Responses to L-Cysteine in the Presence of H2S Synthesis Inhibitor in Aortas with
Intact (or Removed) PVAT and/or Endothelium from Non-Pregnant and Pregnant Rats Submitted
(or Not) to the DOCA-Salt Protocol

Vasorelaxation responses to L-cysteine in all aortic rings from the Non-Preg, Non-
Preg+DOCA, and Preg groups were inhibited in the presence of the CSE inhibitor PAG
(Figure 7A–C; Supplementary Table S3).
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Figure 6. Concentration-dependent vasodilation responses to L-cysteine, after pre-incubation with
PLP and pre-contracted with phenylephrine, in thoracic aortic rings with intact PVAT and endothe-
lium (+PVAT+E), intact PVAT and endothelium removed (+PVAT−E), PVAT removed and intact
endothelium (−PVAT+E), and both PVAT and endothelium removed (−PVAT−E) from Non-Preg
group (A), Non-Preg+DOCA group (B), Preg group (C), and Preg+DOCA group (D). Values are
means ± SEM. Symbols indicate significant differences (* p < 0.05) versus the respective aortic rings
−PVAT−E (A–C); significant differences (* p < 0.05) versus the respective aortic rings −PVAT+E and
−PVAT−E (Figure 6D).

Aortic rings without PVAT and intact endothelium from the Preg-DOCA group
showed total blockage of L-cysteine-induced vasorelaxation in the presence of PAG, while
the other three preparations of aortic rings with PVAT and endothelium, with PVAT and
endothelium removed, and without PVAT and endothelium elicited significant and weaker
L-cysteine-induced vasodilation (Figure 7D; Supplementary Table S3).

3.8. Vasodilation Responses via Endogenous NO Stimulation in Aortas with Intact (or Removed)
PVAT and/or Endothelium from Non-Pregnant and Pregnant Rats Submitted (or Not) to the
DOCA-Salt Protocol

Acetylcholine was used to activate NO synthase and induce NO-dependent vasore-
laxation. Aortic rings with intact endothelium in which PVAT was preserved or removed
from Non-Preg, Non-Preg+DOCA, and Preg groups showed similar maximal vasodilation
responses (Figure 8A–C; Supplementary Table S3). However, aortic rings with intact PVAT
and denuded endothelium showed a total absence of response, which was similar to that
observed in aortic rings without PVAT and endothelium (Figure 8A–C; Supplementary
Table S3).
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Figure 7. Concentration-dependent responses to L-cysteine, after pre-incubation with PLP and CSE
inhibitor (PAG), and pre-contracted with phenylephrine, in thoracic aortic rings with intact PVAT
and endothelium (+PVAT+E), intact PVAT and endothelium removed (+PVAT−E), PVAT removed
and intact endothelium (−PVAT+E), and both PVAT and endothelium removed (−PVAT−E) from
Non-Preg group (A), Non-Preg+DOCA group (B), Preg group (C), and Preg+DOCA group (D).
Values are means ± SEM. Symbol (*) indicates significant differences (* p < 0.05) for aortic rings
+PVAT+E and +PVAT−E versus the respective aortic ring −PVAT+E (Figure 7D).

Aortic rings from the Preg+DOCA group showed that endothelium-dependent max-
imal responses were significantly impaired in intact endothelium aortas with PVAT and
without PVAT, while aortic rings in which the endothelium was removed and PVAT was
preserved showed no significant response, which was similar to what was observed in
aortic rings without PVAT and endothelium (Figure 8D; Supplementary Table S3).

3.9. Vascular Responses to Acetylcholine in The Presence of NO Synthesis Inhibitor in Aortas with
Intact (or Removed) PVAT and/or Endothelium from Non-Pregnant and Pregnant Rats Submitted
(or Not) to the DOCA-Salt Protocol

In the presence of the NO synthase inhibitor L-NAME, acetylcholine-induced re-
sponses were not found in aortic rings from the Non-Preg, Non-Preg+DOCA, Preg, and
Preg+DOCA groups (Figure 9A–D).

3.10. Anticontractile Responses Induced by PVAT and Endothelium in Aortas from Non-Pregnant
and Pregnant Rats Submitted (or Not) to the DOCA-Salt Protocol

Pre-incubation with PLP and L-cysteine showed no significant differences in the
phenylephrine-induced contractions among all aortic rings with (or without) PVAT and
(or) endothelium from the Non-Preg and Non-Preg+DOCA groups (Figure 10A,B; Supple-
mentary Table S3).
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Figure 8. Concentration-dependent vasodilation responses to acetylcholine, after pre-contracted with
phenylephrine, in thoracic aortic rings with intact PVAT and endothelium (+PVAT+E), intact PVAT
and endothelium removed (+PVAT−E), PVAT removed and intact endothelium (−PVAT+E), and
both PVAT and endothelium removed (−PVAT−E) from Non-Preg group (A), Non-Preg+DOCA
group (B), Preg group (C), and Preg+DOCA group (D). Values are means ± SEM. Symbols indicate
significant differences (* p < 0.05) versus the respective aortic rings +PVAT−E and −PVAT−E (A–D).
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intact PVAT and endothelium (+PVAT+E), intact PVAT and endothelium removed (+PVAT−E), PVAT
removed and intact endothelium (−PVAT+E), and both PVAT and endothelium removed (−PVAT−E)
from Non-Preg group (A), Non-Preg+DOCA group (B), Preg group (C), and Preg+DOCA group (D).
Values are means ± SEM.
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Preg+DOCA rats, vasorelaxation responses  induced by L-cysteine were not affected by 

Figure 10. Cumulative concentration responses to phenylephrine after pre-incubation with cofactor
(PLP) and substrate (L-cysteine) for H2S synthesis in thoracic aortic rings with intact PVAT and
endothelium (+PVAT+E), intact PVAT and endothelium removed (+PVAT−E), PVAT removed and
intact endothelium (−PVAT+E), and both PVAT and endothelium removed (−PVAT−E) from Non-
Preg group (A), Non-Preg+DOCA group (B), Preg group (C), and Preg+DOCA group (D). Values are
means ± SEM. Symbols indicate significant differences (* p < 0.05) versus the respective response in
aortic rings −PVAT−E (C); * p < 0.05 versus the respective response in aortic rings −PVAT+E and
−PVAT−E (D).

Aortic rings from the Preg group with intact PVAT and endothelium, intact PVAT
and denuded endothelium, and PVAT removed and intact endothelium showed lower
phenylephrine-induced maximum responses compared to the aortic rings in which both
PVAT and endothelium were removed (Figure 10C; Supplementary Table S3). However,
both aortas in which PVAT was left intact (with endothelium) and denuded endothelium
from the Preg+DOCA group showed greater anticontractile responses to phenylephrine
compared to the contractions found in the aortic ring preparations in which PVAT was
removed, aortas without PVAT and intact endothelium, and aortas without PVAT and
denuded endothelium (Figure 10D; Supplementary Table S3).

4. Discussion

To induce pregnancy hypertension in the present study, we used the DOCA-salt rat
model. The success of the animal model was confirmed by increases in the systolic blood
pressure measurements, which were found on the 14th and 19th days of pregnancy in
the Preg+DOCA group compared to the respective days and baseline measurements of
the other 3 groups. Hence, the present results demonstrate that this rat model resembles
human pregnancy hypertension, thereby corroborating previous reports [28,29].
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The most severe form of the hypertensive disorder of pregnancy is preeclampsia [7].
Preeclampsia has been associated with maternal angiogenic imbalance as well as restriction
of placental and fetal development [7]. Thus, we also examined these parameters in the
present study. Then, we found reduced placental and fetal weights and decreased litter
size in the Preg+DOCA group compared with the Preg group. Thereby, the pregnancy
hypertension rat model demonstrates that both fetal and placental developments are
impaired, which are also features of preeclampsia. Moreover, in this pre-eclamptic rat
model, sFlt-1 levels were increased, and concomitant decreases in PLGF levels were only
found in pregnant rats submitted to the DOCA-salt protocol. Thus, our present findings
suggest that this rat model induces an angiogenic imbalance of preeclampsia, as previously
reported [28,35,38].

Ex vivo experiments with aortic rings were performed to assess the individual contri-
butions of PVAT and endothelium to the endogenous H2S-induced vasodilation responses
stimulated with L-cysteine. In aortic rings with PVAT left intact of the Preg+DOCA rats,
vasorelaxation responses induced by L-cysteine were not affected by pregnancy hyper-
tension, whereas impairments were recorded in aortic rings with preserved endothelium
and removed PVAT. Furthermore, aortic rings from Non-Preg, Non-Preg+DOCA, and Preg
groups showed smaller vasorelaxation responses only in aortic rings in which both PVAT
and endothelium were removed, while other aortic rings with PVAT and/or endothelium
left intact the vasodilator responses were similar. Importantly, there are few studies ex-
amining the role of PVAT on vascular function in normotensive pregnancy [1,39] and in
hypertensive pregnancy [27], and, to the best of our knowledge, the present study is the first
to investigate endogenous H2S-induced vasodilation responses in pregnancy hypertension.

The present results disagree with the work carried out by Al-Jarallah and Oriowo (2016)
in rat aorta, in which it was observed that the aortic PVAT lost its anticontractile function
during pregnancy [39]. This discrepancy in the results may be related to the anatomic
location of the PVAT as well as changes inherent to pregnancy [40]. However, Mann et al.
(2015) found that the PVAT of the mesenteric arteries of pregnant rats showed increases in
vasodilator responses [1]. In addition, Watts et al. (2020) demonstrated that the thoracic
aorta with PVAT enhanced stress relaxation compared with the respective artery without
PVAT [41]. These previous studies are in accordance with our present findings. Interestingly,
our results in thoracic aorta rings may also suggest that the PVAT of hypertensive and
normotensive pregnant rats was responsible for the maintenance of vasodilation. Also,
aortic rings with PVAT left intact showed greater vasodilation compared to aortic rings
without PVAT that contained an endothelium and/or muscular layers. Thus, the present
findings suggest that PVAT-dependent vasodilation may be enhanced by endogenous
H2S stimulation in pregnancy hypertension, whereas endothelium-derived H2S-induced
vasodilation showed no additional response compared to the aortic rings in which both
PVAT and endothelium were removed.

To confirm the involvement of PVAT-derived H2S, we performed pre-incubation with
PAG, a CSE inhibitor, followed by PLP incubation, and we then repeated the cumulative
concentration curve for L-cysteine. In this experiment setting, the data demonstrated
that there was no relaxation in all preparations of Non-Preg, Non-Preg+DOCA, and Preg
groups, thus corroborating the findings reported by Fang et al., (2009) [15]. However,
interestingly, in the preparations from hypertensive pregnant rats (Preg+DOCA group),
there was a slight relaxation in the aortic rings, in which both PVAT and endothelium
were maintained, whereas the aortic rings without PVAT and intact endothelium showed
no relaxation. Thus, these findings suggest that other H2S-producing enzymes may be
activated to cause modest vasorelaxant responses induced by L-cysteine, as previously
demonstrated [42,43]. By contrast, previous studies with PVAT also showed pro-contractile
effects [44], whereas our data reinforce the importance of PVAT-derived H2S in maintaining
vascular tone in pregnancy hypertension. Hence, our findings suggest that L-cysteine may
induce a slight vasorelaxation independently of the H2S synthesized by CSE in PVAT and
vascular smooth muscle layers of aortas from hypertensive pregnant rats, whereas the
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endothelium showed no response to L-cysteine in the presence of PAG, which suggests that
H2S synthesized by CSE is the major enzyme in the endothelium, whereas H2S released by
PVAT may be synthesized by other enzymes such as CBS [9,43].

As previously demonstrated, metabolic responses to acetylcholine may differ in adi-
pose tissue during pregnancy [45]. Considering that PVAT from non-pregnant or pregnant
rats may release substances that distinctively affect acetylcholine metabolism, as previously
observed in uterine arteries [46], we then aimed to distinguish the relevance of the roles
of PVAT and endothelium in vasodilator responses. To this end, we carried out further
experiments to evaluate the acetylcholine-induced responses. We then observed that when
the endothelium was preserved in aortic rings without PVAT or with PVAT left intact, there
were relaxations with the same magnitude in virgin rats treated (or not) with DOCA-salt
(Non-Preg and Non-Preg+DOCA groups). Moreover, the same occurred in the preparations
from untreated pregnant rats (Preg group). However, impairments of acetylcholine-induced
vasorelaxation responses were found in aortic rings with a preserved endothelium (with or
without PVAT) from the Preg+DOCA group, thus confirming that endothelium-derived
NO-dependent vasodilation is impaired in pregnancy hypertension [47]. The present re-
sults are in accordance with the endothelial dysfunction previously observed in pregnancy
hypertension in rats [27]. Thus, our results confirm that NO-dependent vasodilation is
impaired and may be associated with pregnancy hypertension-induced endothelial dys-
function [29,47]. Furthermore, our findings demonstrated that aortic rings in which the
endothelium was removed but with PVAT left intact do not respond to acetylcholine. Our
results may also be corroborated by a previous study that observed a reduction in the va-
sodilator response to acetylcholine and that was associated with uncoupling of endothelial
NO synthase in aortic PVAT of obese mice compared with controls in which PVAT was left
intact [48].

To further examine the endothelium-derived NO-dependent vasodilation on endothe-
lial dysfunction-associated pregnancy hypertension, aortic rings were pre-incubated with L-
NAME, a non-selective NO synthase inhibitor. Our results demonstrate that no relaxations
were found in the aortic rings of all experimental groups, suggesting that NO-dependent
vasodilation was blocked by L-NAME, which is in accordance with previous studies [27,49].
Thus, our findings suggest that NO-induced vasodilation is dependent on the endothelium,
while PVAT shows no acetylcholine-induced response.

To further understand the involvement of H2S and NO in pregnancy hypertension [50],
we have analyzed the circulating levels of H2S and NO in plasma. We observed that there
was a decrease in H2S in pregnant rats compared to virgin rats. However, in hypertensive
pregnant rats, we noticed an increase in circulating levels of H2S compared to normotensive
pregnant rats. Moreover, the determination of metabolites of NO in plasma revealed that
there was a significant increase in circulating levels of NO in the group of normotensive
pregnant rats compared to the other groups, including no increases in the Preg+DOCA
group. Hence, the present results suggest that there may be an increased demand for H2S
in the maternal organism, which results in reduced levels of H2S, whereas the production
of NO is increased in healthy pregnancy. However, in pregnancy hypertension, we found
increases in H2S levels and an absence of elevations in NO levels in comparison with
the healthy pregnant group, which is in accordance with a previous clinical report [51].
Also, in this previous study, the authors observed that plasma H2S increased considerably
in preeclampsia compared to the healthy pregnant women group, possibly indicating a
compensatory mechanism of the maternal organism in the face of the reduction in NO,
which is frequently found in pregnancy hypertension and preeclampsia [52–56].

It is proposed that the decrease in NO bioavailability may be caused, among other
factors, by oxidative stress [55,56]. A healthy pregnancy itself is already related to oxidative
stress, including several changes in the immune response [57]. The placenta has already
been mentioned as one of the main sources of reactive oxygen species (ROS) [57,58]. How-
ever, there is previous evidence that further increases in oxidative stress and inflammatory
processes occur in gestational hypertension and preeclampsia [59]. Thus, our current results
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support this concept and demonstrate that increased oxidative stress may be associated
with a healthy pregnancy. Also, in the present study, our findings suggest that there may
be further elevated levels of plasma malondialdehyde (a biomarker for assessing oxidative
stress) in pregnancy hypertension, as previously reported [60,61].

To provide greater robustness to our results, we also measured the stimulated synthesis
of H2S in the aortic PVAT, in the aorta without PVAT, and in the placenta. We noticed that
there was a significant increase in H2S production in the aortic PVAT of the Preg+DOCA
group compared to the other groups. Placental H2S synthesis was also higher in the
Preg+DOCA group compared to the Preg group. However, the aorta in which PVAT was
removed showed no changes in H2S synthesis stimulated with PLP and L-cysteine in all
groups, thus corroborating results previously found [27].

Additional experiments were conducted to further confirm the participation of PVAT-
derived H2S. Then, the vascular tone was challenged to assess the anticontractile effects
of H2S. Aortic rings were submitted to increasing concentrations of phenylephrine to
evaluate the contraction after pre-incubation with PLP and L-cysteine. No significant
differences were found in all aortas from the Non-Preg and Non-Preg+DOCA rats, whereas
anticontractile effects were observed in aortic rings from the Preg rats in which PVAT
and/or endothelium were left intact in comparison with respective aortic rings in which
both PVAT and endothelium were removed. However, aortic rings from Preg+DOCA
rats showed significant anticontractile responses in aortic rings with both PVAT and
endothelium as well as aortic rings with PVAT and denuded endothelium, while loss of
anticontractile effect was found in the aortic rings without PVAT and intact endothelium.
Then, the present results suggest that in pregnancy hypertension, PVAT-derived H2S is
important for maintaining anticontractile responses, thus contributing to the regulation of
vascular tone in endothelial dysfunction.

The present results demonstrate that vasorelaxation response dependent on endothelium-
derived NO is impaired in pregnancy hypertension, indicating that a hypertensive pregnant
state renders the endothelium less responsive to NO-induced vasodilation, while PVAT-
derived H2S-dependent vasodilation is not affected. Thereby, the present results are in accor-
dance with the features of the pregnancy hypertension-associated endothelial dysfunction, as
previously demonstrated [47]. Thus, our findings suggest that PVAT-derived H2S-dependent
vasodilation is preserved in pregnancy hypertension and indicate that hypertensive pregnancy-
associated vascular adaptations may have counteracting mechanisms that involve, in part, the
vasodilation response dependent on PVAT. Taken together, our findings demonstrate that the
PVAT-related anticontractile effect is not affected by pregnancy hypertension and is enhanced
by H2S stimulation, whereas this response is impaired on the endothelium.

The current findings should be carefully interpreted. Further studies should investi-
gate if the DOCA-salt model of hypertension in pregnant rats could reproduce the morpho-
logical changes in the thoracic aorta featured by increases in wall thickness, wall area, and
wall-to-lumen ratio, thus suggesting that local changes in the vascular wall occurred in
response to increased arterial blood pressure, as previously demonstrated in hypertensive
male rats [62–66]. Furthermore, although the present results were demonstrated in the late
period of pregnancy in rats, which could resemble the eighth and ninth months of human
gestation, further investigation is warranted to examine the role of PVAT-derived H2S from
a clinical perspective, also considering differences in dietary intake, age, and period of the
pregnancy in patients.

5. Conclusions

The present study provides evidence that PVAT-derived H2S-induced vasodilation
may be stimulated with L-cysteine, whereas endothelium-derived H2S-induced vasodi-
lation is impaired by the increased oxidative stress related to pregnancy hypertension
associated with angiogenic imbalance and fetal-placental growth restriction. Thus, en-
dogenous PVAT-derived H2S stimulation with the amino acid L-cysteine may be a clinical
alternative to attenuate hypertensive disorders of pregnancy associated with endothelial
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dysfunction. Further studies are warranted to investigate the potential and beneficial effect
of L-cysteine on maternal PVAT in patients with pregnancy hypertension.
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