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Abstract: The Lamiaceae family is widely recognized for its production of essential oils and phenolic
compounds that have promising value as pharmaceutical materials. However, the impact of envi-
ronmental conditions and different harvest stages on the phytochemical composition of Lamiaceae
plants remains poorly understood. This study aimed to investigate the effects of harvest time on the
phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs),
of four Lamiaceae plants—Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)—and
was conducted under an environment-controlled system. Although all four plants had RA as the
dominant compound, its distribution varied by species. The flowered plants, including AR and OBP,
exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive
stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the con-
tent of total phenolics and RA. The main components of VOCs also differed depending on the plant,
with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and
geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene).
The total VOCs content was highest on the 60th day after transplanting regardless of the species,
while the trends of total phenolics, RA content, and antioxidant activities were different depending
on whether plant species flowered during the cultivation cycle. There was a steady increase in species
that had not flowered, and the highest content and activity of the flowering period were confirmed in
the flowering plant species.

Keywords: Lamiaceae plants; harvest time; phytochemicals; rosmarinic acid; VOCs; antioxidant activities

1. Introduction

Numerous herbs belong to the family Lamiaceae [1], which has a broad industrial
presence across various fields. In particular, their culinary use has recently extended to
include applications in cosmeceuticals and cosmetic–pharmaceutical hybrid products [2].
Various phenolics, including flavonoids, as well as their characteristic fragrance, have been
found to contribute to their antimicrobial and antioxidant properties [3–5]. Along with
these trends, the increasing demand for natural products has seen herbs considered as
promising crops owing to the preference for the use of natural materials to replace synthetic
compounds [6]. The major pharmacologically active compositions of herbs, rosmarinic
acid (RA), and volatile organic compounds (VOCs) have already been identified [7]. In
particular, RA is the main phenolic component of herbs [8,9]. RA is a naturally occur-
ring hydroxycinnamic acid ester (caffeoyl derivative) and has been revealed to possess
biological potential, including antibacterial, antiviral, anti-inflammatory, anticancer, and
anti-angiogenic activities [10,11]. Moreover, RA is reported to have important properties
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for industrial applications, including its ability to induce melanogenesis for photopro-
tection against UV-A and UV-B absorption, as well as its antistaphylococcus aureus and
anti-inflammatory activities, which make it suitable as an anti-acne agent [12,13]. The
strong antioxidant activity of RA, which has been proven to be the most prevalent phenolic
compound in sweet basil, thyme, marjoram, sage, rosemary, and lemon balm, is associated
with these herbs [14]. Phenolics, including flavonoids, possess powerful antioxidants
properties, as they can effectively scavenge free radicals, singlet oxygen, and superoxide
radicals due to their hydroxyl groups, and interact with enzyme functions [15]. In vari-
ous plants, the content of rosmarinic acid (RAC) influences antioxidant properties and a
strong correlation has been observed between phenolic content and antioxidant activities
in species like Perilla frutescens [16] and Melissa officinalis [17]. On the other hand, VOCs are
another characteristic feature, and their emission exhibits considerable variation, including
monoterpenoids and sesquiterpenoids [18]. In these classes, the predominant VOCs include
eugenol, methyl eugenol, linalool, camphor, citral (neral and geranial), estragole, β-pinene,
and β-caryophyllene [19]. Additionally, VOCs are considered promising metabolites that
are known for their safety and utilized for their antioxidant, antibacterial, and antimuta-
genic activities [20]. RA and VOCs can fluctuate wildly by not only the genetic variability,
plant parts, and environmental conditions, but also different developmental stages [21–24].

The synthesis and accumulation of secondary metabolites in plants show a species-
specific pattern, and the expression of genes according to the cultivation stage effects.
During the different growth stages of plants, a multitude of enzymes play a role in the
pathways responsible for phenolic biosynthesis [25]. Consequently, research has explored
the influence of growth stages on thyme [26,27], oregano [28,29], and rosemary [23,24],
revealing insights into their metabolites and related biological activities, including an-
timicrobial [30] and antioxidant properties [31]. Environmental conditions also play a
significant role. Factors such as plant physiology, metabolism, and cultivation conditions
can lead to alterations in the expression of numerous enzymes involved in phenolic biosyn-
thesis pathways, thus influencing interactions with plant secondary metabolites [25]. These
enzymes are governed by intricate regulatory mechanisms and exhibit precise responses to
environmental stimuli, including those associated with seasonal changes [25].

Several specifications were selected by referring to previous studies. Shekarchi et al. [32]
conducted a comparative experiment on the content of rosemary acids in a total of 29 speci-
fications, and through this, a high content of RA contained in lemon balm (Melissa officinalis,
MO) and sage (Salvia officinalis, SO) was confirmed, which were similarly reported in other
papers [33,34]. Furthermore, Agastache rugosa (AR) and Ocimum basilicum Purpurascens
(OBP), which have been used in pharmaceutical benefits and are commonly consumed
as foods, were investigated in this study [35,36]. To achieve commercially consistent
high-quality and high-functionality production of Lamiaceae plants, cultivation patterns,
functional components, and antioxidant activity were evaluated based on the cultivation
period under an environment-controlled system.

2. Materials and Methods
2.1. Cultivation of Plants

AR, MO, OBP, and SO seeds were purchased from Aram Seed Co. (Seoul, Republic of
Korea), N. L. Chrestensen Erfurt Seeds (Erfurt, Germany), Danong Seed Co. (Dongducheon-
si, Gyeonggi-do, Republic of Korea), and Worldseed Co. (Gwangju-si, Gyeonggi-do,
Republic of Korea), respectively. Seeds of the selected plants were sown into the soil
(volume density, 0.3 mg/m3; pH, 5–7; EC, ≤1.2 ds/m) and grown at the vertical farming
system of the Korea Institute of Science and Technology (Gangneung, Republic of Korea) at
temperatures ranging from 18 to 23 ◦C and a day/night period of 14/10 h (Figure S1).

One-month-old seedlings were transplanted into trays packed and cultured in a
greenhouse, which included actuators (shield, cooler, and heater) and a monitoring system.
Climate data during the experiment are provided in Table 1. Whole parts of plants collected
at 30, 60, 70, and 80 days after sowing (DAS) were rinsed and weighed.
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Table 1. Climate data of the greenhouse during the experiment controlled with actuator equipment
and monitoring system.

Cultivation Period Date
Temperature

RH 1 (%) CO2 Conc. (ppm)
Mean. (◦C) Max. (◦C) Min. (◦C)

30–40 DAS 12–21 February 18.7 30.2 14.0 50.6 439.8
40–50 DAS 22 February–31 March 18.7 30.1 15.3 53.1 430.1
50–60 DAS 4–13 March 19.6 31.1 15.1 51.0 425.2
60–70 DAS 14–23 March 20.5 32.0 12.6 50.6 414.1
70–80 DAS 24 March–2 April 19.9 29.5 14.5 55.0 428.7

1 relative humidity.

The growth rate is calculated according to the changes in diverse factors such as
dry weight, leave area, and height, and it can be used for plant growth analysis [37,38].
In our study, plant weight was subjected to growth rate parameters according to the
following formula:

Weight rate =
W2 − W1

t2 − t1

where W1 and W2 are plant weights at times t1 and t2.

2.2. Sample Preparation

The whole plants were frozen in liquid nitrogen and stored at −80 ◦C for 1 day. The
samples were dried in a freeze-drier (−80 ◦C) for 1 week and finely ground in a mortar. The
finely ground samples were extracted with 70% ethanol (2 g per 40 mL) using a sonication
extractor (Bandelin Sonorex, Bandelin Electronic, Berlin, Germany) at 60 ◦C for 2 h. Extracts
were filtered through Whatman No. 2 filter paper and concentrated in a nitrogen evaporator
(Allsheng MD 200, Hangzhou Allsheng Instrument Co., Ltd., Hangzhou, China). Dried
crude extracts were redissolved in dimethyl sulfoxide and filtered through an analytical
0.22 µm polyvinylidene fluoride membrane filter before in vitro assays, qualitative analysis
(UPLC-MS/MS), and quantitative analysis (HPLC).

2.3. Analysis of Total Phenols

TPC was measured using the Folin–Ciocalteu phenol method [39] with some modi-
fications. Plant samples (10 µL each) were added to 2% Na2CO3 (200 µL) and mixed for
3 min in a 96-well plate. The mixture was reacted with 1 mol/L Folin–Ciocalteu phenol
(10 µL) for 27 min at room temperature, after which absorbance was measured at 750 nm
with a spectrophotometer (Bio-Tek Instruments, Winooski, VT, USA). The TPC was then
calculated using a calibration curve; gallic acid was used as the standard, and the results
were expressed as mg GAE (gallic acid equivalents) per g of dried weight.

2.4. Identification of Rosmarinic Acid by Ultra-Performance Liquid Chromatography with Tandem
MS (UPLC-MS/MS)

UPLC-TQ-MS/MS was performed on an Agilent 1290 Infinity II LC system (Agilent,
Waldbronn, Germany) coupled with an Agilent 6470 B Triple Quadrupole instrument. The
injection volume was set as 1 µL and an injected sample was carried out at a column
temperature of 45 ◦C on a YMC-Triart C18 column (100 × 2.0 mm l.D. S-1.9 µm, 8 nm). The
mobile phase consisted of water containing 0.2% formic acid (A) and acetonitrile containing
0.2% formic acid (B). The flow rate of the mobile phase was set to 350 µL/min and a
gradient system was applied for analysis. In the initial point, the B ratio was 10% and it
was maintained for 1 min. The B ratio was increased to 40% at 8 min and 50% at 20 min.
Finally, the B ratio was increased to 100% at 40 min and for column washing, there was a
2 min post-run. The detection wavelength was set at 280 nm and the detected peaks were
proposed by TQ-MS/MS analysis.
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An Agilent 6470B Triple Quadrupole instrument was applied to MS and MS/MS
detection. The operation conditions were set as follows: drying gas (N2) flow rate, 7 L/min;
drying gas temperature, 325 ◦C; nebulizer, 25 psi; sheath gas flow rate, 7 L/min; sheath
gas temperature, 250 ◦C; capillary, 3500 V; fragmentor, 135 V; collision energy, 25 V; scan
mode, MS scan, and production mode; mass spectra recorded range, m/z 100–1000 at
negative mode. Agilent Mass Hunter Workstation Acquisition Software Version B.05.01
and Qualitative Analysis Software Version B.07.00 were utilized for data acquisition and
data processing.

2.5. Quantitative Determination of Rosmarinic Acid

RAC was measured by high-performance liquid chromatography (Agilent 1200 series,
Santa Clara, CA, USA) coupled to a diode array detector at 280 nm. A 10 µL sample was
injected into the Supersil ODS-II (4.6 × 250 mm, particle size 5 µm, Dalian, China) and
the column temperature was maintained at 40 ◦C. The flow rate was 1 mL/min and water
containing 0.1% formic acid (A) and acetonitrile (B) were used as solvents. The following
gradient solvent system was used: 0–1 min, 10% B; 1–15 min, 10–50% B; 15–25 min, 50–100%
B; 25–26 min, 100–10% B, with a 2 min post-run period of 10% B. RA was identified by
congruent retention times compared with standards and the content was calculated to be
mg per g of dried weight.

2.6. DPPH Radical Scavenging Activity

DPPH radical scavenging activity was assessed to determine the antioxidant poten-
tial of the samples [40]. Briefly, DPPH solution was dissolved in ethanol to 0.15 mM,
which was adjusted to an absorbance of 1.00 ± 0.05 at 517 nm. The sample (10 µL) was
reacted with DPPH solution (190 µL) at room temperature for 30 min in the dark. After
incubation, the absorbance was recorded at 517 nm with a UV/Vis spectrophotometer
(Bio-Tek Instruments). DPPH radical scavenging activity (%) was presented according to
the following formula:

DPPH radical scavenging activity(%) =
Abscontrol − Abssample

Abscontrol
× 100

where Abssample is the absorbance of tested sample and Abscontrol is the absorbance of the
control after 30 min reaction.

2.7. ABTS Radical Scavenging Activity

ABTS free radical scavenging activity was determined using a previously described
method with some modifications [41]. An ABTS tablet was dissolved in water and reacted
with a 2.45 mM potassium persulfate solution to obtain a 7 mM solution. The mixture
was incubated for 12 h at 4 ◦C to generate free radicals, and then a 10 µL sample was
reacted with the ABTS solution (190 µL) at room temperature for 10 min in the dark. After
incubation, the absorbance was recorded at 734 nm with a UV/Vis spectrophotometer.
ABTS radical scavenging activity (%) was presented according to the following formula:

ABTS radical scavenging activity(%) =
Abscontrol − Abssample

Abscontrol
× 100

where Abssample is the absorbance of the tested sample and Abscontrol is the absorbance of
the control after 10 min reaction.

2.8. Analysis of VOCs Using Gas Chromatography Time-of-Flight Mass Spectrometry
(GC-TOF-MS)

Solid-phase microextraction (SPME) analysis was performed following an established
protocol [42] using GC coupled with TOF-MS (LECO Pegasus GC HRT, Leco Corporation,
St. Joseph, MI, USA). A freeze-dried sample (10 mg) was mixed with 2 mL of 30% NaCl as
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the saturated solution, and 2 µL of 0.2 mg/mL 3-pentanol was used as the internal standard.
The SPME holder equipped with a 50/30 µm fiber (DVB/CAR/PDMS, model 57348-U,
Supelco, Bellefonte, PA, USA) was used for sampling. Before use, the fiber was conditioned
at 250 ◦C for 5 min. Aromatic compounds were extracted through SPME fiber at 70 ◦C
and a stirring rate of 500 rpm for 20 min. After stirring, GC analysis was performed using
a capillary column (Rtx-5MS column, 30 m length, 0.25 mm diameter, 0.25 µm thickness,
5% diphenyl, 95% dimethyl polysiloxane, Restek, Bellefonte, PA, USA) under split mode
(30:1). The front inlet temperature was set at 240 ◦C and the transfer line temperature was
maintained at 250 ◦C. The mass range was from 36 to 450. The ion source temperature was
kept at 250 ◦C with an ionization voltage of 70 eV and the helium was used as carrier gas
at a flow rate of 1 mL/min. The oven temperature program was 60–150 ◦C at the rate of
13 ◦C/min and then 150–180 ◦C at the rate of 8 ◦C/min, and it was then programmed to
180–200 ◦C at the rate of 10 ◦C/min and finally reached 245 ◦C at the rate of 30 ◦C/min. It
was then held there for 3 min.

2.9. Statistical Analysis

All data are expressed as the mean ± standard error (SE) of three biological replicates
(n = 3). The data were checked for normality and subjected to a one-way analysis of
variance (ANOVA) with SPSS Statistics (version 26.0, SPSS Inc., Chicago, IL, USA) based on
Duncan’s test (p < 0.05, 95% confidence interval). The statistical results were represented
by asterisks (*, **, and ***), which correspond to p values of <0.05, <0.01, and <0.005,
respectively. The heatmap for Pearson’s correlation analysis was generated using Metabo
Analyst 5.0.

3. Results and Discussion
3.1. Selected Plant Growth Attributes

During the cultivation period, environmental conditions (temperature, relative hu-
midity, and CO2 concentration) were well maintained (Table 1). Significant differences
were observed between cultivation periods for plant morphological properties, as shown
in Figure 1, as well as plant heights and weights, as detailed in Table 2. The weights of
AR and OBP were remarkably varied following the cultivation period. Flowering started
from 70 DAS in AR (Figure 1) and 90 DAS in OBP (Figure S2), and these influenced their
growth rate calculated based on the weight change. At a particular time (pre-flowering), the
growth rate dramatically increased from 0.39 (30–60 DAS) to 2.12 (60–70 DAS) in AR and
from 0.58 (60–70 DAS) to 0.85 (70–80 DAS) in OBP. Meanwhile, the other plants (MO and
SO) that did not flower in this experiment showed a consistent increase in growth rate of
0.01 (0–30 DAS) to 1.94 (70–80 DAS) in MO and 0.05 (0–30 DAS) to 0.81 (70–80 DAS) in SO,
respectively. These observations were consistent with the previous literature that explained
that the plant’s growth rate can be calculated by weight change. After the planting, small
plant sizes start to increase dramatically and stabilize after the flower induction. Therefore,
the transition from the vegetative phase to the reproductive phase can be recognized by the
growth curve by finding the initial of the vegetative phase (flowering stage) [43,44].

Based on their phenological properties, four classes (S1, seedling stage; S2, vegetative
stage; S3, pre-flowering stage; S4, flowering stage) were divided, and for MO and SO, which
did not appear to transition from the vegetative stage to reproductive stage, sub-classes for
vegetative stages were used.
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Figure 1. (A) Morphological characters and (B) relative growth rate calculated based on the weight
of plants (a: AR; b: MO; c: OBP; d: SO) collected on 30, 60, 70, and 80 DAS.

Table 2. Plant height and weight change of AR, MO, OBP, and SO. Data were presented as
mean ± standard error.

Species Harvest Time Description Stage Plant Weight (g) Plant Height (cm)

AR 1

30 DAS 5 Seedling stage S1 0.56 ± 0.01 d 7.67 ± 0.33 d
60 DAS Vegetative stage S2 12.33 ± 0.42 c 63.33 ± 1.76 c
70 DAS Pre-flowering stage S3 33.57 ± 0.41 b 80.00 ± 1.15 b
80 DAS Flowering stage S4 35.30 ± 0.10 a 88.33 ± 0.88 a

MO 2

30 DAS Seedling S1 0.41 ± 0.02 d 11.33 ± 0.88 d
60 DAS Vegetative stage S2-1 11.24 ± 0.20 c 40.33 ± 1.45 c
70 DAS Vegetative stage S2-2 17.91 ± 1.27 b 61.33 ± 0.88 b
80 DAS Vegetative stage S2-3 37.33 ± 1.19 a 66.00 ± 1.15 a
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Table 2. Cont.

Species Harvest Time Description Stage Plant Weight (g) Plant Height (cm)

OBP 3

30 DAS Seedling S1 0.95 ± 0.01 d 13.50 ± 0.29 d
60 DAS Vegetative stage S2-1 3.00 ± 0.17 c 34.33 ± 1.20 c
70 DAS Vegetative stage S2-2 8.81 ± 0.18 b 50.00 ± 1.15 b
80 DAS Pre-flowering stage S3 17.33 ± 0.33 a 55.33 ± 1.45 a

SO 4

30 DAS Seedling S1 1.49 ± 0.04 d 27.00 ± 0.58 c
60 DAS Vegetative stage S2-1 3.23 ± 0.03 c 29.67 ± 1.33 c
70 DAS Vegetative stage S2-2 5.57 ± 0.07 b 34.67 ± 1.45 b
80 DAS Vegetative stage S2-3 13.67 ± 0.67 a 47.00 ± 1.73 a

Different lowercase letters (a–d) indicate significant differences of weight and height among DAS following
Duncan’s multiple-range test (p < 0.05). 1 Agastache rugosa, 2 Melissa officinalis, 3 Ocimum basilicum Purpurascens,
4 Salvia officinalis, 5 days after sowing.

3.2. Estimation of Total Phenolics Content, Rosmarinic Acid Content, and Their Influence on
Antioxidant Activity

Based on the HPLC-DAD analysis, there was one major compound detected commonly
at 280 nm across all plant species. The main peak was identified as the RA by its specific
MS and MS2 spectrum derived from its fragmentation pattern (Figure 2) through UPLC-
Tandem MS analysis. Based on the MS and MS2 spectrum, the fragmentation pattern
(Figure 2C) showed a peak at m/z 359 as the precursor ion and MS2 spectrum exhibited the
ions at m/z 197, 179, 161, and 135, corresponding to [caffeic acid (C9H8O4) − H − CO2]−,
[caffeic acid (C9H8O4) − H − H2O]−, [caffeic acid (C9H8O4) − H]−, and [quinic acid
(C7H12O6) − H]−, respectively.
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Through qualitative analysis of selected Lamiaceae plants, RA was observed as the main
compound, as described in Figure 3. Previously, phenolics including RA have had a high
association with antioxidant activity (AOA), and this can result in the presence of diverse
pharmacological properties in plants [45]. Therefore, spectroscopic measurement was
conducted for TPC and HPLC analysis detected at 280 nm was performed for quantification
of RA (Figure 4). Additionally, DPPH radical scavenging activity (DPPH) and ABTS radical
scavenging activity (ABTS) were evaluated to assess their influence on antioxidant activities
(Figure 5). The distribution of TPC and RAC in Lamiaceae plants varied significantly
depending on plant species and their growth progression, as shown in Figure 4.
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In the case of AR, RAC increased during the vegetative phases (S1, 18.3 ± 4.6 mg/g;
S2, 35.0 ± 6.8 mg/g; S3, 71.4 ± 5.2 mg/g) and decreased during the flowering phase (S4,
65.1 ± 10.1 mg/g). However, there were no significant differences in TPC observed from
60 DAS (Figure 4A,B). The antioxidant activity, which was approximately 12.4 ± 2.2% for
DPPH and 17.2 ± 1.8% for ABTS at 30 DAS, steadily increased and showed the highest
DPPH (28.8 ± 2.3%) and ABTS (30.5 ± 1.4%) at 80 DAS at a sample concentration of
100 µg/mL and 50 µg/mL, as shown in Figure 5A. This low trend concordance was once
again confirmed through correlation analysis (Figure 7A). A strong correlation coefficient
(r) of 0.7181 (p < 0.01) was observed between TPC and RAC, and both were positively
affecting AOA. In the case of RAC, the r values between DPPH (r = 0.8291, p < 0.005)
and ABTS (0.8148, p < 0.005) were similar, while TPC had a more significant positive
correlation with ABTS (r = 0.9564, p < 0.005) than with DPPH (r = 0.7181, p < 0.005). A
similar pattern showing a different tendency between TPC and RAC was also observed
from SO. There was no dramatic change in TPC. However, in the case of RAC, it was found
to increase significantly (p < 0.05) approximately 3.88 times during the transition from S1
(30 DAS) to S2-1 (60 DAS), and this content was maintained during the vegetative phases
(S2, 70–80 DAS). Not only TPC results but these secondary metabolites are also considered
to affect the AOA of SO. In terms of AOA, DPPH activity was highly determined at 70 and
80 DAS with activity values of 62.9 ± 0.9 and 58.8 ± 1.5% at a sample concentration of
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100 µg/mL, as depicted in Figure 5D. Meanwhile, a non-significant difference (p < 0.05)
was observed in ABTS. A higher correlation coefficient between RAC and DPPH (r = 0.8840,
p < 0.005) was observed than between TPC and DPPH (r = 0.6420, p < 0.05) (Figure 7D).
Therefore, it was explained that RAC is a more important factor than other phenolics when
determining the AOA of SO. In the case of MO, both TPC and RAC showed a moderate–
strong correlation coefficient with growth parameters (weight and height) during the
growth progression, indicating a consistent increase (Figure 4). TPC and RAC increased
from 232.5 mg GAE/g and 29.4 mg/g in S1 (30 DAS) to 323.7 mg GAE/g and 120.3 mg/g
in S2-3 (80 DAS), following a similar trend that led to a moderate correlation between TPC
and RAC (r = 0.6292, p < 0.05) (Figure 6B). Consequently, the positive influence of both TPC
and RAC on AOA was depicted. TPC showed a higher correlation with DPPH (r = 0.9011,
p < 0.005) and ABTS (r = 0.9220, p < 0.005) than RAC (DPPH: r = 0.7843, p < 0.005 and ABTS:
r = 0.7423, p < 0.01) (Figure 7B). Therefore, it has been proven that the contribution of TPC
to AOA is higher than that of RA.
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the elevated DAS. The main components (those with a high proportion in terms of total quantity) and
Etc (representing the content of the minor components after subtracting main compounds content
from the total quantity) were indicated.

Similar results indicating a higher association of TPC to AOA were observed for
OBP. All factors were found to have a significantly strong correlation, exhibiting sufficient
evidence (p < 0.05). During the cultivation period, TPC and RAC increased from 153.7 mg
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GAE/g and 30.2 mg/g in S1 (30 DAS) to 369.0 mg GAE/g and 224.2 mg/g in S3 (80 DAS),
and these compound changes strongly influenced AOA (Figure 5C). DPPH and ABTS
measured at 100 µg/mL and 50 µg/mL increased from 16.3 ± 0.0% and 39.4 ± 4.5% in S1
(30 DAS) to 61.1 ± 1.0% and 65.0 ± 0.7% in S3 (80 DAS).

Natural antioxidants can delay or inhibit lipid oxidation by suppressing the initiation
or propagation of oxidative chain reactions [46]. Phenolic compounds are widely recog-
nized for their desirable antioxidant properties. They act as reducing agents, single oxygen
quenchers, hydrogen donors, and chelating agents of metal ions [47,48]. The antioxidant
activity of phenolics typically depends on the arrangement and substitution pattern of
hydroxyl groups, making the presence and proportion of active compounds crucial [46].
Although all plants in this study contained RA as the main component, their contributions
to antioxidant activity were differently confirmed. According to the influence on the AOA
of TPC and RAC, expressed as correlation coefficients, they could be divided into two
major groups. The dominant group of the combination of phenolics included AR and SO,
while the dominant group of RAC alone included OBP and MO. This was explained by the
compound profiles and their respective antioxidant capacity in each plant species.

For secondary metabolites of AR, numerous phenolics such as 4-hydroxybenzoic
acid, chlorogenic acid, caffeic acid, cinnamic acid, and flavonoids including quercetin,
rutin, kaempferol, tilianin, and acacetin have been reported as well as RA [49,50]. In
particular, the amount and proportion of major phytochemicals such as tilianin, acacetin
derivatives, and RA present in AR were found to vary [51,52]. It was explained by the
increase in RA and decrease in other components (quercetin, tilianin, acacetin, etc.) during
the flower development process [49,52]. The higher phenolic levels in flowers produced
stronger antioxidant activity than in the stems and leaves, resulting in an improvement of
the biological activities of the reproductive stage [53]. Therefore, the highest antioxidant
activity observed at 70 DAS and the significant contribution of RA to this activity can be well
explained by the entry into the reproductive stage. In the case of SO, the previous literature
reported that carnosol [54], quercetin derivative [55], and campherol [56] are also included
in SO as secondary metabolites. Furthermore, abietane-type diterpenoids, such as carnosic
acid and carnosol, along with RA, significantly contribute to the antioxidant activities of
SO [57]. However, during the transition from the vegetative stage to the reproductive stage,
there is an opposite trend in the accumulation of active compounds, with an increase in
phenolic diterpenes (such as carnosic acid and carnosol) and flavonoids (such as apigenin,
hispidulin, cirsimaritin, and naringin) and a decrease in RA [58]. Additionally, Lu and Yeap
Foo [59] explained that flavonoids exhibit comparatively weaker antioxidant activity (AOA),
while RA derivatives display stronger AOA, than Trolox in SO. During the experiment,
SO did not enter the flowering period, so it was considered as a vegetative state with RA
being dominant. Therefore, it was explained that the effect of RA on antioxidant activity
was greater.

Meanwhile, MO and OBP showed other antioxidant active compounds’ effects on
AOA. MO is known for containing RA as its main compound, along with other phenolic
compounds including ferulic acid, gallic acid, chlorogenic acid, syringic acid, p-coumaric
acid, and caffeic acid, which are present in high proportions [60]. Caffeic acid, in par-
ticular, is found as another prominent phenolic in MO [61,62] and is more effective in
inhibiting lipid oxidation and oil-in-water emulsion oxidation activities than RA [63]. Phe-
nolic compounds as well as flavonoids are important active compounds of MO, although
their profiles vary depending on the variety. Abdellatif et al. [64] explained that several
flavonoids, including quercetin, luteolin, and kaempferol, are dominant active compounds,
with relative contents exceeding 1%; among these, quercetin has excellent DPPH scav-
enging ability comparable to RA. Therefore, the relatively high amount of flavonoids in
MO, showing AOA, was the reason for the lower correlation between RAC and AOA than
between TPC and AOA [65]. This similar trend is also observed in OBP, which is reported to
contain other phenolics such as caffeic acid, caftaric acid, chicoric acid, etc. [66]. Their distri-
bution is differently reported following the varieties [67] but, in the case of OBP used in this
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experiment, RA dominated the composition, with no other major components detected at a
wavelength of 280 nm, which is generally used for detecting phenolics (Figure 3C). While
the color of OBP is typically attributed to anthocyanins, their content and composition
could be responsible for the red and blue pigmentation in plants [66]. However, there
have been reports that explain the low contribution of anthocyanins to the AOA of basil.
Therefore, focusing on the presence of a high amount of RA was sufficient to explain the
high correlation between RAC-AOA and TPC-AOA [66,68,69].

3.3. Profiling of VOCs and Their Distribution

Lamiaceae plants have a small number of primary ingredients that contribute sig-
nificantly to their characteristic fragrance by comprising more than 40% of the VOCs’
content [70]. These VOCs have gained recognition as promising metabolites, known for
their safety and applications in antioxidant, antibacterial, and antimutagenic activities
with non-toxicity. Ensuring the uniformity of VOCs is essential for maintaining quality
due to their high variability. For the VOCs, not only the genetic variability, but also plant
parts, different developmental stages, and environmental conditions regulate the VOCs
content [21]. The profile of VOCs is strongly influenced by plant species such as thyme
(Thymus vulgaris) of thymol [71], rosemary (Salvia rosmarinus) of α-pinene [72], and pepper-
mint (Mentha piperita) of carvone [73,74]. The essential oil content was influenced by the
growth stage in thyme [26,27], oregano (Origanum vulgare) [28], and rosemary [23,24], and
these changes have also been confirmed to influence the antimicrobial [30] and AOA [31]
of the Lamiaceae plants. To profile the VOCs, an SPME analysis was conducted, and the
results varied among the different plant species (AR: Table 3; MO: Table 4; OBP: Table 5;
SO: Table 6). The relative abundance of identified peaks detected by GC-MS was calculated
as a percentage of the total area of identified peaks, with peak areas normalized using the
internal standard, 3-pentanol. Significant fluctuations in the VOCs of the selected plants
based on sampling dates were observed.

Table 3. VOCs’ profiling change (ng/mg) of AR following the DAS.

No. Compound RI 1 Classification
DAS 2

30 60 70 80

1 (E)-2-Hexanal 857 Aldehyde 1.52 ± 0.26 a 0.16 ± 0.02 b 0.23 ± 0.06 b 0.19 ± 0.04 b
2 1-Octen-3-ol 981 Fatty alcohol 0.13 ± 0.03 b 0.27 ± 0.02 ab 0.23 ± 0.01 ab 0.32 ± 0.05 a
3 Limonene 1031 Monoterpene 0.50 ± 0.07 ab 1.10 ± 0.39 a 0.16 ± 0.01 b 0.23 ± 0.03 ab
4 4-Methyl benzaldehyde 1079 Aldehydes 0.51 ± 0.04 a 0.44 ± 0.11 a 0.02 ± 0.00 b 0.03 ± 0.01 b
5 Linalool 1101 Terpene alcohol ND 2 0.10 ± 0.00 ab 0.15 ± 0.04 a 0.02 ± 0.00 b
6 Isopulegone 1179 Monoterpene 0.04 ± 0.00 a 0.04 ± 0.01 a 0.02 ± 0.00 a 0.03 ± 0.00 a
7 Estragole 1198 Phenylpropene 202.55 ± 7.88 a 234.33 ± 11.97 a 69.99 ± 4.21 b 92.05 ± 6.40 b
8 (Z)-Neral 1243 Monoterpene ND 0.84 ± 0.11 a 0.16 ± 0.04 b 0.16 ± 0.01 b
9 p-Chavicol 1257 Phenylpropene 0.04 ± 0.00 a 0.02 ± 0.00 b ND ND
10 Geranial 1271 Monoterpene ND 1.46 ± 0.19 a 0.29 ± 0.09 b 0.26 ± 0.02 b
11 Anethole 1289 Phenylpropene 1.14 ± 0.31 b 2.20 ± 0.04 a 0.20 ± 0.02 c 0.31 ± 0.04 c
12 Methyleugenol 1408 Phenylpropene 0.04 ± 0.01 b 0.04 ± 0.00 b 0.09 ± 0.01 a 0.06 ± 0.01 ab
13 Caryophyllene 1423 Sesquiterpene 0.42 ± 0.05 ab 1.07 ± 0.20 a 0.10 ± 0.03 b 0.48 ± 0.27 ab
14 (E)-β-Famesene 1459 Sesquiterpene 0.07 ± 0.04 ND ND ND
15 δ-Cadinene 1527 Sesquiterpene 0.12 ± 0.01 ab 0.23 ± 0.04 a 0.05 ± 0.01 b 0.10 ± 0.04 b
16 Spathulenol 1579 Terpene alcohol 0.07 ± 0.00 a 0.07 ± 0.01 a ND ND

Total 207.13 ± 14.31 a 242.37 ± 21.31 a 71.71 ± 6.97 b 94.24 ± 11.65 b

Values were expressed as mean ± standard error and experiments were conducted with repetitive analyses.
An ANOVA test was performed with Duncan’s multiple-range test using the SPSS program and the result was
expressed as different letters (a–c). 1 RI: retention index; 2 ND: not detected.
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Table 4. VOCs’ profiling change (ng/mg) of MO following the DAS.

No. Compound RI 1 Classification
DAS

30 60 70 80

1 (E)-2-Hexanal 857 Aldehyde 0.31 ± 0.07 a 0.25 ± 0.02 ab 0.14 ± 0.02 ab 0.08 ± 0.00 b
2 1-Octen-3-ol 981 Fatty alcohol 0.03 ± 0.01 b 0.04 ± 0.00 b 0.07 ± 0.02 b 0.13 ± 0.01 a
3 6-Methyl-5-hepten-2-one 986 Ketones 0.26 ± 0.00 ab 0.47 ± 0.09 a 0.19 ± 0.04 b 0.13 ± 0.02 b
4 (E,E)-2,4-Heptadienal 1016 Aldehyde 0.04 ± 0.01 c 0.02 ± 0.00 c 0.16 ± 0.02 b 0.27 ± 0.03 a
5 4-Methyl benzaldehyde 1079 Aldehyde 1.33 ± 0.33 a 0.42 ± 0.01 b 0.04 ± 0.00 b 0.05 ± 0.00 b
6 Linalool 1101 Terpene alcohol 0.25 ± 0.03 a 0.11 ± 0.01 b 0.03 ± 0.00 c 0.02 ± 0.01 c
7 Isoneral 1165 Monoterpene 0.37 ± 0.01 a 0.49 ± 0.10 a 0.11 ± 0.01 b 0.14 ± 0.01 b
8 Rose furan oxide 1178 Furans 0.37 ± 0.01 a 0.49 ± 0.10 a 0.02 ± 0.01 b 0.01 ± 0.00 b
9 Estragole 1198 Phenylpropene 2.14 ± 0.22 a 1.01 ± 0.11 a 0.08 ± 0.01 a 1.66 ± 1.43 a
10 (Z)-Neral 1243 Monoterpene 40.46 ± 0.30 b 64.96 ± 6.69 a 10.56 ± 2.21 c 5.79 ± 1.74 c
11 (E)-Nerol 1258 Terpene alcohol 1.65 ± 0.32 ab 2.40 ± 0.73 a 0.72 ± 0.13 ab 0.06 ± 0.01 b
12 Methyl citronellate 1262 Esters ND 2 ND ND 0.01 ± 0.01
13 Geranial 1272 Monoterpene 118.38 ± 2.69 a 143.62 ± 11.78 a 22.85 ± 5.01 b 12.10 ± 3.74 b
14 Methyl geraniate 1325 Monoterpene 0.05 ± 0.00 b 0.34 ± 0.04 a 0.05 ± 0.01 b 0.04 ± 0.01 b
15 Caryophyllene 1423 Sesquiterpene 0.19 ± 0.01 b 0.83 ± 0.11 a 0.05 ± 0.00 b ND
16 (E)-α-Ionone 1426 Ketones 0.07 ± 0.01 b 0.02 ± 0.00 b 0.17 ± 0.01 a 0.04 ± 0.01 b
17 Nerolidol 1557 Terpene alcohol 0.03 ± 0.00 b 0.08 ± 0.01 a ND ND
18 γ-Dodecalactone 1678 Lactones 0.03 ± 0.01 a 0.03 ± 0.01 a 0.01 ± 0.00 a 0.02 ± 0.00 a

Total 165.95 ± 4.21 a 215.58 ± 34.08 a 35.24 ± 12.63 b 20.56 ± 11.08 b

Values were expressed as mean ± standard error and experiments were conducted with repetitive analyses.
An ANOVA test was performed with Duncan’s multiple-range test using the SPSS program and the result was
expressed as different letters (a–c). 1 RI: retention index; 2 ND: not detected.

Table 5. VOCs’ profiling change (ng/mg) of OBP following the DAS.

No. Compound RI 1 Classification
DAS

30 60 70 80

1 (Z)-3-Hexenal 802 Aldehyde 0.04 ± 0.01 ND ND ND
2 (E)-2-Hexenal 857 Aldehyde 0.45 ± 0.02 a 0.32 ± 0.06 a 0.05 ± 0.01 b 0.07 ± 0.04 b
3 (E,E)-2,4-Hexadienal 913 Aldehyde 0.04 ± 0.00 ND ND ND
4 1-Octen-3-ol 981 Fatty alcohol 0.06 ± 0.01 b 0.11 ± 0.01 a 0.02 ± 0.00 c 0.04 ± 0.00 bc
5 β-Pinene 983 Monoterpene ND 2 0.12 ± 0.01 a ND 0.02 ± 0.01 b
6 β-Myrcene 993 Monoterpene ND 0.13 ± 0.05 a ND 0.02 ± 0.01 b
7 L-Limonene 1030 Monoterpene ND 0.14 ± 0.03 ND ND
8 Eucalyptol 1033 Monoterpene 1.61 ± 0.25 b 5.64 ± 1.34 a 0.09 ± 0.01 b 1.22 ± 0.41 b
9 cis-4-Thujanol 1072 Terpene alcohol 0.11 ± 0.01 a 0.17 ± 0.03 a ND ND
10 4-Methyl benzaldehyde 1079 Aldehyde 2.24 ± 0.34 a ND 0.33 ± 0.04 b 0.32 ± 0.04 b
11 Linalool 1101 Terpene alcohol 4.15 ± 0.46 b 15.30 ± 1.55 a 0.85 ± 0.55 b 15.26 ± 6.71 a
12 (Z)-Thujone 1105 Monoterpene 0.11 ± 0.02 ND ND ND
13 L-camphor 1146 Monoterpene 0.18 ± 0.03 b 0.40 ± 0.02 a ND ND
14 δ-Terpineol 1167 Terpene alcohol 0.24 ± 0.01 a 0.38 ± 0.06 a 0.36 ± 0.18 a 0.14 ± 0.04 a
15 endo-Borneol 1169 Terpene alcohol ND ND 0.05 ± 0.01 a 0.03 ± 0.01 ab
16 Terpinen-4-ol 1179 Terpene alcohol 0.05 ± 0.00 b 0.13 ± 0.03 a 0.03 ± 0.01 b 0.04 ± 0.01 b
17 α-Terpineol 1192 Terpene alcohol 1.26 ± 0.07 b 2.24 ± 0.30 a 0.28 ± 0.10 c 0.78 ± 0.23 bc
18 Estragole 1197 Phenylpropene 0.22 ± 0.02 b 3.10 ± 0.22 a ND 0.26 ± 0.03 b
19 (Z)-Neral 1243 Monoterpene ND 0.58 ± 0.02 a ND 0.10 ± 0.09 b
20 (E)-Neral 1270 Monoterpene ND 1.04 ± 0.06 a ND 0.19 ± 0.17 b
21 Estragole 1199 Terpene alcohol 0.07 ± 0.01 b 0.61 ± 0.13 a ND 0.04 ± 0.02 b
22 Eugenol 1359 Phenylpropene 39.38 ± 8.02 a 54.49 ± 8.44 a 4.42 ± 3.3 b 17.06 ± 2.75 b
23 Methyleugenol 1409 Phenylpropene 165.91 ± 22.84 a 150.64 ± 33.20 a 4.42 ± 2.5 b 5.61 ± 2.56 b
24 Caryophyllene 1423 Sesquiterpene 0.17 ± 0.07 b 1.12 ± 0.52 a ND 0.17 ± 0.12 b
25 trans-α-Bergamotene 1437 Sesquiterpene 1.96 ± 0.63 b 14.78 ± 3.10 a 0.03 ± 0.01 b 4.56 ± 2.28 b
26 (E)-β-Famesene 1459 Sesquiterpene 0.35 ± 0.08 b 2.19 ± 0.61 a ND 0.17 ± 0.05 b
27 Humulene 1459 Sesquiterpene 0.25 ± 0.12 b 0.73 ± 0.26 a ND 0.16 ± 0.06 b
28 Methylisoeugenol 1492 Phenylpropene 0.29 ± 0.12 a 0.31 ± 0.02 a ND ND
29 Guaiene 1493 Sesquiterpene ND 0.59 ± 0.14 ND ND
30 trans-Calamenene 1530 Sesquiterpene ND 0.15 ± 0.01 a ND 0.03 ± 0.01 b
31 Nerolidol 1557 Terpene alcohol 0.08 ± 0.02 b 0.18 ± 0.03 a ND 0.05 ± 0.01 bc
32 T-cadinol 1643 Terpene alcohol 0.89 ± 0.22 b 2.45 ± 0.37 a 0.11 ± 0.03 c 1.49 ± 0.37 b

Total 221.6 ± 17.2 b 259.0 ± 14.9 a 11.1 ± 3.8 d 48.5 ± 7.3 c

Values were expressed as mean ± standard error and experiments were conducted with repetitive analyses.
An ANOVA test was performed with Duncan’s multiple-range test using the SPSS program and the result was
expressed as different letters (a–c). 1 RI: retention index; 2 ND: not detected.
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Table 6. VOCs’ profiling change (ng/mg) of SO following the DAS.

No. Compound RI 1 Classification
DAS

30 60 70 80

1 (E)-2-Hexenal 857 Aldehyde 0.61 ± 0.17 a 0.50 ± 0.18 a 0.11 ± 0.02 b 0.14 ± 0.05 b
2 α-Pinene 939 Monoterpene 0.66 ± 0.05 a 0.25 ± 0.19 b 0.11 ± 0.07 b 0.11 ± 0.08 b
3 Camphene 953 Monoterpene 0.51 ± 0.11 a 0.31 ± 0.17 b 0.14 ± 0.07 b 0.09 ± 0.07 b
4 1-Octen-3-ol 981 Fatty alcohol 0.06 ± 0.01 ab 0.08 ± 0.01 a 0.03 ± 0.00 b 0.04 ± 0.02 b
5 β-Pinene 983 Monoterpene 0.59 ± 0.12 a 0.48 ± 0.23 ab 0.17 ± 0.11 b 0.22 ± 0.12 ab
6 β-Myrcene 993 Monoterpene 0.49 ± 0.01 a 0.06 ± 0.02 b 0.06 ± 0.08 b 0.11 ± 0.07 b
7 α-Phellandrene 1007 Monoterpene 0.02 ± 0.00 a 0.03 ± 0.00 a 0.03 ± 0.02 a 0.03 ± 0.04 a
8 (E,E)-2,4-Heptadienal 1016 Aldehyde 0.01 ± 0.00 a 0.02 ± 0.00 a 0.02 ± 0.00 a 0.03 ± 0.01 a
9 α-Terpinene 1019 Monoterpene 0.05 ± 0.00 a 0.05 ± 0.00 a ND 2 ND
10 o-Cymene 1025 Monoterpene 0.05 ± 0.01 a 0.04 ± 0.01 ab 0.02 ± 0.01 b 0.03 ± 0.01 b
11 Limonene 1030 Monoterpene 0.71 ± 0.09 a 0.13 ± 0.05 a 0.09 ± 0.08 a 0.68 ± 0.61 a
12 Eucalyptol 1033 Monoterpene 7.40 ± 0.53 a 5.87 ± 0.79 ab 2.36 ± 0.33 c 3.84 ± 2.15 bc
13 cis-Sabinene hydrate 1076 Monoterpene 0.16 ± 0.01 a 0.18 ± 0.01 a 0.06 ± 0.01 b 0.08 ± 0.03 b
14 4-Methyl benzaldehyde 1079 Aldehyde 0.19 ± 0.07 c 1.49 ± 0.09 a 0.67 ± 0.18 b 0.64 ± 0.30 bc
15 α-Terpinolene 1089 Monoterpene 0.43 ± 0.05 a 0.31 ± 0.03 b 0.13 ± 0.01 c 0.14 ± 0.03 c
16 Linalool 1101 Terpene alcohol 0.50 ± 0.12 b 1.18 ± 0.29 a 0.44 ± 0.07 b 0.46 ± 0.19 b
17 (Z)-Thujone 1105 Monoterpene 30.83 ± 4.68 ab 36.53 ± 3.38 a 22.81 ± 1.28 b 32.72 ± 5.40 ab
18 (E)-Thujone 1116 Monoterpene 7.60± 1.71 a 4.57 ± 1.06 b 3.09 ± 0.26 b 4.06 ± 0.72 b
19 (+)-Sabinol 1145 Terpene alcohol 0.26 ± 0.06 a 0.23 ± 0.06 a 0.13 ± 0.03 a 0.27 ± 0.08 a
20 L-camphor 1146 Monoterpene 24.55 ± 2.14 b 37.77 ± 4.63 a 9.63 ± 3.37 c 11.79 ± 1.89 c
21 Isothujol 1168 Terpene alcohol 0.52 ± 0.24 a 0.74 ± 0.24 a 2.47 ± 3.07 a 0.33 ± 0.04 a
22 endo-Borneol 1169 Terpene alcohol 0.94 ± 0.12 ab 2.11 ± 1.22 a 0.48 ± 0.10 b 0.45 ± 0.06 b
23 Terpinen-4-ol 1179 Terpene alcohol 0.34 ± 0.09 b 0.59 ± 0.07 a 0.33 ± 0.10 b 0.29 ± 0.11 b
24 p-Cymen-8-ol 1185 Terpene alcohol 0.10 ± 0.01 ab 0.11 ± 0.04 a 0.04 ± 0.00 b 0.04 ± 0.00 b
25 α-Terpineol 1192 Terpene alcohol 0.40 ± 0.04 b 0.64 ± 0.16 a 0.20 ± 0.06 b 0.26 ± 0.06 b
26 Estragole 1198 Phenylpropene 0.66 ± 0.10 b 3.24 ± 1.13 a 1.06 ± 0.36 b 0.58 ± 0.11 b
27 (E)-Carveol 1219 Terpene alcohol 0.15 ± 0.01 ab 0.18 ± 0.07 a 0.04 ± 0.02 b 0.07 ± 0.05 ab
28 (Z)-Neral 1243 Monoterpene 0.23 ± 0.03 a 0.18 ± 0.01 ab 0.10 ± 0.07 bc 0.03 ± 0.01 c
29 (E)-Neral 1270 Monoterpene 0.52 ± 0.07 a 0.40 ± 0.04 a 0.19 ± 0.11 b 0.03 ± 0.00 b
30 (−)-Bornyl acetate 1286 Terpene alcohol 2.11 ± 0.70 a 2.70 ± 0.57 a 0.60 ± 0.17 b 0.43 ± 0.10 b
31 Methyleugenol 1409 Phenylpropene ND 0.36 ± 0.08 a 0.11 ± 0.03 b 0.06 ± 0.03 b
32 Caryophyllene 1423 Sesquiterpene 1.18 ± 0.10 a 1.86 ± 0.42 a 1.48 ± 0.28 a 1.41 ± 0.16 a
33 Humulene 1459 Sesquiterpene 8.34 ± 1.07 a 16.13 ± 6.26 a 7.83 ± 0.63 a 10.43 ± 0.91 a
34 (+)-Viridiflorol 1595 Terpene alcohol 3.26 ± 0.43 b 9.15 ± 0.62 a 6.48 ± 2.01 ab 6.00 ± 1.34 ab

Total 94.45 ± 7.54 a 128.47 ± 8.49 a 61.51 ± 3.38 b 75.89 ± 12.75 b

Values were expressed as mean ± standard error and experiments were conducted with repetitive analyses.
An ANOVA test was performed with Duncan’s multiple-range test using the SPSS program and the result was
expressed as different letters (a–c). 1 RI: retention index; 2 ND: not detected.

One commonality among all plant species was the presence of (E)-2-hexanal, a nat-
urally occurring volatile C6 aliphatic aldehyde compound [75]. It acts as a germination
inhibitor [76] and accumulates as a product of lipid peroxidation during the germination
process [77]. These aldehydes result from the degradation of hydroperoxides, which are
produced from the conversion of unsaturated fatty acids compositing the main membrane
of lipids susceptible to peroxidation into free radicals and C6/C9 hydroperoxides [78].
The accumulation of (E)-2-hexanal at 30 DAS indicated the germination process, while its
decrease after 60 DAS signified the transition to the growth stages. Additionally, for the
dominant volatile compounds, all the plant species showed an increased tendency in the
initial vegetative stages, followed by a decrease in total VOCs content over time, coinciding
with a decrease in the main component.

In the case of AR (Table 3), a total of 16 compounds were identified and these consist
of aldehydes (2), fatty alcohol (1), monoterpenes (4), sesquiterpenes (3), terpene alcohols (2),
and phenylpropenes (4). A significant effect of the growth stage on total VOCs was
observed by varied total VOCs content. It varied from 71.7 ± 7.0 ng/mg at 70 DAS
to 243.4 ± 21.3 ng/mg at 60 DAS. As depicted in Figure S3, the phenylpropene group
constituted a substantial proportion, ranging from 96.7% to 97.8% of the total VOCs.
The dominance was primarily attributed to the presence of estragole, the most abundant
compound. Changes in estragole content influenced the overall total content, with a notable
increase up to 60 DAS (S2), followed by a sharp decrease. AR proved to be a rich source of
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estragole, as indicated in Table 3. Estragole is a well-known aroma ingredient widely used
in food products as a flavoring agent [79], and it accounted for a significant proportion,
ranging from 46.7% to 94.6% in AR [80,81].

In statistical analysis, estragole exhibited a very strong positive correlation with
the total VOCs content, with a correlation coefficient (r) of 0.9999. The data presented
indicated that the total VOCs content (S2: 242.4 ± 21.3 ng/mg; S1: 207.3 ± 14.3 ng/mg;
S4: 94.2 ± 11.7 ng/mg; S3: 71.7 ± 7.0 ng/mg) tended to decrease over time in tandem with
the diminishing estragole content (Figure 6A). As a result, the maximized stage (S2) was
considered the most efficient for obtaining estragole. EOMT (eugenol-O-methyltransferase)
activity and eugenol accumulation have a significant correlation and the decrease in the
transcript expression level of EOMT with leaf age [82] was expected to be responsible for
the decrease in the total amount of VOCs.

In MO (Table 4), 18 VOCs were identified, including aldehydes (3), monoterpenes (4),
sesquiterpene (1), terpene alcohols (3), phenylpropene (1), ketones (2), furan (1), ester (1),
lactone (1), and fatty alcohol (1). Monoterpenes composed of isoneral, (Z)-neral (citral B),
geranial (citral A), and methyl geraniate accounted for approximately 87% of the VOCs
(Figure 6B) and geranial was identified as the major component of MO (Table 4). Specifically,
the primary composition of VOCs in S2 stage MO, which exhibited the highest VOCs
content, consisted of geranial (66.5%) and (Z)-neral (30.1%). The combined total of these
two main components represented a significant percentage in all MO samples, regardless
of the stages, ranging between 87.0% and 96.8% (Figure 6B). Consequently, the variation
in total VOCs content across the stages was primarily attributed to changes in geranial
and (Z)-neral content (as shown in Table 4), and the order from highest to lowest content
was as follows: S2-1 (60 DAS; 215.6 ± 34.1 ng/mg) > S1 (30 DAS; 166.0 ± 4.2 ng/mg) >
S2-2 (70 DAS; 35.2 ± 12.6 ng/mg) > S2-3 (80 DAS; 20.6 ± 11.1 ng/mg). In the case of
MO, some previous reports have referred to the major components of VOCs of MO as the
geranial, (Z)-neral, citronellal, (E)-caryophyllene, caryophyllene oxide, geraniol, etc. [83].
Among these diverse monoterpenes, monoterpene aldehydes (geranial and neral) were
identified as the main component of MO. Although MO exhibited relatively higher levels
of geranial compared to (Z)-neral, both compounds made significant contributions. These
two stereoisomers of citral (mixture of geranial and neral) are also found in citrus fruits,
lemongrass, and gingers to determine quality [84], and were highly quantified in the S2-1
stage and then declined. Total VOCs content was statistically concerned with geranial and
(Z)-neral with correlation coefficients of 0.9866 (p < 0.005) and 0.9980 (p < 0.005), respectively.
Consequently, to obtain MO with a rich VOC content, the optimal stages were S1 (30 DAS)
and S2-1 (60 DAS).

In contrast to the two previously discussed plant species, OBP and SO did not exhibit
remarkable major VOCs. In OBP, 32 VOCs, which included aldehydes (4), monoterpenes (9),
sesquiterpenes (6), terpene alcohols (8), phenylpropenes (4), and fatty alcohol (1), were
found, as described in Table 5. Their distribution varied across the different growth
stages, with S2-1 (60 DAS; 259.0 ± 14.9 ng/mg) containing the highest VOCs, followed
by S1 (30 DAS; 221.6 ± 17.2 ng/mg), S3 (80 DAS; 48.5 ± 7.3 ng/mg), and S2-2 (70 DAS;
11.1 ± 3.8 ng/mg), respectively. Notably, the terpene alcohols and phenylpropenes dis-
played opposite patterns as the days progressed. The proportion of phenylpropenes steadily
decreased from 93.5% to 47.9%, while the terpene alcohols’ portion consistently increased
from 3.1% to 37.1% over time (Figure S3). The primary aromatic compounds in OPB were
eugenol, methyl eugenol, and linalool (Table 5). During the S1 (30 DAS) and S2-1 (60 DAS)
stages, methyl eugenol was the major component, accounting for 58.2–74.9%, with lower
amounts of eugenol (17.9%) and linalool (1.9%). However, during the S2-2 (70 DAS) stage,
eugenol, and linalool content increased, reaching 35.6% and 31.9%, respectively, making
them the most abundant compounds (see Figure 6C). This composition of OPB consisted
of reported paper [85]. Methyl eugenol was the dominant constituent of OBP, followed
by eugenol.
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The strong correlation between these two phenylpropenes (r = 0.8458, p < 0.005)
suggests the possibility of conversion from eugenol to methyl eugenol through the catalysis
of the EOMT gene [86]. Both eugenol and methyl eugenol exhibited a very strong correlation
with total VOCs content (eugenol: r = 0.9451, p < 0.005; methyl eugenol: r = 0.9678, p < 0.005,
respectively). Meanwhile, the other major compound, linalool, which is one of the terpene
alcohols, showed a weak correlation with total VOCs (r = 0.2844, p < 0.005). Therefore,
eugenol and methyl eugenol were revealed as the principal factors to determine total
VOCs emission in OBP. The highest content of phenylpropene compounds was observed
during the initial vegetative stage (S2-1). This finding is consistent with the results of
Renu et al. [87], who reported an increase in total VOC content during the juvenile stage
(S2-1), followed by a rapid reduction during the pre-flowering and flowering stages in
Ocimum species.

In SO, 34 VOCs, including aldehydes (3), monoterpenes (17), sesquiterpenes (2),
terpene alcohols (9), phenylpropenes (2), and fatty alcohol (1), were found, as described
in Table 6. Several compound groups constituted a large portion (more than 10%) of
the total VOCs. Monoterpenes (63.4–79.2%), sesquiterpenes (10.1–15.6%), and terpene
alcohols (9.1–18.2%) were associated with the aroma of SO (Table 6 and Figure S3). Unlike
AR and MO, where several components determine the total amount, the sum of some
of the main compounds, such as (Z)-thujone (28.4–43.1%), camphor (15.5–29.4%), and
humulene (8.8–13.7%), accounted for approximately only half (Figure 6D). The total VOCs
content varied across different growth stages, including S2-1 (60 DAS; 128.5 ± 8.5 ng/mg),
S1 (30 DAS; 94.5 ± 7.5 ng/mg), S2-3 (80 DAS; 75.9 ± 12.8 ng/mg), and S2-2 (70 DAS;
61.5 ± 3.4 ng/mg) (Table 6). Interestingly, there were no remarkable major VOCs in SO.
Without overwhelming compounds, diverse volatile compounds were evenly distributed,
and relatively predominant volatile compounds (making up more than 8% of the total VOCs
content) included two monoterpenes, (Z)-thujone and (−)-camphor, and one sesquiterpene,
humulene. Among three high-ratio components, in correlation analysis, only (−)-camphor
showed a very strong correlation coefficient (r = 0.9638, p < 0.005), while others ((Z)-thujone
and humulene) exhibited comparatively lower correlation coefficients (r = 0.7560 and 0.7322,
respectively). The aromatic properties of SO have been reported to be composed of thujone
diastereomeric forms (α-thujone and β-thujone), 1,8-cineol, camphene, humulene, α-pinene,
limonene, and borneol, among others, varying with the species. These compounds make SO
a commonly used savory food flavoring in the form of dried leaves and essential oil [88,89].
Therefore, the worth of the S1 and S2-1 stages was evaluated to be higher due to higher
total VOCs content.

For the Lamiaceae plants, VOCs are important quality indicators. However relatively
little is known about the effect of growth stages on VOCs distribution. Some studies have
provided evidence that some VOCs stimulate seed germination and seedling stages [90].
Thus, young stages show dramatic changes in VOCs emissions, and leaf ontogeny can
greatly influence VOCs production [91]. This study indicated that variations of the VOCs
emitted by Lamiaceae species significantly depend on the growth stage. Although the main
components and their proportions were all different, the total VOCs of four Lamiaceae
plants showed the highest content while passing from the S1 to S2 stage. Consequently,
it is suggested that the seedling stages of Lamiaceae plants under specific periods (leaf
development to stem elongation) can serve as rich sources of VOCs.
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radical scavenging activity at 100 µg/mL; ABTS, ABTS radical scavenging activity at 50 µg/mL;
VOCs-Etc, VOCs content excluding main components.

4. Conclusions

Overall, it could be concluded that harvest timing affects growth pattern, phytochemi-
cals content, and even antioxidant activities of Lamiaceae species including Agastache rugosa
(AR), Melissa officinalis (MO), Ocimum basilicum Purpurascens (OBP), and Salvia officinalis
(SO). Due to the high proportion of rosmarinic acid (RA) in the plants of Lamiaceae, it
has been revealed as a significant factor contributing to antioxidant activities through
statistical analysis among phenolic compounds. Furthermore, the pattern of RA content
varied depending on whether they had flowered or not. In the case of flowering species
(AR and OBP), RAC increased dramatically when transitioning from the vegetative stage
to the reproductive stage. Meanwhile, the non-flowering species did not show a rapid
increase in TPC and RAC. In terms of VOCs, significant differences were observed in
components following the species. For AR and MO, there was a specific compound group
that accounted for the largest portion, phenylpropene (estragole) and monoterpenes (citrals
and methyl geraniate). In OBP and SO, various component groups constituted the emitted
VOCs. Terpenoids including (Z)-thujone, camphor, and humulene distributed to the flavor
of SO. Changes in the combination of phenylpropenes (eugenol and methyl eugenol) and
terpene alcohol (linalool) determined the flavor of OBP. Although the component compo-
sition and ratio were different, the highest content fragrance components were common
in all plants at the time of transition from S1 to S2. In conclusion, it is recommended to
utilize the pre-flowering stage to obtain a high content of RA and post-germination plants
for VOCs.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12111909/s1. Figure S1: Environmental conditions includ-
ing (A) temperature (◦C), (B) relative humidity (%), and (C) CO2 concentration (ppm) during the
cultivation period. Figure S2: Picture of OBP at 90 DAS. Figure S3: Proportions of volatile organic
compound groups’ (aldehyde, monoterpene, sesquiterpene, phenylpropene, terpene alcohol, and
others) metabolites in each plant of (A) AR, (B) MO, (C) OBP, and (D) SO at elevated days after
sowing (DAS).
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and amino acid supplementation on phenolic compounds profile in Agastache rugosa in vitro cultures. Phytochem. Lett. 2019, 31,
12–19. [CrossRef]

51. Kim, S.; Bok, G.; Park, J. Analysis of antioxidant content and growth of Agastache rugosa as affected by LED light qualities. J.
Bio-Environ. Control 2018, 27, 260–268. [CrossRef]

52. An, J.H.; Yuk, H.J.; Kim, D.-Y.; Nho, C.W.; Lee, D.; Ryu, H.W.; Oh, S.-R. Evaluation of phytochemicals in Agastache rugosa (Fisch.
& CA Mey.) Kuntze at different growth stages by UPLC-QTof-MS. Ind. Crops Prod. 2018, 112, 608–616. [CrossRef]

53. Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In Vitro antioxidant and antimicrobial properties of
flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [CrossRef] [PubMed]

54. Ben Farhat, M.; Jordan, M.J.; Chaouech-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Variations in essential oil, phenolic compounds,
and antioxidant activity of tunisian cultivated Salvia officinalis L. J. Agric. Food Chem. 2009, 57, 10349–10356. [CrossRef]
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