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Abstract: Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur
to selenium replacement. This single change retains many of the chemical properties of cysteine
but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique,
requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These
Sec-containing proteins (selenoproteins) are found in all three domains of life where they often
are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of
selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for
Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role
of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated
biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate
production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein
M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif
suggests oxidoreductase function; however, its mechanism and functional role(s) are still being
uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to
separate diseases emphasizes the medical application for studying the role of Sec in this protein.
In this review, we aim to decipher the role of SELENOM through detailing and connecting current
evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to
fully unveil the role of SELENOM.
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1. Introduction

Selenium acts as a double-edged sword: an essential micronutrient for humans that
becomes toxic in excess [1]. Selenium is found in both organic (selenomethionine, se-
lenocysteine (Sec)) and inorganic (selenite, selenate) forms, of which the latter is found
to be more toxic to humans [2,3]. Sec, the 21st natural amino acid, is biosynthesized on
its tRNA to convert inorganic selenium to an organic form, readily used by cells for pro-
tein translation [3]. Humans have 25 selenoproteins (proteins containing Sec) that are
responsible for cellular function (e.g., redox reactions, immune response, thyroid hormone
metabolism). The inability to express these selenoproteins (due to selenium deficiency)
have been associated with diseases including cancer, neurodegenerative diseases, Keshan
disease, inflammatory bowel diseases, and diabetes [1,4,5]. Selenium supplementation has
been proposed to prevent and treat some of these diseases; however, there are also data
that show that excess selenium or overexpression of selenoproteins is connected to disease
(e.g., diabetes, neurodegenerative diseases) [6–10]. These conflicting results suggest that
maximizing selenoprotein production through selenium supplementation is not always a
solution and we are missing key information to properly prescribe selenium [11]. Part of
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this gap is due to lack of understanding on the role that Sec has in the cellular function of
selenoproteins [12].

The enhanced chemical reactivity of Sec has been an advantage when studying se-
lenoproteins in vivo. Probes have been designed to specifically recognize Sec over cysteine,
and radioactive selenium can be fed to cultures to visualize incorporation [13]. Studying
selenoproteins in vitro, however, is more challenging. This is because they follow a transla-
tion path that is unique to all other proteins. Sec is encoded by a nonsense codon (UGA),
but only in the presence of specific regulatory elements to designate Sec insertion instead
of termination. Downstream of the specific UGA codon, in the 3′-untranslated region
(UTR) of eukaryotes, is an mRNA hairpin known as the Sec insertion sequence (SECIS)
element. This hairpin structure is highly conserved [14] for interaction with SECIS-binding
protein 2 (SBP2) and a specialized elongation factor (eEFSec). eEFSec can discriminate the
unique structure of tRNASec from tRNAs for the other 20 amino acids, promoting elonga-
tion instead of termination [15,16]. Details of the translation mechanism involving these
additional factors: SECIS element, SBP2, and eEFSec, are still not fully understood [17].
Moreover, the mechanism differs in each domain of life, adding to the complexity of feasibly
overexpressing selenoproteins for detailed analysis of their cellular function [18].

Nevertheless, researchers have used clever strategies to unveil this looming question
about selenoprotein function [13]. In this review, we have combined the studies on se-
lenoprotein M (SELENOM) in an effort to connect what has been determined thus far and
propose new directions that should be investigated. The extensive expression of SELENOM
in the brain directed focus to this region initially; however, it is also found in other tissues.
Therefore, researchers have started questioning the role of SELENOM throughout the body.
The evidence presented suggests that SELENOM supports cellular growth and, specifi-
cally in the brain, has a neuroprotective role. Advancement in the technology to produce
selenoproteins [19–21] opens the ability to further characterize SELENOM function.

2. Expression of SELENOM Is Widespread

SELENOM is widely expressed throughout the body (e.g., heart, lung, kidney, stom-
ach, small intestine, skin, testis, uterus, ovary, and brain), but not expressed in all tissue
types (e.g., muscle and thymus) [22,23] (Figure 1). In the brain, SELENOM expression is
extensive, detectable in multiple brain regions including the olfactory bulb, cortex, hip-
pocampus, hypothalamus, brain stem, cerebellum, and cerebellar cortex lysates [23,24].
Immunohistochemistry staining for SELENOM distribution in mice coronal brain sections
revealed SELENOM localization in multiple brain regions including the periventricular
and arcuate nuclei of the hypothalamus; the ventral tegmental area; red nucleus; the CA1,
CA2, and CA3 regions of the hippocampus; the medial septum; and the granular, Purkinje,
and molecular layers of the cerebellum [24]. This high expression level of SELENOM in
multiple brain regions suggests an important role in brain function.

A global knockout of SELENOM in mice did not result in adverse cognitive or motor
defects as one may have expected. Instead, metabolic dysregulation caused by diminished
hypothalamic leptin signaling was observed [24,25]. Given that most of SELENOM is
found in GABAergic cells, this observation made sense. However, one thing to consider
when studying SELENOM in mice is that human expression levels are much lower and
the distribution of selenoproteins differ between the organisms [26]. For example, mice
have high expression levels of GPx1, GPx4, SELENOF, SELENOK, SELENOM, SELENOS,
and SELENOW, while SELENOW and SELENOF are the highest expressed in humans [26].
Since the mechanisms by which many selenoproteins function are still not clear, we cannot
rule out whether another selenoprotein in the brain compensates for cognitive and motor
function in the absence of SELENOM.
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Figure 1. Schematic of SELENOM expression and SELENOM-related diseases as found in humans. 
Diseases that correlate with aberrant SELENOM expression are shown on the left, while the location 
of major organs with detectable SELENOM expression is on the right. Relative expression levels of 
healthy individuals are portrayed with blue-colored dots. The widespread expression of SELENOM 
is not limited to what is depicted. Created with BioRender.com 

Beyond the brain and examining the entirety of the human body, the Human Protein 
Atlas (https://www.proteinatlas.org/ENSG00000198832-SELENOM, accessed 14 March 
2023) shows that generally SELENOM is expressed in the cytoplasm but localizes to the 
perinuclear region and nucleoplasm. SELENOM is also highly expressed in the thyroid 
gland, lungs, and female reproductive organs. The glandular system is most prominent 
for mRNA expression, with exocrine glandular cells expressing the highest levels. There 
is low cancer specificity for SELENOM; however, its expression in renal cell carcinoma 
(RCC) is unfavorable and used as a prognostic marker, discussed in a later section. 

3. Elucidating SELENOM Function from Structure 
3.1. SELENOM Is Structurally Close to Thioredoxin 

As with elucidating the function of a newly discovered protein, when studying a new 
selenoprotein, an initial step is to scan the structure space for similar proteins that have 
been previously characterized. Structurally, the closest relative to SELENOM is thiore-
doxin [27]. Thioredoxins are oxidoreductases with a defined thioredoxin (TXN)-fold iden-
tified by a two-layer α/β/α sandwich with a βαβββα secondary structure. Moreover, they 
harbor a CXXC active-site motif, where X can be any amino acid [28]. Through this CXXC 
motif, TXNs catalyze the reduction of disulfide bonds as part of a catalytic cycle involving 
thioredoxin reductase (TXNRD) or through activation by reaction oxygen species (ROS) 
[29,30] (Figure 2a). In SELENOM, the CXXC motif is found as CXXU, where U refers to 
Sec [22]. The similar chemistry between C and U suggests that this motif also serves as a 
redox center and SELENOM participates as an oxidoreductase. 

Figure 1. Schematic of SELENOM expression and SELENOM-related diseases as found in humans.
Diseases that correlate with aberrant SELENOM expression are shown on the left, while the location
of major organs with detectable SELENOM expression is on the right. Relative expression levels of
healthy individuals are portrayed with blue-colored dots. The widespread expression of SELENOM
is not limited to what is depicted. Created with BioRender.com.

Beyond the brain and examining the entirety of the human body, the Human Protein
Atlas (https://www.proteinatlas.org/ENSG00000198832-SELENOM, accessed 14 March
2023) shows that generally SELENOM is expressed in the cytoplasm but localizes to the
perinuclear region and nucleoplasm. SELENOM is also highly expressed in the thyroid
gland, lungs, and female reproductive organs. The glandular system is most prominent for
mRNA expression, with exocrine glandular cells expressing the highest levels. There is low
cancer specificity for SELENOM; however, its expression in renal cell carcinoma (RCC) is
unfavorable and used as a prognostic marker, discussed in a later section.

3. Elucidating SELENOM Function from Structure
3.1. SELENOM Is Structurally Close to Thioredoxin

As with elucidating the function of a newly discovered protein, when studying a
new selenoprotein, an initial step is to scan the structure space for similar proteins that
have been previously characterized. Structurally, the closest relative to SELENOM is
thioredoxin [27]. Thioredoxins are oxidoreductases with a defined thioredoxin (TXN)-fold
identified by a two-layer α/β/α sandwich with a βαβββα secondary structure. Moreover,
they harbor a CXXC active-site motif, where X can be any amino acid [28]. Through this
CXXC motif, TXNs catalyze the reduction of disulfide bonds as part of a catalytic cycle
involving thioredoxin reductase (TXNRD) or through activation by reaction oxygen species
(ROS) [29,30] (Figure 2a). In SELENOM, the CXXC motif is found as CXXU, where U refers
to Sec [22]. The similar chemistry between C and U suggests that this motif also serves as a
redox center and SELENOM participates as an oxidoreductase.

https://www.proteinatlas.org/ENSG00000198832-SELENOM
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Figure 2. Oxidoreductase pathways. (a) The thioredoxin (TXN) cycle illustrates how TXNRD, an 
essential selenoprotein, catalyzes the reduction of oxidized thioredoxin (TXN-S2) using NADPH as 
an electron donor. Reduced thioredoxin (TXN-(SH)2) plays a critical role in oxidizing proteins in-
volved in cellular redox homeostasis, influencing processes like DNA synthesis, antioxidant de-
fense, and apoptosis. (b) In the GPx pathway, GPx catalyzes the reduction of peroxides, including 
hydrogen peroxide (H2O2), using reduced glutathione (GSH) as an electron donor. The resulting 
oxidized glutathione (GSSG) can be converted back to GSH through the action of glutathione reduc-
tase (GR), ensuring a continuous supply for cellular antioxidant defense. From activity assays, SE-
LENOM could play a role in reducing peroxides like GPx. 

The redox active amino acids (C or U) in the CXXC/U motif are surface-accessible in 
SELENOM. This differs from TXN, but is seen in protein disulfide isomerases (PDIs). PDIs 
are also oxidoreductases that typically consist of two catalytic TXN-like domains (contain-
ing the CXXC motif), separated by two non-catalytic TXN-like domains. However, some 
PDIs only contain a single catalytic domain [31,32], which is analogous to what is observed 
in the structure of SELENOM. Furthermore, the position of the CXXU motif is located 
between the C-terminus of strand β1 and N-terminus of helix α1, which compares to what 
is found in both TXNs and PDIs [27]. 

3.2. SELENOM Defines the New Thioredoxin Family 
Another structural homolog found for SELENOM is SELENOF (previously named 

Sep15) [22,33]. Although their sequence identity is only 31%, SELENOF shares multiple 
regions of significant sequence identity to SELENOM [34]. The major similarity that dis-
tinguishes SELENOM and SELENOF from other TXN families is its unique TXN-like fold. 
Its central α/β domain, composed of three α-helices (α1-α3) and a mixed parallel/anti-
parallel four-stranded β-sheet (β1-β4), represents the most basic TXN-like fold [35] (Figure 
3). The CXXU motif located within this unique TXN-like fold is also unlike other oxidore-
ductases. While X refers to any amino acid, only certain amino acids are typically found 
in nature. These include GP, GH, and PH, found in TXNs, PDIs, and disulfide oxidases, 
respectively [27]. SELENOM has the sequence motif CGGU, which has only been ob-
served thus far in SELENOF as CGU [27]. 

Figure 2. Oxidoreductase pathways. (a) The thioredoxin (TXN) cycle illustrates how TXNRD, an
essential selenoprotein, catalyzes the reduction of oxidized thioredoxin (TXN-S2) using NADPH as an
electron donor. Reduced thioredoxin (TXN-(SH)2) plays a critical role in oxidizing proteins involved
in cellular redox homeostasis, influencing processes like DNA synthesis, antioxidant defense, and
apoptosis. (b) In the GPx pathway, GPx catalyzes the reduction of peroxides, including hydrogen
peroxide (H2O2), using reduced glutathione (GSH) as an electron donor. The resulting oxidized
glutathione (GSSG) can be converted back to GSH through the action of glutathione reductase (GR),
ensuring a continuous supply for cellular antioxidant defense. From activity assays, SELENOM could
play a role in reducing peroxides like GPx.

The redox active amino acids (C or U) in the CXXC/U motif are surface-accessible
in SELENOM. This differs from TXN, but is seen in protein disulfide isomerases (PDIs).
PDIs are also oxidoreductases that typically consist of two catalytic TXN-like domains
(containing the CXXC motif), separated by two non-catalytic TXN-like domains. However,
some PDIs only contain a single catalytic domain [31,32], which is analogous to what is
observed in the structure of SELENOM. Furthermore, the position of the CXXU motif is
located between the C-terminus of strand β1 and N-terminus of helix α1, which compares
to what is found in both TXNs and PDIs [27].

3.2. SELENOM Defines the New Thioredoxin Family

Another structural homolog found for SELENOM is SELENOF (previously named
Sep15) [22,33]. Although their sequence identity is only 31%, SELENOF shares multiple
regions of significant sequence identity to SELENOM [34]. The major similarity that distin-
guishes SELENOM and SELENOF from other TXN families is its unique TXN-like fold. Its
central α/β domain, composed of three α-helices (α1-α3) and a mixed parallel/anti-parallel
four-stranded β-sheet (β1-β4), represents the most basic TXN-like fold [35] (Figure 3). The
CXXU motif located within this unique TXN-like fold is also unlike other oxidoreduc-
tases. While X refers to any amino acid, only certain amino acids are typically found in
nature. These include GP, GH, and PH, found in TXNs, PDIs, and disulfide oxidases,
respectively [27]. SELENOM has the sequence motif CGGU, which has only been observed
thus far in SELENOF as CGU [27].
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Figure 3. SELENOM (a) domain structure and (b) NMR structure (PDB: 2A2P). The first 25 residues
are the endoplasmic reticulum signal peptide, which was removed for protein expression. Residues
25–34 and 121–145 are not shown in the structure due to high flexibility. The CXXU motif is shown in
magenta, α-helices in cyan, and β-strands in orange.

In addition to a defining TXN-like fold, both SELENOM and SELENOF have other
structural features that group them into a separate subfamily of TXNs. The conserved
proline at the N-terminus of strand β3 is typically found in the cis-conformation [29],
while in SELENOM and SELENOF, it is in the trans-conformation [28]. Furthermore,
these proteins are missing a charge pair that in TXNs and PDIs are involved in proton
transfer [30]. The functional importance of these structural differences remains unclear and
is still under study.

3.3. SELENOM Does Not Bind UGGT

Among the many similarities between SELENOF and SELENOM, there are differ-
ences that potentially separate their functions. These differences lie at the termini. Both
selenoproteins have an N-terminus that contains an ER-signaling sequence, which is sub-
sequently cleaved during protein maturation. In SELENOF, an elongated cysteine-rich
extension follows the signaling sequence prior to strand β1, while in SELENOM, this is a
short extension. Furthermore, the C-terminus of SELENOM is a flexible extension, but it is
short and unstructured in SELENOF [27]. The cysteine-rich extension at the N-terminus
of SELENOF is known to mediate a high-affinity complex with the folding sensor of the
calnexin cycle-UDP-glucose:glycoprotein glucosyltransferase (UGGT) [34,36]. The function
of this binding interaction is not fully investigated, though it is suggested to be a PDI
co-factor, assisting UGGT in assessing misfolded glycoproteins [27]. The absence of this
cysteine-rich region in SELENOM confirmed that UGGT is not an interacting partner for
SELENOM [34].

4. Elucidating SELENOM Function from Observed Activity

While structurally SELENOM resembles other oxidoreductases, some of the defining
functional features from these oxidoreductases are not shared with SELENOM. Therefore,
experimental studies have been employed to investigate this further. Similar to the struc-
tural comparisons above, functional comparisons with predefined oxidoreductase assays
were investigated.
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4.1. Glutathione Peroxidase Activity

Glutathione peroxidase (GPx), a member of the selenoprotein family, serves as a
critical antioxidant enzyme, and its functionality is intricately linked to its molecular
structure. The enzyme’s catalytic efficiency is largely attributed to a Sec residue at its
active site, which enables GPx to rapidly reduce hydrogen peroxides and lipid peroxides
to water and alcohols, respectively. Peroxides oxidize GPx, which reacts with reduced
glutathione (GSH). This oxidizes glutathione (GSSG), converting GPx back to its active
(reduced) state for reaction with another peroxide. Glutathione reductase subsequently
regenerates GSH from GSSG using NADPH as the reducing agent to complete the cycle
(Figure 2b). This integrated antioxidant system, facilitated by the high reactivity of selenium
and efficient enzyme kinetics, allows for rapid detoxification and maintenance of cellular
redox balance [37]. Furthermore, the enzyme’s multimeric architecture—existing as either a
dimer or tetramer—enhances its kinetics and enables substrate-specific channels that guide
peroxides toward the Sec active site for catalysis [38].

To test for GPx activity, a GPx assay is established, which monitors the conversion
of reduced glutathione (GSH) to oxidized glutathione (GSSG) while reducing hydrogen
peroxide (H2O2) or other peroxides to water or alcohol. This enzymatic reaction cycle
involves GPx and glutathione reductase, which helps convert GSSG back to GSH, thereby
maintaining a pool of available GSH for the GPx reaction. The assay is designed to monitor
the rate of NADPH oxidation to NADP+ as a direct measure of GPx activity. SELENOM
has been shown to have GPx activity in vitro [39,40] and also shown to reduce ROS in
HEK293T cells. Replacing Sec in the CXXU motif with a Cys, significantly increased the
ROS present, presumably decreasing the activity of the enzyme. This shows that efficient
reduction of ROS relies on the presence of Sec, due to the difference in chemistry between
the two amino acids [37].

4.2. Thioredoxin Activity

TXN is a small redox-active protein known for its pivotal role in cellular redox home-
ostasis and other cellular processes, such as DNA synthesis and signal transduction [41]. It
acts through the reduction of disulfide bonds in target proteins, often initiated by reduction
of TXN by other proteins like TXNRD [42]. This catalytic cycle of reducing disulfide bonds
with TXN, TXNRD, and NADPH is known as the TXN system (Figure 2b). Moreover, in the
presence of NADPH and TXNRD, TXN activity can be measured on a target protein such as
insulin. Based on the proposed similarity in disulfide bond formation function of TXN and
SELENOM, this assay was performed on hypothalamic tissues and cells that are SELENOM
deficient. Through this, a decrease in the TXN activity was observed, although levels of
TXN and TXNRD were not affected. Further evidence showed TXN activity in SELENOM-
immunoprecipitated samples suggesting that indeed SELENOM has intrinsic TXN activity
and plays a crucial role in enhancing the TXN system’s antioxidant activity. This highlights
SELENOM’s potential influence on regulating energy balance in hypothalamic tissues and
defending cells from oxidative stress [25].

4.3. Absence of Thioredoxin Reductase Activity

Another oxidoreductase assay that has been established is the TXNRD assay. TXNRD
is a selenoprotein involved in reducing the oxidized form of TXN. This occurs through
the Sec-containing active site located at the C-terminus of the enzyme. Sec is critical
to the enzyme’s efficiency because of its higher nucleophilicity compared to a sulfur-
containing Cys. Thus, the selenium atom in Sec is directly involved in the enzyme’s
catalytic mechanism, contributing to rapid and efficient reduction reactions. In addition
to the Sec requirement for TXNRD activity, the enzyme also relies on its FAD cofactor to
reduce TXN. In TXNRD, FAD is tightly, yet non-covalently, anchored within a specific
segment of the protein, commonly referred to as the FAD-binding domain [43]. This domain
is pivotal for enabling redox reactions by initially accepting electrons from NADPH. FAD
serves as a redox-active cofactor, facilitating the transfer of electrons, pivotal for TXNRD’s
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role in reducing oxidized TXN (Figure 2b). In assays that assess TXNRD activity, a common
approach is to measure the increase in DTNB (5,5′-dithiobis-(2-nitrobenzoic acid) levels,
indicative of the enzyme’s capability to reduce TXN, which acts as an intermediary substrate
in this process [44].

TXNRD activity was also assessed for SELENOM in hypothalamic tissues and cells.
Initial observations found a decrease in TXNRD activity in SELENOM-deficient cells but
not tissues. However, upon further investigation with SELENOM-enriched samples, no
increase in TXNRD activity was observed [25]. This result is not completely surprising
given that structural similarities connect SELENOM to TXN rather than TXNRD. Therefore,
as a parallel to the TXN system, SELENOM may also be part of a catalytic cycle for the
reduction of disulfide bonds in proteins.

5. Elucidating SELENOM Function from Binding Partners
5.1. Thioredoxin Interacting Protein

Thioredoxin interacting protein (TXNIP), also known as thioredoxin-binding protein 2,
is a major mediator in the TXN antioxidant system. TXNIP interacts with the CXXC motif
of TXN, blocking its potential to scavenge ROS. This in turn increases the ROS levels in
the cell and induces apoptosis [45]. TXNIP is also known to be a negative regulator of
mTOR-dependent signaling [46], with implications that it modulates hypothalamic leptin
signaling [47,48]. Micro-array analyses of SELENOM-deficient mHypoE-44 cells and hy-
pothalamic tissue identified a downregulation of TXNIP but no change in expression levels
for TXN and TXNRD [25]. This suggests that the reduction in TXNIP is a compensatory
response adapting to the absence of SELENOM. Furthermore, an observed decrease in
the TXN activity (but not the TXNRD activity) suggests that SELENOM contributes to the
hypothalamic TXN system [25]. The CXXU motif in SELENOM and corresponding TXN
activity implies an interaction with TXNIP similar to TXN. It follows that SELENOM and
TXNIP work together to maintain cellular homeostasis.

This has been observed in neurons where SELENOM reduced neuronal apoptosis in
response to oxidative stress through regulating cytosolic Ca2+ release from the ER [40].
TXNIP, on the other hand, is induced in high-oxidative environments, activating cellular
apoptosis [49]. Independent observations found increased levels of TXNIP in neurodegen-
erative disease [49] and low levels of SELENOM [50,51]. In the absence of SELENOM, ER
stress increases, promoting the expression of TXNIP and neuronal apoptosis and inflam-
mation (Figure 4a) [49,52,53]. In cancers, the opposite has been observed, wherein TXNIP
levels are lowered and SELENOM levels are higher [49]. The high levels of SELENOM
reduce the ROS species, lowering the expression of TXNIP and promoting cellular growth
(Figure 4b).

5.2. Galectin-1

To identify other protein partners that could be involved in neuroprotection, a yeast
two-hybrid system was used to screen a human fetal brain cDNA library. This resulted in
the identification of galectin-1 (Gal-1) as an interactive binding partner of SELENOM [54].
Gal-1 is differentially expressed across many tissues and is suggested to have a wide range
of biological activity both intra- and extracellularly. With respect to the brain, Gal-1 is found
across the central and peripheral nervous systems, involved in nerve development and axon
regeneration. Specifically, oxidized Gal-1 has been shown to promote neurite outgrowth
and enhance axonal regeneration in nerves [55]. The detailed interaction of SELENOM and
Gal-1 is not yet described; however, we know that Sec is not required for binding since the
pull-down assay was performed with a Sec-to-Cys mutation in SELENOM. It is possible,
however, that if SELENOM is involved in the oxidation of Gal-1, the presence of a Sec
would be more efficient in the oxidoreductase activity than with Cys.
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Figure 4. SELENOM and related signaling pathways. (a) Low levels of SELENOM (red) are correlated
with an increase in ROS and may induce ER stress. Elevated ROS and ER stress increase TXNIP
activity, downregulating TXN activity, thereby resulting in the suppression of NF-κB and increase in
ROS. TXNIP suppresses cellular growth and survival by inhibition of PI3K/AKT/mTOR signaling
and promotes the caspase-mediated induction of inflammatory and apoptotic genes by activating the
NLRP3 inflammasome. (b) High levels (green) of SELENOM decrease ROS generation and promote
TXN activity by the suppression of TXNIP. Promotion of transcription factors NF-κB and Stat3 by
leptin signaling and TXN activity as well as SELENOM/Gal-1 activation of PI3K/AKT/mTOR and
Ras/Raf/MEK/ERK signaling results in the transcription of pro-survival, growth, and proliferation
genes. Gal-1 also is secreted in the extracellular space as an anti-inflammatory signaling molecule.
Created with BioRender.com.

5.3. Cytoplasmic Actins

The presence of the CXXU motif in SELENOM, as mentioned above, suggests oxi-
doreductase activity like TXN. TXN activity functions through the formation of disulfide
bonds using its CXXC motif. To search for proteins that interact with the proposed catalytic
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site of SELENOM, purified protein was incubated with cancer cell lysates (HT-1080 and
MCF-7), followed by reduction to release proteins interacting through a disulfide bond.
The multi-step translation path for Sec insertion challenges recombinant selenoprotein pro-
duction [13]. Therefore, the search for interacting proteins was performed with a Sec-to-Cys
mutation in SELENOM. A similar strategy has been used previously to screen for protein
partners with other selenoproteins (SELENOV and SELENOW) [56,57]. This experiment
led to the detection of cytoplasmic actin 1 and 2 (β- and γ-actin), key proteins in adhesion,
migration, polarization, and mitosis of cells [58]. Interaction via a disulfide suggests that
SELENOM is involved in reducing oxidized actin, playing a role in regulating the actin
cytoskeleton. These cellular processes are involved in the metastasis of tumors and further
enhance the explanation for the role of increased SELENOM that is observed in some
cancers [12].

5.4. Osteoblast Colocalization

SELENOM has been shown to have a role in bone development as well as in cartilage
formation. In situ hybridization studies on chickens detected SELENOM mRNA expression
in the condensed mesenchyme, a cluster of cells that later differentiate into bone [59].
Furthermore, in situ hybridization on embryonic day 16.5 mice revealed SELENOM expres-
sion in the vertebrae, maxilla, mandibula, trabecular and periosteum long bones, and the
olfactory epithelium. SELENOM expression was also observed in the teeth and bones of
postnatal day 4 mice [60]. To further the involvement of SELENOM in bone formation, SE-
LENOM expression was found to colocalize with markers for osteoblasts, such as the early
osteoblast marker Bglap [59,60]. Deficiency in selenium leads to a reduction in SELENOM
expression by almost 70% in chicken cartilage tissues [60]. While the evidence suggests
that SELENOM functions in bone development, the understanding of mechanisms and
key players involved in this process is still a mystery. Knowledge of this can bring new
insights into healing fractured or broken bones and to combat developmental or adult
bone disorders.

5.5. Hypothalamic Leptin Signalling

SELENOM is found to be highly expressed in several regions of the brain. In efforts
to identify its role, a global knockout of the SELENOM gene (SelenoM−/−) in mice was
generated. As these mice developed, they were found to have increased body weight,
elevated white adipose tissue levels, and reduced leptin response [24]. Leptin is a hormone
that acts within the hypothalamus to regulate energy balance via signaling pathways
to suppress appetite or increase energy expenditure. When the hypothalamus does not
respond normally to these leptin signals (i.e., leptin resistance), this results in obesity. One
established cause of leptin resistance is continual stress in the ER, which can be caused
by either accumulation of misfolded proteins, Ca2+ depletion, or a combination of the
two [61,62]. The proposed oxidoreductase activity of SELENOM from its CXXU motif
suggests its function in the maturation of proteins through disulfide formation. Therefore,
without SELENOM present in the mouse, misfolded proteins could accumulate, inducing
ER stress. Moreover, in vitro studies found SELENOM to be involved in Ca2+ homeostasis.
Overexpression of SELENOM in HT22 and C8-D1A cell lines reduced changes in cytosolic
Ca2+ levels that would otherwise increase during oxidative stress. The increased basal
levels observed in the knock-down suggest that Ca2+ regulation is impaired preventing
any response to increased Ca2+ levels [40]. This was further corroborated with SELENOM
shRNA-expressing hypothalamic cells (silencing expression of the protein), where Ca2+

levels remained unchanged under leptin treatment [25]. These data propose that SELENOM
facilitates communication between the leptin receptor and ER proteins involved in Ca2+

signaling. A hypothesis based off the mechanism of other selenoproteins [63,64], is that this
is accomplished by indirectly reducing the thiol groups on ER Ca2+ channels or pumps.
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6. SELENOM Implications in Disease

To further interrogate the localization and function of SELENOM, we investigated the
diseases associated with aberrations in normal SELENOM expression. In this section, we
summarize key findings connecting SELENOM to diseases such as Alzheimer’s dementia
(AD), non-alcoholic fatty liver disease (NAFLD), and cancers. These are the most studied
and well-known diseases that SELENOM has been associated with.

6.1. Alzheimer’s Disease

Alzheimer’s dementia (AD) is a neurodegenerative disease that results in progressive
loss of cognition and ultimately dementia. There are three known genes wherein mutations
cause the development of AD: amyloid precursor protein (APP), presenilin-1 (PSEN-1),
and presenilin-2 (PSEN-2) [65]. PSEN-1 and -2 are components of γ-secretase, which is
responsible for the cleavage of APP to produce amyloid-β (Aβ). Mutations in human
PSEN genes alter the cleavage of APP by γ-secretase, resulting in a higher ratio of Aβ

isoform Aβ42 and the development of early onset familial AD (eFAD) [66,67]. eFAD
makes up a small percentage (less than 5%) of AD in humans caused by a single genetic
mutation [68]. Although single gene mutation mouse models of AD typically present with
just one hallmark of AD and lack other pathologies routinely observed in patients with
AD, they still provide a useful tool to study such a complex, typically multigenetic and
multifactorial disorder whose etiology remains largely unclear.

The connection of selenoproteins to AD was found through a specific knockout of Trsp
(the gene for tRNASec) in mouse neurons. This disrupts the ability to express selenoproteins
(including SELENOM) and induces a neurodevelopmental and neurodegenerative pheno-
type affecting the cerebral cortex and hippocampus [50]. The similar yet milder phenotype
found in Gpx4-deficient mice suggests that GPx4 could be one of the major selenoproteins
involved [69]. However, there must be at least one additional selenoprotein participating
in neuroprotection and neural development to reach the extent of the phenotype observed
through Trsp knockout. In a mouse model of AD that expresses human mutant PSEN-2
(N141I), SELENOM expression was found to be downregulated [51]. These data propose
that SELENOM may be one of the missing selenoproteins involved in neurodegenera-
tion. The pathogenicity of AD has been correlated to the secretase-mediated generation
of Aβ42 peptides deposited at neuritic plaques [70]. Selenium has been found to decrease
the γ-secretase activity in mice through activation of the extracellular-signaling-regulated
kinase (ERK) pathway [71]. Overexpression of human SELENOM in addition to selenium
supplementation further decreased the γ-secretase activity, while a decrease in α-secretase
activity and an increase in β-secretase activity was also observed. The combination of
these changes contributed to a decrease in Aβ42 production, lowering the progression of
AD [72]. Being that SELENOM is a selenoprotein, the natural question to ask is whether the
Sec residue is involved in protein function. In a study using HEK293 cells, cotransfection
of Aβ42 with either SELENOM or SELENOM’ (a SELENOM variant in which the Sec is
replaced with Cys) resulted in a significant reduction of Aβ42 aggregates in vitro [73]. This
suggests that SELENOM prevention of Aβ42 aggregates is not influenced by the presence of
Sec. Additionally, cotransfection of HEK293 cells with Aβ42 and an empty vector produces
abnormal mitochondrial localization near Aβ plaques and swollen morphology. Addition
of either SELENOM or SELENOM’ restores mitochondrial localization and morphology
by preventing an increase in intracellular ROS [73]. Therefore, SELENOM may serve a
neuroprotective role through exerting antioxidant activity in the brain.

Another hallmark of AD is the development of neurofibril tangles (NFT) due to the
aggregation of hyperphosphorylated tau. NFTs purified from AD brains are enriched
with hyperphosphorylated tau [74]. It has been shown that this hyperphosphorylation
reduces tau’s ability to bind to microtubules, promoting self-aggregation and formation
of NFTs in the cytoplasm of neurodegenerative disease cells [75–77]. Thus, uncovering
mechanisms that reduce tau phosphorylation is attractive for the purposes of preventing
NFT formation. ERK pathway activation via SELENOM overexpression and selenium
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supplementation led to decreased tau phosphorylation at three sites, Ser404, Ser202, and
Thr231 [72]. Taken together, the data in this section indicate a connection of SELENOM
expression with neuronal processes.

6.2. Cancer

SELENOM has also been studied in the realm of cancer biology with altered SE-
LENOM expression observed in human tumor tissues. In some tumor types such as
lymphoma, breast, fallopian tube, and ovarian cancers, SELENOM expression is decreased,
while in others such as in parotid and uterine tumors, it is increased [1]. Human renal
cell carcinoma (RCC) is a tumor type that has increased levels of SELENOM expression
compared to normal kidney tissue. SELENOM can be used for prognosis with higher
levels correlated to shorter overall patient survival [78]. This is suggested to be due to the
role that SELENOM plays in cell survival; in vitro SELENOM silencing resulted in lower
cell viability, and SELENOM overexpression produced increased cell viability. Moreover,
SELENOM knockdown reduced the migratory capacity of two cell lines (CAKI-1 and 786O)
derived from RCC [78]. For tumor cells to incur metastatic ability, they must achieve
epithelial–mesenchymal transition (EMT). In the absence of SELENOM in CAKI-1 and
786O cells, key EMT-related genes were significantly downregulated, namely, N-cadherin,
vimentin, β-catenin, and matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, the
pathways involved in tumor growth and progression (PI3K/AKT/mTOR signaling) were
also downregulated in the absence of SELENOM [78]. This demonstrates that SELENOM is
positively correlated with the metastatic ability of RCC cells. RCC is one type of cancer that
has been specifically investigated as a prognostic marker; however, other cell carcinomas
require further studies [79].

The mitogen-activated protein kinase (MAPK) pathway is activated by selenium
supplementation and SELENOM overexpression [72]. Specifically, the Raf/MEK/ERK
pathway has been shown to be correlated with multiple cancer types such as in RCC, hepa-
tocellular carcinoma (HCC), non-small cell lung cancer (NSCLC), melanoma, and papillary
thyroid carcinoma [80]. ERK has been shown to promote cell migration, proliferation,
and viability and has been associated with HCC progression. P38 and Jun N-terminal
kinases, members of the two other MAPK pathways, have been associated with HCC
development [81]. Moreover, higher SELENOM expression was discovered in hepatoma
cell lines when compared to normal hepatocytes [82], and its overexpression in HCC liver
tissues warranted its proposal as a putative marker for HCC [83]. Together, these reports
elucidate another correlation between SELENOM and cancer progression.

A study in 2016 investigated the expression of six selenoproteins (SELENOH, SE-
LENOK, SELENOM, SELENOS, SELENOV, and GPx6) in a variety of tumor cell lines: HT
1080 (fibrosarcoma), HepG2 (hepatocellular carcinoma), MCF7 (breast adenocarcinoma),
A-172 (glioblastoma), HeLa (cervical adenocarcinoma), and DU-145 (prostate carcinoma).
All six of the tumor cell lines investigated were found to express SELENOM mRNA at a
relatively consistent level, while SELENOH and SELENOK levels varied more. In some
cell lines they were expressed significantly more than SELENOM (HT-1080, HepG2, and
HeLa), while in others, their expression levels were similar (MCF7, A-172, and DU-145).
SELENOS, SELENOV, and GPx6 on the other hand were not detected in any of these six
tumor cell lines [84]. Given the pro-growth attributes of SELENOM, its dysregulation may
promote tumor growth and metastasis in multiple tissue types and forms of cancer.

6.3. Non-Alcoholic Fatty Liver Disease

The high prevalence of obesity worldwide poses a major risk for the development of
NAFLD, the most common chronic liver disease type [85]. In NAFLD, patient health is
complicated by abnormal lipid metabolism, mitochondrial dysfunction, oxidative stress,
and lipid peroxidation [86]. NAFLD can develop from a high-fat diet (HFD) and is typically
accompanied by an accumulation of lipid in the liver followed by lipotoxicity-induced
hepatocyte inflammation and apoptosis [87]. SELENOM was recently connected to NAFLD
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utilizing an in vivo mouse model of HFD-induced NAFLD and an in vitro model of hep-
atocyte palmitic acid (PA)-mediated lipotoxicity [88]. In the in vivo model, a reduction
in SELENOM mRNA and protein levels were accompanied by significantly higher body
weight and increased levels of hepatic metabolism markers, liver weight, hepatic vacuoliza-
tion, steatosis, nuclear atrophy, and overall liver degeneration including an increase in
liver-fibrosis-related genes. Liver-specific knockout of SELENOM (Liv-SELENOM−/−)
exacerbated these in vivo results. The in vitro model showed similar data, with reduced
SELENOM mRNA and protein levels compared to non-PA-treated hepatocytes. Upon
SELENOM overexpression, liver-fibrosis-related genes were restored [88]. These results
demonstrate that HFD- and PA-mediated lipotoxicity downregulate SELENOM expression,
and deletion of SELENOM worsens the development of HFD-induced NAFLD hepatic
injury. Further laboratory and human studies have yet to be performed to confirm a
connection between SELENOM and its potential to protect against hepatic injury.

Another observation in the NAFLD models was the higher levels of inflammatory
markers such as TNF, interleukin (IL) 6, and IL1b inflammatory cytokines [88]. Chronic
inflammation is a hallmark of NAFLD, which leads to cirrhosis, fibrosis, liver failure, and
potentially hepatocellular carcinoma [89,90]. The connection to SELENOM was inferred
when overexpression in the in vitro model restored expression levels of inflammatory
markers and genes involved in oxidative stress and fatty acid oxidation (FAO) [88]. These
have been shown to play a major role in hepatocyte lipid metabolism and the development
of NAFLD [91]. A HFD results in reduced expression of antioxidant markers, increased lipid
peroxidation, downregulated FAO genes, and increased lipogenic genes, which becomes
further enhanced in Liv-SELENOM−/−. However, as with the inflammatory markers,
overexpression of SELENOM restored all genes to their appropriate levels [88]. Together,
these results suggest that SELENOM is also protective against oxidative stress and promotes
lipid metabolism in hepatocytes. As we have discussed above, SELENOM is involved
in the regulation of ROS, which is suggested to be important for neuroprotection in AD.
Therefore, these antioxidant properties of SELENOM may be important in multiple tissues.

Further results indicated that SELENOM modulates mitochondrial stress by activating
the Parkin-related mitophagy via the AMPKα1–MFN2 pathway. Mitochondrial apoptosis
and mitophagy play central roles in lipotoxicity and in maintaining mitochondria quality
in hepatocytes [92–94]. In HFD-fed mice, levels of pro-apoptotic genes were increased, and
anti-apoptotic genes decreased. These mice also exhibited lower levels of mitophagy-related
genes, which were further altered in HFD-fed Liv-SELENOM−/− mice. These results
paralleled with the in vitro model, with SELENOM overexpression returning the pro- and
anti-apoptotic and mitophagy related genes to their respective levels [88]. Together these
findings allude to the role of SELENOM in promoting hepatocyte survival by regulating
genes involved in apoptosis and inducing mitophagy. This supports the hypothesis that
SELENOM is involved in cell survival.

7. Outlook

Selenoproteins are critical for human function, and of the 25 identified in humans, there
is still much we do not know about their role in facilitating cellular homeostasis. A better
understanding of the mechanism by which Sec facilitates the function of these proteins
will help guide prescription of selenium supplementation for various diseases. In this
review, we have outlined what has been established for SELENOM, a small oxidoreductase
widely expressed throughout the body [22,23]. We first compared structural similarities to
functions. The closest structural relative to SELENOM, SELENOF, was unable to provide
any functional information aside from ruling out an interaction with UGGT. However,
the next closest relative is the more well-known oxidoreductase, TXN. Given that TXN is
involved in disulfide bond formation, oxidoreductase assays were tested with SELENOM
and found to have both TXN and GPx activity, but not TXNRD activity [25,39,40]. This
infers that SELENOM oxidoreductase activity can be activated by redox stress but may also
play a role in a TXN-like catalytic cycle.
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Further investigation into the TXN-like behavior of SELENOM found that SELENOM
might interact with TXNIP through a disulfide or selenyl-sulfide bond, modulating cellular
homeostasis. This correlation has been observed in cancer in which cell growth is promoted
due to high levels of SELENOM and low levels of TXNIP [49]. The opposite is true in AD,
where low levels of SELENOM and high levels of TXNIP promote neuronal apoptosis due to
oxidative damage [50,51]. Other interacting proteins include cellular actin, which has been
specifically identified to form a disulfide (or selenyl-sulfide) bond with SELENOM [58],
and Gal-1, where the binding mechanism has not been identified [54]. An imbalance of
SELENOM can have deleterious effects, but what is more apparent is that SELENOM
strikes a balance with its binding partners such as TXNIP; too much can cause increased
cell growth and cancers, too little can cause neurodegenerative diseases. As details emerge
on the interactive partners of SELENOM, we can begin to connect these interactions to
observed diseases through continued fusion of mouse models, human studies, and in vitro
laboratory experiments.

Combining what is known thus far, we can conclude that SELENOM is heavily in-
volved in cellular homeostasis, through its CXXU motif. With growing technology to enable
selenoprotein overexpression, outstanding questions about SELENOM and the interaction
with its protein partners can be tackled. While SELENOM plays a role in certain cancers,
neither reducing daily selenium intake nor having an excess of it is a straightforward rem-
edy. Both low and high levels of selenium can be detrimental, as selenium is essential for
other selenoproteins in the body that contribute to various physiological processes [1,95].
Furthermore, a direct correlation between dietary selenium levels and selenoprotein-related
cancers has yet to be conclusively established. Continued efforts to unveil the functional
mechanism of this protein, along with the other 24 human selenoproteins, is imperative for
effective treatment of diseases.
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