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Abstract: Extracellular vesicles (EVs) are membrane-bound organelles that are generally released
by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins,
and versatile metabolites. The physiological properties and diverse functions of food-derived EVs
have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a
concise review of the health effects of food-derived EVs is necessary. This review summarizes the
structural stability and uptake pathways of food-derived EVs to target cells and their health benefits,
including antioxidant, anti-inflammatory, and anticarcinogenic effects, gut microbiome modulation,
and intestinal barrier enhancement.
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1. Introduction

Initially, studies on extracellular vesicles (EVs)—cell-derived particles surrounded by
a lipid bilayer—focused on the clearance of waste or undesired substances from cells [1].
Recently, new insights have been shed regarding this naturally occurring liposome as a
mediator of intracellular communication. EVs contain a high level of endosome-derived
metabolites inside their membrane, and diverse molecules on the surface, such as proteins,
enable them to bind to recipient cells [2]. Upon binding, their internal cargo is transferred
to the recipient cells after being taken up through several mechanisms (i.e., endocytosis,
phagocytosis, or membrane fusion). This process allows communication between cells at
short and long distances by transferring significant information [2].

Sporadic observations of EVs have led to remarkable advances in related scientific
fields in recent years [3]. All cellular organisms discharge EVs. In other words, EVs are
secreted from the outer membrane by Gram-negative bacteria and there is a release of
cytoplasmic membrane vesicles by Gram-positive bacteria, referred to as bacterial EVs [4].
EVs are also produced and released from eukaryotic cells in which they are involved
in primary (pathological) physiological processes such as cellular homeostasis, cancer
development, infection propagation, and cardiovascular diseases [5]. Moreover, lemon
tissue, a plant-based food, secretes EVs containing various metabolites, such as RNAs,
citrate, and vitamin C [6]. Thus, EVs are ubiquitous in natural sources such as animals,
plants, and microorganisms.

EVs are classified into two types based on their biogenic processes: exosomes and
ectosomes. Exosomes are endosomal-derived vesicles that are discharged upon the fu-
sion of the plasma membrane and multivesicular bodies (MVBs) (Figure 1). They are
unique endosomes encompassing intraluminal vesicles produced from invagination and
budding of the limiting membrane, or amphisomes, that are hybrid organelles generated
by the merging of autophagosomes and MVBs [7–9]. Ectosomes/microvesicles show a
different pathway in the biogenesis process in that they are plasma membrane-derived
EVs compared to exosomes. However, information on specific molecular markers for
different biogenesis pathways remains insufficient, and only operational terms have been

Antioxidants 2023, 12, 1862. https://doi.org/10.3390/antiox12101862 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12101862
https://doi.org/10.3390/antiox12101862
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://doi.org/10.3390/antiox12101862
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12101862?type=check_update&version=2


Antioxidants 2023, 12, 1862 2 of 16

proposed to discriminate between EV types based on their biophysical or biochemical
characteristics [2].
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Recent compelling evidence has demonstrated that most plant- and animal-based
foods contain diverse types of EVs with different properties, such as size, cargo composi-
tion, origins, and surface molecules (Figure 2). For instance, exosome-like nanoparticles
were isolated from coconut water, and the particle structures were observed using fluores-
cence staining after ultracentrifugation for isolation [10]. Ginger appears to yield a higher
level of EVs compared to other plants, including grapes, carrots, and grapefruit; however,
ginger-derived EVs seem to contain a higher RNA concentration than others [11]. Xiao
et al. [12] obtained food-derived EVs from 11 different plant-based foods, including blue-
berry, coconut, ginger, grapefruit, Hami melon, kiwifruit, orange, pea, pear, soybean, and
tomato, using a differential centrifugation approach. These EVs possess a large quantity
of round or oval vesicles of different sizes (ranging from 100 to 1000 nm) and display a
morphological structure similar to that of EVs from mammalian bodily fluids [13]. They
also reported that these EVs are strongly associated with inflammatory and cancer-related
pathways. Grapefruit-derived EVs have been demonstrated to possess lower RNA levels
than other food-derived EVs and display a decrease in negative charge in the stomach,
but not in the intestinal environment [11]. As explained above, various types of EVs have
been found in animal- and plant-based foods, demonstrating their potential for multiple
health effects.

Accumulating study has shown that animal cell-derived EVs exert excellent pharmaco-
logical activities by entering the body with a regular human diet and transferring miRNAs
and nutrients. Despite the diverse health benefits of the EVs isolated from animal cells
against many diseases (i.e., antioxidant, anti-inflammatory, and anticarcinogenic effects, gut
microbiome modulation, and intestinal barrier enhancement), one of the significant disad-
vantages is the challenge in the production of the appropriate amounts of EVs in vitro and
purifying those EVs from biological fluids. Indeed, the price and their clinical applications
are primarily affected by the production efficiency of EVs per unit and are substantial [14].
EV production from cell cultures could also be risky due to the inherent harmful molecules
inside EVs, such as substances having precancerous properties [15]. Conversely, plant-
derived EVs are abundant in natural sources, enabling the isolation of large volumes and
reducing production costs [16]: recent reports found high levels of EVs in grapes, tomatoes,
and grapefruit by showing 1.76 mg/g, 0.44 mg/g, and 2.21 mg/g, respectively, indicating
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that certain plant-based foods could be utilized for the large-scale production of EVs [17].
Moreover, plant-derived EVs show high biocompatibility, low immunogenic nature, low
toxicity, and a less allergic nature in the human body [18]. To date, research on the isolation
and characterization of microbial-derived EVs is still insufficient compared to animal- and
plant-derived EVs, and thus further research is needed to evaluate their potential value.
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nal cargoes.

This review summarizes the physiological roles of EVs in biological systems (i.e.,
adaptive immunity, inflammation, allergic responses, and tumors) and their distribution in
animal- and plant-based foods. Herein, we focused on the versatile health benefits of food-
derived EVs as a novel type of multi-bioactive owing to their internal cargo. Therefore, this
overview may be helpful for the development of food EV-based nutraceuticals, functional
foods, and unique delivery systems.

2. Physiological Roles of EVs in Animal Cells

The diverse physiological roles of EVs in cellular space are now well demonstrated,
and this section covers the various functions of EVs by focusing on immune responses,
allergic responses, therapeutics, and diagnosis of cancer.

All immune cells participating in inflammation can discharge EVs; therefore, EVs
have diverse functions in the inflammatory process. EVs exhibit a double-edged sword
in sepsis by engaging in both pro-inflammatory and anti-inflammatory activities based
on the types of donor cells and the phases of sepsis [19]. EV-associated cytokines have
pro-inflammatory effects, whereas some EVs in sepsis show anti-inflammatory effects by
downregulating acute-phase signaling and complement factors, suppressing leukocyte
chemotaxis and decreasing serum pro-inflammatory cytokines [19].

EVs play significant roles in lymphocyte development; for instance, thymic epithe-
lial cell-derived EVs are involved in the maturation of single-positive (CD4+ or CD8+)
thymocytes by transporting proteins involved in thymic egress, such as sphingosine-1-
phosphatase lyase 1 (SGPL1), dedicator of cytokinesis protein 2 (DOCK2), p21 protein-
activated kinase 2 (PAK2), and Rho GDP-dissociation inhibitor 1 (GDIR1) [20]. EVs are
also involved in B-cell development in immature primary bone marrow, in which they are
responsible for the exchange of CD24 between B cells in the antibody-mediated engagement
of CD24 [21].

EVs protect humans from microorganisms, such as Gram-positive and Gram-negative
bacteria, fungi, and parasites [22]. Microbially derived EVs transport microorganism-
associated molecular patterns, triggering host innate immune responses via pattern recog-
nition receptors [23]. Interestingly, along with the EVs discharged by microorganisms, EVs
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released by infected cells also contain microbial molecules that may indirectly influence the
immune response [24].

EVs are associated with allergic reactions and act as allergens and modulators. EVs in
the plasma of patients with allergic rhinitis transport a high level of the house dust mite
allergen Der p 1 compared to those in healthy controls, and plasma EVs from these patients
cause a shift toward a T-helper 2 cell response [25]. Recent studies have demonstrated
that interleukin 33, a cytokine that drives TH2 cell differentiation, is released by airway
epithelial cells in association with the surface of exosomes [26]. Moreover, airway epithelial
cell-derived EVs and EV-bound contactin 1 from individuals with asthma have been
recognized as significant inducers of dendritic cell (DC) recruitment and stimulation of
monocyte-derived DCs [27].

In cancer medicine, EVs have been presented as new targets that play a significant
role in advancing cancer therapy and diagnosis. EVs influence tumor progression and
metastasis by profoundly engaging in cell-to-cell communication [28]. Tumor-derived
exosomes communicate with a broad spectrum of cells within the tumor microenvironment
to induce tumor-friendly alterations that increase stromal activation, vascular permeability,
immune escape of tumor cells, and the induction of an angiogenic switch [29]. Moreover,
these tumor-derived exosomes support the establishment of a premetastatic niche, chemore-
sistance to neighboring cells, and the protection of tumor cells from the cytotoxic effects of
immune cells and drugs [29]. Thus, the use of tumor-derived exosomes may contribute to
advancing cancer diagnosis and treatment tools. In addition to the above roles, other physi-
ological functions of EVs in animal cells have been documented in clinical research areas
such as the central nervous system, neurodegenerative diseases, and brain homeostasis, as
well as their broad applications in disease diagnosis and therapeutic perspectives [30].

3. Physiological Roles of EVs in Plant Cells

The essential and significant roles of EVs in the physiology and pathology of diverse
plants have been well demonstrated. In plants, EVs are responsible for transporting genetic
information across cellular spaces. Thus far, the transport of RNA through the rigid
structure of plant cell walls is believed to be complex, and RNA outside cells may be too
unstable to sustain their intact structure; however, findings on EVs in cellular space have
provided new insights into the mobility of critical components, such as RNA, in the cellular
metabolism of plants [31,32]. Notably, RNA mobility is deeply involved in morphogens and
gene regulatory molecules that manage a variety of biological processes, including plant
development, stress responses, nutrient allocation, root nodule symbiosis, and antiviral
defense [31,32].

Regarding the mobility of EVs in cell wall matrices, it is known that the large size of
EV particles restricts their capability of passing through the compact structure of cell wall
matrices consisting of lignin, pectin, and cellulose fibers. However, recent studies have
demonstrated passive diffusion by the dynamics of the cell wall, which could be at the
locations of cell wall genesis or plant infection [33,34]. Moreover, the perturbation of the
cell wall matrix by cell wall-degrading enzymes enables EV mobility [35–37].

Accumulating studies have proven that immune stress promotes EV secretion from
plant cells; for instance, infection of Arabidopsis with P. syringae pv tomato DC3000 bacteria
remarkably enhances EV release in extracellular fluids [35]. In addition, an increase in
immune signaling in response to salicylic acid, a primary plant hormone required to
maintain resistance against diverse pathogens, elevates the level of EVs in Arabidopsis
extracellular fluids [35]. EVs function in the physiology and pathology of animal and plant
cells, indicating their abundance in animal- and plant-based foods.

4. Structural Stability of Food-Derived EVs

The structural stability of food-derived EVs is a crucial factor in determining their
functional maintenance and storage upon isolation and application to different systems.
Various factors, such as isolation methods and sample types, greatly influence their sta-



Antioxidants 2023, 12, 1862 5 of 16

bility [38,39]. Jang et al. [40] demonstrated the significance of isolation and purification
methods. The combination of ultracentrifugation and the ExoQuick approach remarkably
enhanced the colloidal stability of isolated ginseng exosomes by approximately double that
of ultracentrifugation alone.

Furthermore, food-derived EVs isolated from different food sources show discrepan-
cies in their stability during storage. Exosomes keep their structure for up to one year at
−80 ◦C without coagulation after isolation from plant- and animal-based sources [2,41].
Munagala et al. [41] demonstrated that food-derived EVs had high stability at −80 ◦C for
up to six months, while partial losses were observed at 4 ◦C. Exosomes have shown higher
stability compared to other types of EVs, such as ectosomes and apoptotic bodies [42].
Exosomes have a liquid-ordered phase membrane, which leads to higher sensitivity to deter-
gent lysis than other vesicle types [43]. Exosomes in biological fluids such as plasma sustain
their intact structure for up to 5 days at 4 ◦C, while their stability is remarkably expanded
upon storage at −20 ◦C for up to 3 months [44]. Human saliva exosomes maintain their
structure after 28 days of storage at 4 ◦C in the presence of various enzymes [2]. Despite the
high stability of animal cell-derived exosomes at low temperatures, their physicochemical
characteristics are strongly influenced by other factors, such as repeated freeze–thaw cycles,
pressure, and the nature of the solvent. The repetition of freeze–thaw cycles is a crucial
factor in determining the shelf life and structural integrity of exosomes [42].

Food-derived EVs maintain their structure in an ex vivo digestion environment with
only modest alterations in size and charge [45,46]. Furthermore, some orally administered
food-derived EVs survive in the digestive tract and are introduced into the large intestine,
where they suppress gut inflammation or approach liver cells [47]. Similarly, López de Las
Hazas et al. [48] reported that miRNAs protected by bovine milk-derived exosomes showed
higher stability than free miRNAs, as well as enhanced digestive tolerance, retarding the
degradation rate of certain miRNAs in mice. However, food-derived EVs sustain these
functions only when the membrane is intact. Therefore, care must be taken to ensure
that their structures are not destroyed during storage and processing [49]. To date, the
stability of food-derived EVs during storage and food processing has not been extensively
investigated. Additional studies are needed to fill the existing gaps in related knowledge.

5. Absorption and Uptake of Food-Derived EVs

Orally administered food-derived EVs (i.e., ginger, grape, grapefruit, and carrot)
appear to be absorbed via intestinal stem cells and macrophages at a similar rate in a
confocal analysis of mouse intestinal tissues [12]. Although nonspecific uptake is common
in all cell types, the uptake of EVs via specific targeting to recipient cells is the best pathway
for transfer inside the cargo to exert their functions [50,51]. This process is managed by
the molecular composition of the surface of EVs; for example, rabies viral glycoprotein
on the surface of EVs, which specifically binds to the acetylcholine receptor, and enables
the introduction of EVs into the brain [52–54]. The maintenance of tropism between cells
is another mechanism of exosome-targeting specificity, in which the cellular signature
preserved in the released exosomes functions as a recognition motif for absorption by the
same types of recipient cells, as proven in in vitro and in vivo models [55,56].

Various studies have documented the uptake of food-derived EVs in vitro and in vivo.
Zhang et al. [46] reported that gut macrophages and intestinal stem cells are responsible for
the absorption of ginger-derived EVs in the colon. Interestingly, when orally administered
to mice, ginger-derived EVs displayed greater retention in the colon in the starved mouse
model than in the non-starved model, indicating the influence of the food digestion process
(or digested food matrices) on the retention time of ginger-derived EVs in the colon.

In in vivo and in vitro tests, orally administered grape-derived EVs passed through
the mucus barrier of the mouse intestine, followed by transportation to intestinal stem
cells, which encouraged the proliferation of Lgr5+ stem cells through the catenin path-
way [49]. Moreover, Syrah grape-derived EVs can pass through the intestinal tract, leading
to the proliferation of Lgr5+ stem cells [45]. Rani et al. [57] also reported that miRNAs
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encapsulated in milk-derived exosomes not only showed high resistance against various
digestive fluids (i.e., saliva, bile, gastric juice, and pancreatic juice) but also passed through
the intestinal barrier via trans-epithelial transit to enter the blood circulation. Wolf et al. [58]
investigated the transport mechanism of bovine milk-derived exosomes using fluorophore-
labeled bovine milk-derived exosomes in rat small-intestine IEC-6 cells and human colon
carcinoma Caco-2 cells. These results demonstrate that in rat and human intestinal cells,
the absorption of bovine milk-derived exosomes is facilitated via endocytosis and influ-
enced by glycoproteins on the surface of exosomes. They also reported the absorption of
bovine milk-derived exosomes by human macrophages, but did not elucidate the detailed
transport mechanism [59].

Upon reaching recipient cells, the cargo inside the EVs can be released via direct
interaction, fusion with the plasma membrane, or internalization. In the direct interaction
pathway, transmembrane ligands on the surface of EVs interact directly with the receptors
of the recipient cell and immediately produce a downstream signaling cascade to stimulate
the target cell [60]. Food-derived EVs may also release their internal cargo into the cytosol
of recipient cells via fusion with the plasma membrane. Moreover, EVs can transport and
discharge their internal components via internalization pathways (clathrin-mediated endo-
cytosis, caveolin-mediated endocytosis, lipid raft-mediated endocytosis, micropinocytosis,
or phagocytosis). Thus, food-derived EVs may reach the target cells, followed by their
uptake through the pathways described above [61].

6. Health Benefits of Food-Derived EVs

In this section, various health benefits of food-derived EVs are discussed by focusing
on antioxidant activity, anti-inflammatory effect, anticarcinogenic activity, gut microbiome
modulation and intestinal barrier enhancement (Figure 3).

Antioxidants 2023, 12, x FOR PEER REVIEW  7  of  16 
 

 

Figure 3. Various health benefits of food-derived EVs. 

6.1. Antioxidant Activity 

Reactive oxygen species (ROSs) are produced during aerobic respiration and in re-

sponse to cytokines, xenobiotics, and bacterial invasion, and are involved in cell survival 

and proliferation [62]. An imbalance between the antioxidant defense and free radical con-

centration leads to oxidative stress in cells. Notably, the overproduction of ROS may result 

in oxidative damage to essential cell components,  including DNA, proteins, and  lipids, 

further affecting the etiology of diverse diseases, such as heart diseases, neurodegenera-

tive disorders, and diabetes [63]. Evidence has been reported on the antioxidant potential 

of plant-derived EVs as novel antioxidant complexes. 

De Robertis et al. [64] demonstrated the uptake of blueberry-derived EVs in a human 

endothelial cell model  in a dose-dependent manner. The absorbed EVs constrained the 

generation of ROSs, followed by enhanced cell viability. Perut et al. [65]  isolated plant-

derived exosome-like nanovesicles (EPDENs) from strawberry juice containing high lev-

els of anthocyanins, folic acid, flavonols, and vitamin C. They demonstrated their strong 

antioxidant capacity by suppressing oxidative stress in human mesenchymal stromal cells 

(MSCs)  in a dose-dependent manner. Grapefruit and  tomato exosome-like vesicles dis-

play weak antioxidant potential compared to their juice sources in vitro tests, such as rad-

ical scavenging capacities and cell viability assays [66]. Aloe vera peel-derived EVs exhib-

ited high antioxidant potential in superoxide dismutase (SOD) activity and cellular anti-

oxidant activity assays: they remarkably reduced the level of intracellular ROSs in a dose-

dependent manner  in H2O2-treated HaCaT cells  [67]. Moreover, aloe vera peel-derived 

EVs upregulated the mRNA expression of Nrf2, CAT, HO-1, and SOD. 

Exosomes isolated from citrus fruits and berries are highly stable in the gastric tract 

before entering  the small  intestine  [68]. They possess a high  level of vitamin C as  their 

cargo; for instance, there is 7 µM vitamin C in 50 µg/mL of lemon exosomes, leading to 

their potent antioxidant ability by effectively delivering high doses of antioxidants to the 

target cells  [69]. Lemon-derived EVs are one of  the most  investigated citrus-based exo-

somes, which were isolated using a centrifugation approach from lemons (Citrus limon L.). 

They showed antioxidant activity in an MSC model due to the RNAs, citrate, and vitamin 

C preserved inside the lemon-derived EVs. Lemon-derived EVs also significantly enhance 

the survival of mesenchymal stem cells in H2O2-induced oxidation in a concentration-de-

pendent manner by suppressing ROS production [6]. Carrot-derived EVs significantly al-

leviated ROS production in Parkinson’s disease (PD) and myocardial  infarction models 

by effectively suppressing the expression of antioxidant molecules (i.e., Nrf-2, nuclear fac-

Figure 3. Various health benefits of food-derived EVs.

6.1. Antioxidant Activity

Reactive oxygen species (ROSs) are produced during aerobic respiration and in re-
sponse to cytokines, xenobiotics, and bacterial invasion, and are involved in cell survival
and proliferation [62]. An imbalance between the antioxidant defense and free radical con-
centration leads to oxidative stress in cells. Notably, the overproduction of ROS may result
in oxidative damage to essential cell components, including DNA, proteins, and lipids,
further affecting the etiology of diverse diseases, such as heart diseases, neurodegenerative
disorders, and diabetes [63]. Evidence has been reported on the antioxidant potential of
plant-derived EVs as novel antioxidant complexes.
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De Robertis et al. [64] demonstrated the uptake of blueberry-derived EVs in a human
endothelial cell model in a dose-dependent manner. The absorbed EVs constrained the
generation of ROSs, followed by enhanced cell viability. Perut et al. [65] isolated plant-
derived exosome-like nanovesicles (EPDENs) from strawberry juice containing high levels
of anthocyanins, folic acid, flavonols, and vitamin C. They demonstrated their strong
antioxidant capacity by suppressing oxidative stress in human mesenchymal stromal
cells (MSCs) in a dose-dependent manner. Grapefruit and tomato exosome-like vesicles
display weak antioxidant potential compared to their juice sources in vitro tests, such as
radical scavenging capacities and cell viability assays [66]. Aloe vera peel-derived EVs
exhibited high antioxidant potential in superoxide dismutase (SOD) activity and cellular
antioxidant activity assays: they remarkably reduced the level of intracellular ROSs in
a dose-dependent manner in H2O2-treated HaCaT cells [67]. Moreover, aloe vera peel-
derived EVs upregulated the mRNA expression of Nrf2, CAT, HO-1, and SOD.

Exosomes isolated from citrus fruits and berries are highly stable in the gastric tract
before entering the small intestine [68]. They possess a high level of vitamin C as their cargo;
for instance, there is 7 µM vitamin C in 50 µg/mL of lemon exosomes, leading to their
potent antioxidant ability by effectively delivering high doses of antioxidants to the target
cells [69]. Lemon-derived EVs are one of the most investigated citrus-based exosomes,
which were isolated using a centrifugation approach from lemons (Citrus limon L.). They
showed antioxidant activity in an MSC model due to the RNAs, citrate, and vitamin C
preserved inside the lemon-derived EVs. Lemon-derived EVs also significantly enhance
the survival of mesenchymal stem cells in H2O2-induced oxidation in a concentration-
dependent manner by suppressing ROS production [6]. Carrot-derived EVs significantly
alleviated ROS production in Parkinson’s disease (PD) and myocardial infarction models
by effectively suppressing the expression of antioxidant molecules (i.e., Nrf-2, nuclear
factor erythroid 2-related factor 2, NQO-1, and HO-1) [70]. A similar study showed the
antioxidant properties of carrot-derived EVs. They elevated the nuclear translocation
of Nrf2, which is a primary regulator of the heme oxygenase-1 (HO-1) gene engaged in
antioxidative activity, in a RAW 264.7 macrophage model [12]. Increasing evidence has
demonstrated that 6-shogaol stimulates the expression of Nrf2, followed by its contribution
to hepatoprotection [13].

Blueberry-derived EVs attenuated oxidative stress in mouse models fed a high-fat
diet, in which EVs alleviated ROS concentration by interacting with Bcl-2 mitochondrial
protein functionality, which inhibited cell apoptosis in HepG2 cells [71]. Tea leaf-derived
EVs also suppress the production of ROS in RAW 264.7 macrophages due to the high level
of galactose-functionalized proteins on the surface of EVs [72].

6.2. Anti-Inflammatory Effect

Inflammation is an essential bioprocess that responds to external stimuli, including
injury, infection, and irritation, by secreting pro-inflammatory cytokines [73]. However,
despite their crucial roles, the overproduction of pro-inflammatory cytokines, i.e., IL-6, IL-
1b, and tumor necrosis factor alpha (TNF-α), induces severe adult diseases, such as allergy,
arthritis, atherosclerosis, and cancer [74]. Therefore, suppressing the overproduction of
pro-inflammatory cytokines is critical for inhibiting the occurrence of relevant ailments.

Teng et al. [47] demonstrated that ginger-derived EVs are taken up by certain bacterial
species that reside in the intestinal tract of mice and that the miRNAs inside EVs contribute
to anti-inflammatory effects by influencing microbial composition. Notably, mdo-miR-7267-
3p enhanced the regulation of the mRNA expression of the ycNE in the microbiome, leading
to an improvement in the production of indole-3-carboxaldehyde (I3A), which in turn
affected the growth of the gut microbiota and promoted the production of IL-22, a cytokine
closely associated with a decrease in the inflammatory response. Moreover, ginger-derived
EVs induced inflammatory responses by inhibiting the regulation of the expression of
NF-κB, IL-8, TNF-α, and IL-6 in Caco-2 cells [75]. Arntz et al. [76] demonstrated that bovine
milk-derived EVs suppressed miR-30-a, miR-92-a, miR-223, β-lactoglobulin mRNA, and
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β-casein mRNA, which may be absorbed by RAW 264.7, intestinal cells, and splenocytes,
contributing to the retardation of arthritis in murine models.

Ginger-derived EVs elevated the gene expression of both anti-inflammatory cytokines
(i.e., HO-1 and IL-10) and pro-inflammatory cytokines such as IL-6 and TNFα at a much
higher rate compared to other food-derived EVs, showing effectiveness in maintaining gut
homeostasis [12]. Ginger-derived EVs also suppress the levels of lipocalin-2, a biomarker of
gut inflammation, and do not affect cell viability or cause any side effects [12]. Grapefruit-
derived EVs exert anti-inflammatory effects upon absorption by intestinal macrophages by
inhibiting the expression of pro-inflammatory cytokines, including IL-6 and TNF-α [77].
The authors concluded that this effect might be due to naringin and naringenin inside the
grapefruit-derived EVs; however, they argued that further research is required to prove the
contribution of these bioactive compounds to the anti-inflammatory effect [77]. Shiitake
mushroom-derived EVs inhibited the formation of macrophage NLRP3 inflammasome and
pro-inflammatory cytokines such as IL-1β, while six other mushroom-derived EVs tested
did not inhibit the generation of NLRP3, showing discrepancies in anti-inflammatory effects
of EVs depending on the mushroom species [78]. Exosomes obtained from macrophage cell
lines and murine lymphomas have been used to deliver curcumin: exosome encapsulation
significantly improves the anti-inflammatory capacity of curcumin and increases target
specificity toward inflammatory cells [79]. Therefore, food-derived EVs are involved in
inflammatory reactions via diverse pathways.

Exosomes themselves play a key role as mediators of the inflammatory response in
biological systems; therefore, immune cells secrete exosomes along with changed cargo
upon recognizing external stimuli [80]. For instance, RAW 264.7 macrophages discharged
elevated levels of exosomes containing an increased concentration of proteins upon stimu-
lation with lipopolysaccharide endotoxins, which induces the secretion of IL-6 and TNF-α
in macrophages [81]. Moreover, DCs secrete exosomes, leading to alterations in gene
expression in recipient T cells. T cells also respond to foreign stimuli by secreting exosomes
that activate resting T cells [82,83].

6.3. Anticarcinogenic Activity

Anticarcinogenic activity is known to retard the transformation of normal cells, an-
giogenesis, tumor growth, and metastasis. Food-derived EVs can modify gene expression
in cancer cells upon uptake, suppressing cancer-related phenotypes. Recent studies have
demonstrated the anticarcinogenic activity of food-derived EVs isolated from a broad
spectrum of natural sources.

Plant-derived EVs are promising novel anticarcinogenic substances and are considered
promising alternatives for current antitumor treatments; for instance, miRNAs secreted
from food-derived EVs are responsible for the proliferation and apoptosis of tumors [84,85].
Bovine, porcine, and human breast milk-derived EVs possess miR-148a, which leads to
antitumor activities by regulating the expression of genes closely associated with tumor
development and proliferation, including DNMT1, ROCK1, and ERBB3 [86,87]. Samuel
et al. [88] documented that milk-derived EVs rich in miRNAs constrain tumor growth;
however, they may accelerate cancer metastasis in pancreatic and breast cancer mouse
models. Ginger-derived EVs containing 125 miRNAs have been shown to reduce pro-
inflammatory cytokine levels in mouse colitis models [46]. Furthermore, this study provides
detailed insights into EV miRNA payloads in the cross-species regulation of cancers.

Zhang et al. [46] isolated EVs from ginger and converted them into novel nanoparticles
by reassembling their composition. The reassembled nanoparticles efficiently enclosed
doxorubicin (Dox) inside their structure, transferring it into the tumor and inhibiting its
growth. EVs from lemon suppress the proliferation of three types of cancer cells—A549,
SW480, and LAMA84—at a concentration of 20 µg/mL lemon-derived EVs by promoting
the expression of pro-apoptotic genes of tumor cells [89]. The anticancer activity of lemon-
derived EVs has also been demonstrated in vivo, where the introduction of EVs into
the tumor sites of LAMA84-inoculated mice by both intraperitoneal and local injections
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significantly inhibited tumor growth and size [89]. Additionally, Karlsson et al. [90] reported
that lemon-derived EVs improve TNF-related apoptosis, such as ligand (TRAIL)-mediated
apoptosis, which is responsible for the decrease in angiogenic cytokine secretion (e.g.,
vascular endothelial growth factor-α, IL-8, and IL-6). These EVs also target acetyl-CoA
carboxylase α and phosphatidic acid-preferring phospholipase A1, indicating a targetable
deregulation in cancer therapies. Moreover, grape-derived EVs alleviate oral mucositis
during chemoradiation in neck and head cancers (NCT01668849) [91]. Grape-derived
EVs have also been suggested as novel solutions for transporting anticancer agents by
addressing the limitations of synthetic liposomes in terms of bioavailability, safety, and
stability [91].

6.4. Gut Microbiome Modulation and Intestinal Barrier Enhancement

The composition of the gut microbiota is greatly affected by dietary interventions and
is involved in the occurrence of several diseases [92]. Teng et al. [47] reported that plant-
derived EVs could be taken up by the gut microbiome, causing alterations in gut microbiota
profiles and host physiology due to internal components such as RNAs. For instance, the
uptake of ginger-derived EVs enclosing certain microRNAs preferentially occurs in Lacto-
bacillaceae and induces the targeting of specific genes in Lactobacillus rhamnosus. This com-
plicated gene-targeting mechanism increases the expression of indole-3-carboxaldehyde
(I3A), followed by the induction of IL-22 production. In summary, the above evidence
demonstrates that the uptake of food-derived EVs by the gut microbiota may improve
intestinal barrier function and inhibit colitis in mouse models via an IL-22-dependent
mechanism [47].

The introduction of food-derived EVs is closely related to the composition of the gut
microbiota. Plant- and milk-derived EVs containing miRNAs can be absorbed by bacteria
and actively regulate the expression of specific genes that affect microbial growth [92,93].
The miRNAs present in milk-derived exosomes influence gut microbiota profiles; in par-
ticular, they enhance the growth of certain bacteria, including Firmicutes, Lachnospiraceae,
and Tenericutes [94]. Moreover, Tartary buckwheat-derived EVs improve the diversity of
the intestinal microbiota and stimulate target functional genes that affect the physiological
processes of Lactobacillus rhamnosus and Escherichia coli and their growth as well [95].

Meanwhile, intestinal epithelial cells function as a barrier and play a crucial role in
preventing and controlling the entry of antigens and pathogenic toxins into the systemic cir-
culation, as well as allowing the translocation of luminal nutrients, water, and electrolytes
released from the intestinal microbiota and intestinal tissue [96]. Several reports have docu-
mented improvements in intestinal barrier function by food-derived EVs and their cargo.
miRNAs present in plant- and milk-derived EVs can penetrate the gastrointestinal tract
and play critical roles in enhancing the permeability and integrity of the intestinal barrier,
where they engage in multiple pathways, such as intestinal epithelial cell modification, gut
microbiota regulation, and intestinal immune system improvement [97–99]. In addition,
orally administered fruit-derived EVs promote the signaling process of Wnt/β-catenin in
stem cells of the intestinal barrier, leading to improved cell proliferation, which enhances
the homeostasis and integrity of the intestinal wall [12,49]. Zhang et al. [46] documented
that orally administered ginger-derived EVs induced cell proliferation and promoted the
expression of adherent junction proteins (i.e., E-cadherin and desmoglein) by internalizing
the consumed EVs in the colon epithelial cells of mice with colitis. Moreover, broccoli-
derived EVs inhibited colitis by regulating intestinal immune homeostasis by targeting
DCs in a mouse colitis model [100].

Based on the large dataset reported, it is assumed that food-derived EVs may shed
new light on regulating intestinal barrier permeability and the intestinal immune system
and modulating gut microbiota composition.
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6.5. Inhibition of the Effect of COVID-19

EVs isolated from dietary sources have an impact on suppressing the effect of COVID-
19, a virus that—owing to high levels of small RNA—has caused widespread death in the
absence of adequate treatment and the largest global economic crisis [101]. EVs discharged
by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) cells seem to cause
pulmonary inflammation, in which ginger-derived EVs reduce Nsp12 gene expression and
inhibit the damage caused by SARS-CoV-2 in the lungs [102], indicating that the small RNA
enclosed in food-derived EVs could be a potential treatment for COVID-19.

6.6. Suppression of Alcoholic Liver Disease

Food-derived EVs inhibit alcoholic liver disease. Ginger-derived EVs appeared to
shield liver damage from alcohol-induced stimulation in mouse models by activating
NRF2 and enhancing the expression of specific genes relevant to liver detoxification and
antioxidant activity, while reducing the generation of ROSs [13]. Moreover, Lentinus edodes-
derived EVs protect mice from liver injury induced by D-galactosamine/lipopolysaccharide
by restraining the activation of NLRP3 [82]. Accordingly, food-derived EVs can be used to
treat alcoholic liver disease.

6.7. Improvement in the Growth of Probiotics

Some studies have demonstrated the effect of food-derived EVs on the growth of
several probiotics, whereas others have shown a suppression of the growth of harmful
bacteria. Increasing evidence has shown that some food-derived EVs can be absorbed by
bacteria upon co-incubation in appropriate environments [103]. miRNAs inside EVs may
play a crucial role in controlling bacterial growth, i.e., promoting the growth of probiotics
owing to miRNAs in coconut water-derived EVs [101]. EVs isolated from Arabidopsis
thaliana can transfer small RNAs to the site of fungal infection, thereby supporting the
downregulation of fungal genes [101].

6.8. Enhancement in Immune Systems

Food-derived EVs play crucial roles in developing and maintaining the immune
system by delivering immune-related miRNA and proteins, which support immunomod-
ulatory functions. For instance, Matic et al. [104] demonstrated that bovine milk-derived
exosomes improved the proliferation of RAW 264.7 cells, suppressed cisplatin-induced cyto-
toxicity, and controlled the production of proteins associated with the cell cycle. Moreover,
Ascanius et al. [105] reported that milk-derived EVs decreased the expression of inflamma-
tory cytokines and reduced NK-κB activity in LPS-treated RAW 264.7 cells. However, cow
milk-derived EVs did not improve the functions of immune cells [106].

7. Other Bioactivities of Food-Derived EVs

In addition to the bioactivities described above, many studies have demonstrated
other health benefits of food-derived EVs. A recent study documented that Porphyromonas
gingivalis, a gum disease pathogen, appears to selectively uptake ginger-derived EVs via the
interaction between phosphatidic acid on the EVs’ membrane and hemin-binding protein
35 (HBP35) on the exterior of P. gingivalis [103]. Upon uptake of EVs, the cargoes present in
EVs are released into the internal bacteria, which leads to a decrease in their pathogenicity
and potential to attack oral epithelial cells, followed by the prevention of bone loss of
the teeth caused by P. gingivalis [103]. Lemon-derived EVs suppress the mortality of mice
infected with Clostridioides difficile. These EVs enhance the viability of probiotics, such
as Lactobacillus rhamnosus GG and Streptococcus thermophilus ST-21, resulting in reduced
mortality of the infected mice by increasing the secretion of lactic acid in the gut to hinder
the growth of C. difficile [107].

Luo et al. [108] demonstrated the neuroprotective activity of bovine milk-derived exo-
somes containing epicatechin gallate (ECG) along with their average size of 85.15 ± 2.00 nm
against a rotenone (Rot)-induced PD model. This showed that ECG was successfully
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transported into SHSY5Y cells following their neuroprotective effects. Moreover, the im-
munoregulatory actions of milk-derived EVs against the infant immune system have been
explained by the presence of miRNAs in EVs. Xie et al. [109] demonstrated that porcine
milk-derived EVs containing miRNAs confer high stability against LPS-induced intestinal
inflammation and apoptosis to intestinal epithelial cells. In this process, miR-4334 and
miR-219 inside EVs suppressed intestinal inflammation by regulating the TLR4/NF-κB
pathway, while miR-338 repressed apoptosis through p53 pathway regulation and handled
severe damage in intestinal epithelial cells in a TLR4-dependent mechanism [110].

The health benefits of food-derived EVs extend to their potential as new platforms
for nutraceuticals and functional foods. Citrus lemon-derived EVs significantly enhance
collagen synthesis, improve the maintenance of bone matrix structure, and manage bone
health [6]. Food-derived EVs also display wound healing potential: aloe vera-derived
EVs increase the mobility of fibroblasts and keratinocytes to the wound site, proving their
potential as a promising source for skin regeneration therapy [70]. EVs isolated from
wheatgrass juice increase the proliferation and migration of endothelial cells (HUVEC),
dermal fibroblasts (HDF), and epithelial cells (HaCaT), supporting the fact that food-
derived EVs could be an effective natural source for developing wound healing and
cosmetic products [111].

8. Conclusions and Perspectives

Much evidence has been documented regarding the effects of food-derived EVs on
physiological events and their potential applications in the treatment of human diseases,
offering new insights into therapeutic solutions. Promising results from the application
of food-derived EVs, directly or with manipulation, to different diseases such as cancer,
inflammation, and gastrointestinal pathologies suggest a new platform for natural source-
based bioactive compounds. Despite the above findings of extant research, additional
efforts should be made to fill the existing gaps in understanding the properties of food-
derived EVs, such as their stability in the digestive tract and their alteration upon food
processing and storage, before their extensive application in related fields. Moreover,
further studies should focus on understanding the detailed mechanisms behind their
biogenesis, kinetics, and trafficking, as well as their broad applications to therapeutic effects
and promising potential as a novel delivery system.
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