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Abstract: Background: After birth, breast milk (BM) is a known essential source of antioxidants for
infants. We analyzed the non-enzymatic total antioxidant capacity (TAC), oxygen radical absorbance
capacity (ORAC), and glutathione, calcium, transferrin, and total protein levels of human breast
milk before and after Holder pasteurization (HoP). Methods: The collected donor BM samples
were pasteurized with HoP. Results: HoP decreased TAC (−12.6%), ORAC (−12.1%), transferrin
(−98.3%), and total protein (−21.4%) levels; HoP did not influence the glutathione concentration, and
it increased the total calcium (+25.5%) concentration. Mothers who gave birth via Cesarean section
had significantly lower TAC in their BM. TAC and glutathione levels were elevated in the BM of
mothers over the age of 30. BM produced in the summer had higher glutathione and calcium levels
compared to BM produced in the winter. The glutathione concentration in term milk samples was
significantly higher in the first two months of lactation compared to the period between the third and
sixth months. The transferrin level of BM for female infants was significantly higher than the BM
for boys, and mothers with a BMI above 30 had increased transferrin in their samples. Conclusions:
Antioxidant levels in human milk are influenced by numerous factors. Environmental and maternal
factors, the postpartum age at breast milk collection, and Holder pasteurization of the milk influence
the antioxidant intake of the infant.
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1. Introduction

Human breast milk (BM) provides all the necessary macro- and micronutrients and
many of the non-nutritive bioactive molecules needed for an infant’s development, sur-
vival, and well-being [1]. Antioxidants are compounds that help to protect the body
against damage caused by free radicals, which are unstable molecules that harm cells and
contribute to the development of disease. Reactive oxygen species (ROS) contribute to
biological homeostasis and play a significant role in cell signaling in both psychological and
pathophysiological processes, but they also cause molecular or even cell damage, necrosis,
apoptosis, and DNA oxidation [2,3]. Increased oxidative stress is a known causative factor
for mortality, bronchopulmonary dysplasia (BPD), and retinopathy of prematurity (ROP),
especially in very-low-birth-weight infants [4–6]. Total antioxidant capacity (TAC) refers to
the overall antioxidant capacity of a substance, including the combined effects of various
antioxidants. In the context of breast milk, non-enzymatic TAC represents the collective
antioxidant capacity of the antioxidants present in breast milk [7,8]. These antioxidants
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include vitamins (such as vitamin C, vitamin E, and beta-carotene), minerals (such as sele-
nium and zinc), and other bioactive compounds (such as bilirubin) [9]. The non-enzymatic
antioxidants in breast milk protect the infant’s cells from oxidative damage, support the de-
veloping immune system, and support physiological development [6]. The oxygen radical
absorbance capacity (ORAC) assay measures a fluorescent signal that is quenched in the
presence of ROS [10]. BM TAC can be estimated with ORAC, a standardized and validated
method to measure the antioxidant capacity in biological samples in vitro. It assesses the
ability of antioxidants to neutralize free radicals and reduce oxidative stress [8–10]. BM
contains a dynamic and diverse array of anti- and prooxidants, and their interactions affect
the ORAC level [8].

Glutathione is a powerful antioxidant that is naturally present in the human body. It
plays a crucial role in protecting cells from oxidative damage caused by free radicals and
toxins. Glutathione plays a crucial role in supporting the immune system by regulating
immune responses, thereby enhancing the function of immune cells. In breastfed infants,
glutathione in breast milk may contribute to their ability to handle and eliminate certain
toxins more effectively [11,12].

Transferrin is a protein that plays a vital role in iron transport and absorption [13].
While transferrin is primarily found in the blood, it is also present in small amounts in
breast milk [14]. Transferrin in breast milk helps facilitate the absorption and utilization of
iron by the infant. It is necessary for the production of red blood cells and for the proper
functioning of various enzymes and metabolic processes. Once absorbed, iron is utilized for
various physiological processes, including the production of hemoglobin and the support
of overall growth and development. Iron is an integral component of many proteins and
enzymes most relevant in our context of peroxidase and catalase [15]. Iron concentrations
in human milk are low (0.2–0.4 mg/L), yet the iron in milk is highly bioavailable [16].

The calcium concentration in breast milk does not change with the stage of lactation.
A previous review and metanalysis reported no significant differences in milk calcium
concentration between lactation stages, adolescent and adult mothers, preterm and term
infants, exclusive and mixed breastfeeding, with or without calcium supplementation,
between nutritional statuses, country income categories, continents, and measurement
methods in calcium concentration [17].

Breast milk is important for premature and mature infants as it provides the nutri-
ents and immune-boosting factors needed for their development and helps to reduce
the risk of complications [18]. Antioxidants in BM directly influence the development of
the gastrointestinal tract and, through absorption, impact organ maturation and infant
development [2,6,7]. Since their intrauterine development is disrupted due to preterm
birth, preterm infants are predisposed to oxidative stress, and they need certain maternal
protective factors. After birth, BM is the exclusive source of these maternal protective
compounds. When own mother’s milk is not available, donor milk is considered the best
feeding alternative.

2. Materials and Methods

In this study, registered and approved donor mothers of the Breast Milk Collection
Center (BMCC) (Unified Health Institution at Pécs, Hungary) were recruited, who, follow-
ing the center’s protocol, donated freshly pumped milk (n = 122). Our study was conducted
with the approval of the Regional and Local Research Ethics Committee of the University
of Pécs, Pécs, Hungary (PTE KK 7072-2018). Waivers for participant consent were obtained.
For analysis, 3 mL was poured and stored separately at −80 ◦C until laboratory measure-
ments. The protocol of the BMCC was followed during our study. Our aim was to examine
the effect of HoP on donor milk samples. Pool sizes were variable from 4 to 11 samples; we
examined 14 pools. Figure 1. shows the experimental design (Figure 1.)
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Figure 1. Experimental design of our study.

The samples were analyzed first individually and after they were pooled and Holder
pasteurized (30 min at 62.5 ◦C) in the laboratory of the Unified Health Institution. We took
five samples for later analyses; three samples were used in the present experiment. All
samples from the pooled and Holder pasteurized donor milk were stored at −80 ◦C until
laboratory measurements were taken. First, we sonicated the BM samples and centrifuged
them at 15,000× g for 15 min. The skimmed milk was transferred for analysis according to
the previously described preparation methods [19,20]. For the measurement of glutathione,
every sample was analyzed, while the other factors were detected in the first 6 pools.

For TAC determination, two different assays were used: enhanced chemiluminescence
(ECL) and ORAC. In the ECL assay, a fully validated luminol-peroxidase-4-iodophenol-
hydrogen peroxide-based technique was applied [10]. In all analyses, first 20 µL of
blank/standard/sample and then 270 µL of horseradish peroxidase-ECL reagent were
pipetted into 96-well white optical plates (Optiplates, Per-Form Hungaria Ltd., Budapest,
Hungary). Then, 20 µL of hydrogen peroxide solution was injected into the wells by a
Biotek Synergy HT plate reader (Agilent, Santa Clara, CA, USA) and the developing lumi-
nescence signals were monitored kinetically for 10 min. Measurements were carried out in
duplicate. A standard curve for Trolox calibrators was established by using the area under
the curve (AUC) of the luminescence signals, and the TAC of the samples was calculated
from the equation of the standard curve. The TAC values of the samples were given as
Trolox equivalent in µmol/L or mmol/L.

For the ORAC technique, 25 µL of blank/standard/sample was mixed with 150 µL
Na2- fluorescein in a black optical plate (Optiplates), and 25 µL of AAPH oxidant
(2,2′-azo-bis (2-amidinopropane) dihydrochloride, Merck, Darmstadt, Germany) was in-
jected into the wells by the Biotek Synergy HT plate reader. Kinetic measurement of
fluorescence quenching was performed at 490/520 nm wavelengths for 80 min [10]. For
the calculation, the AUC values obtained for the blanks/standards/samples were used,
and the TAC was calculated as described for the ECL assay. The BM samples were diluted
20-fold with tri-distilled water, and measurements were carried out in duplicate. The TAC,
ORAC, calcium, transferrin, and total protein concentration were detected in 59 breast milk
samples at the fully accredited Department of Laboratory Medicine, University of Pécs.

The total glutathione level was detected with a colorimetric detection kit (Ther-
moFisher Scientific, Frederick, MD, USA) based on the manufacturer’s instructions. Next,
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50 µL standards or samples were added to the wells. After additional steps, the absorbance
was read at 405 nm, and the concentrations were expressed in mM. The total glutathione
level was measured in 122 samples.

Calcium, transferrin, and total protein levels were measured using a fully automatized
Cobas c analyzer system (Roche Diagnostics, Mannheim, Germany). The lower limit of
detection for calcium was 0.20 mmol/L, for transferrin, it was 1.5 mg/L, and for total
protein, it was 40 mg/L.

To test the data normality, Shapiro–Wilk tests were performed with GraphPad (La Jolla,
CA, USA). Paired t-tests or t-tests were used for further analysis. The repeated measures
one-way ANOVA test with the post hoc Dunnett’s test was applied to compare the effect of
Holder pasteurization. Differences were considered statistically significant if the p-values
were <0.05. The study was powered to detect moderate effect sizes (Cohen’s d = 0.6).
The results are presented as the mean ± SEM. Maternal age and body mass index (BMI),
infant gender, seasonal differences, and duration of lactation at the time of sampling were
also analyzed.

3. Results

For the measurement of TAC, ORAC, transferrin, calcium, and total protein, we an-
alyzed 59 BM samples. The mean maternal age was 32.2 ± 0.6 years, the mean BMI
was 25.2 ± 0.5, and the mean infant gestational age was 38.3 ± 0.4 weeks. In total,
25 BM samples were donated by mothers who had undergone a Cesarean section (CS), and
34 samples were collected after spontaneous delivery. Female infants were delivered by
27 mothers, and 32 mothers gave birth to male infants.

The total glutathione level was measured in 122 BM samples. The average maternal
age of the donors for these samples was 32.8 ± 0.4 years, the average maternal BMI was
26.4 ± 0.6, and the average gestational age of the newborns was 38.9 ± 0.2 weeks. In
this study, there were 52 samples donated after CS, while after spontaneous delivery,
70 samples were donated. Out of 122 samples, 57 were produced for female infants and
65 were produced for males.

After HoP, their glutathione levels did not change; however, their TAC, ORAC, total
protein, and transferrin levels were significantly lower after HoP. Their calcium concentra-
tion was higher after HoP (Table 1).

Table 1. The effect of Holder pasteurization (HoP) on different factors.

Raw HoP p-Value

Glutathione (mM) (n = 112) 0.11 ± 0.02 0.12 ± 0.10 0.575
TAC-ECL (µM) (n = 59) 127.31 ± 6.24 111.27 ± 5.26 0.028

TAC-ORAC (µM) (n = 59) 3602.34 ± 104.13 3163.13 ± 787.94 0.001
Calcium (mM) (n = 59)) 5.08 ± 0.15 6.38 ± 0.10 <0.0001

Total protein (g/L) (n = 59) 4.91 ± 0.16 3.86 ± 0.11 <0.0001
Transferrin (mg/L) (n = 59) 80.82 ± 10.85 1.34 ± 0.09 <0.0001

HoP: Holder pasteurization; TAC: total antioxidant capacity; ORAC: oxygen radical absorbance capacity.

The transferrin concentration was higher in the BM produced for female infants
than in the BM produced for male infants. The glutathione, TAC, ORAC, calcium, and
protein levels were similar between the two groups. Mothers delivering spontaneously had
significantly higher TAC concentrations than mothers giving birth by CS; otherwise, the
mode of delivery did not influence the other antioxidants in breast milk. Mothers whose
BMI was above 30 after delivery and during breastfeeding had higher BM transferrin
content than mothers with a BMI under 30. Maternal BMI had no impact on glutathione,
TAC, ORAC, calcium, or protein levels. Maternal age did not influence ORAC, calcium,
protein, and transferrin content, but the total glutathione and TAC concentrations were
significantly higher in the BM of mothers above the age of 30 (Table 2).
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Table 2. Antioxidants and total protein in human milk.

Glutathione mM TAC
µM

ORAC
µM

Calcium
mM

Total Protein
g/L

Transferrin
mg/L

Infant gender Girl 0.08 ± 0.01 (n = 57) 134.06 ± 8.08 (n = 27) 3752.71 ± 122.34 (n = 27) 5.21 ± 0.21 (n = 27) 5.02 ± 0.22 (n = 27) 108.39 ± 16.62 (n = 27)
Boy 0.15 ± 0.05 (n = 65) 114.82 ± 9.83 (n = 32) 3406.66 ± 192.41 (n = 32) 4.78 ± 0.22 (n = 32) 4.74 ± 0.27 (n = 32) 44.22 ± 8.54 * (n = 32)

Delivery Vaginal delivery 0.13 ± 0.04
(n = 70) 142.07 ± 7.96 (n = 25) 3733.45 ± 149.79 (n = 25) 5.05 ± 0.25 (n = 25) 5.07 ± 0.25 (n = 25) 69.1 ± 16.5 (n = 25)

C-section 0.08 ± 0.01 (n = 52) 109.94 ± 8.75 *
(n = 34) 3507.41 ± 153.97 (n = 34) 5.02 ± 0.17 (n = 34) 4.77 ± 0.24 (n = 34) 94.16 ± 15.68 (n = 34)

Maternal BMI <30 0.12 ± 0.03 (n = 90) 130.21 ± 7.07 (n = 41) 3623.63 ± 132.36 (n = 41) 4.99 ± 0.21 (n = 41) 4.84 ± 0.23 (n = 41) 52.8 ± 7.94 (n = 41)
>30 0.07 ± 0.01

(n = 32) 105.97 ± 13.83 (n = 18) 3605.48 ± 192.65 (n = 18) 5.12 ± 0.24 (n = 18) 5.06 ± 0.24 (n = 18) 139.87 ± 24.30 * (n = 18)

Maternal age <30 0.06 ± 0.01 (n = 51) 99.61 ± 9.36 (n = 34) 3690.39 ± 193.75 (n = 34) 5.15 ± 0.28 (n = 34) 4.65 ± 0.25 (n = 34) 81.63 ± 20.04 (n = 34)
>30 0.11 ± 0.01 * (n = 71) 134.07 ± 7.56 * (n = 25) 3592.23 ± 134.22 (n = 25) 4.99 ± 0.19 (n = 25) 5.01 ± 0.22 (n = 25) 82.76 ± 13.93 (n = 25)

* p < 0.05. TAC: total antioxidant capacity; ORAC: oxygen radical absorbance capacity; BMI: body mass index; C-section: Cesarean section.
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The breast milk samples collected during the winter (n = 28) had significantly lower
glutathione levels than the samples collected during the summer (n = 31). The calcium con-
centration was significantly lower in samples collected during the summer (winter n = 17;
summer n = 21) (Figure 2).
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Figure 2. Glutathione (winter n = 28; summer n = 31) and calcium (winter n = 17; summer n = 21)
levels in BM samples collected during the winter and summer. In the case of glutathione, * p = 0.0167;
in the case of calcium, * p = 0.0128.

In the term breast milk samples, the glutathione concentration was significantly higher
during the first two months (n = 51) of lactation compared to the period between the third
and sixth months (n = 71) of breastfeeding (Figure 3).
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4. Discussion

Breastfeeding is a critical aspect of postnatal adaptation; it plays a crucial role in
providing optimal nutrition and promoting bonding and emotional attachment between
the mother and child. Breast milk is highly nutritious and provides numerous benefits
for the infant’s growth and development. It contains a balance of essential nutrients,
antibodies, enzymes, and other bioactive compounds that support the immune system,
digestive health, and overall well-being. Breastfeeding is associated with a lower incidence
of a variety of oxidative stress-related illnesses in premature infants [21]. Also, it is known
to be a rich source of glutathione, which contributes to the antioxidant protection provided
to infants during breastfeeding. Numerous studies have proven the differences between
own mother’s milk, donor milk, and infant formula [22,23]. All of them reported poorer
bioactive factor, hormone, and immunoglobulin content in formula compared to donor milk
or own mother’s milk. Poorer growth and developmental outcomes have been reported
in infants receiving pasteurized donor milk compared to infants receiving unpasteurized
human milk [24,25]. The value of antioxidant richness in BM is conceivably important to
protect nursing infants against oxidative stress [26,27].

Preterm infants are exposed to a wide range of stressors, e.g., blood tests, infections,
phototherapy, oxygen supplementation, parenteral nutrition, and therapeutic interventions
during their care. Although ROS contribute to homeostasis, they also participate in cell
signaling both in physiological and pathophysiological processes, and ROS can cause
molecular and cell damage [2,3]. An investigation found that the phototherapy of jaundiced
neonates resulted in increased oxidative stress [28]. As an explanation for the decrease in
antioxidant capacity of BM with HoP, thermally induced denaturation is the most likely
mechanism. HoP is known to change the composition of BM and decrease the concentration
of different hormones and compounds [1,19,20,22]. Other preservation techniques, like
refrigeration, also change the composition of BM [20]. A previous study showed that
the antioxidant activity of BM decreased significantly from the 21st day of cold storage
(at 4 ◦C and −20 ◦C) [29]. A recent meta-analysis of the effect of HoP on the antioxidant
properties of human milk showed inconclusive results regarding the effect of pasteurization
on the TAC of BM [7]. Some studies proved a reduction in TAC after HoP compared with
untreated BM, while others detected no influence of Holder pasteurization [8].

Glutathione is a known antioxidant in human milk. It deactivates oxygen-derived free
radicals and eliminates toxins, carcinogens, and malonic dialdehyde [30]. Silvestre et al.
investigated the effects of HoP, and in contrast to our results, they found that HoP re-
duced glutathione concentrations in human milk by 46%. They investigated the effect of
high-temperature, short-time pasteurization and described no concentration changes in
glutathione levels after the procedure [31]. The antioxidant levels of colostrum, mature
milk, and transitional milk are different [32]. Our results showed that the glutathione
content of BM decreases with time. The ability of the neonatal intestine to mitigate radical
accumulation plays a role in its capacity to overcome oxidative stress. Lipid peroxida-
tion is known to preferentially target polyunsaturated fatty acids, and oxidative injury of
necrotizing enterocolitis leads to deregulation of the glutathione defense system [11].

BM’s non-enzymatic TAC is believed to play a significant role in protecting the in-
fant from oxidative stress and supporting its overall health and development. TAC is a
general measure to indicate the level of free radicals scavenged by a test solution that is
commonly used to assess the antioxidant status of human milk samples. TAC provides a
general assessment of the antioxidant capacity of a given bioactive component, while the
quantification of nutrient antioxidants, specific antioxidant enzymes, conjugated dienes, or
lipoprotein oxidation provides more specific information [33–35]. With age, BM melatonin
concentration was shown to be decreased [36]. No previous data were found about TAC
or total glutathione levels in BM related to maternal age. Our present results suggest a
correlation between maternal age and TAC and glutathione concentration, which might be a
compensatory mechanism of age-related processes. However, it is important to understand
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that the precise impact and significance of non-enzymatic TAC in BM on infant health are
still areas of ongoing research.

In a previous study, the BM of mothers with gestational diabetes had similar ORAC
levels compared to non-diabetic mothers. BM ORAC was positively correlated with BM
ascorbic acid in mothers with gestational diabetes [8]. Colostrum showed significantly
higher ORAC values compared with mature milk [32].

The calcium concentrations detected in our study were similar to previous
results [37,38]. The HoP calcium concentration was found to be elevated; presumably,
the heat treatment unbound the calcium in the BM. This phenomenon was observed with
Il-7 [39] and TSH [20] in previous studies. No differences in calcium concentration were
detected based on gestational age [40]. A review found that conditions like familial hy-
pophosphatemia and hyperparathyroidism affect BM calcium concentrations, but other
environmental parameters did not influence calcium concentration [41]. Minerals, like
calcium in milk, are particularly important for infant skeletal development and may reflect
maternal characteristics [42]. In a previous study on children, compared to winter, children
in the spring and summer had significantly lower plasma calcium concentrations [43]. The
absorption of calcium is controlled by vitamin D from the small intestine [44]. Theoretically,
the serum calcium concentration in the summer is higher than in the winter; we did not
find dietary differences among the food consumption of the involved women. Seasonal
diversity in T cell activity may also be associated with seasonal changes in blood calcium
levels [45]. These results suggest that other factors may influence the calcium content of BM.
The total protein level of BM was not affected by HoP in our present study, in agreement
with previous reports [23,46,47].

A limited amount of information is available on the presence of transferrin in breast
milk [48,49]. The present work shows that HoP vigorously decreases the concentration of
transferrin in BM. BM produced for female infants contains higher levels of transferrin than
milk produced for boys. An earlier study reported that infant girls had higher hemoglobin
and serum ferritin concentrations than boys [50]. The serum ferritin level was found to be
elevated in individuals with increased BMI values [51], while in our study, the transferrin
level was higher in the BM of mothers with a BMI above 30.

It is important to note that the content of antioxidants and other components in human
milk may vary depending on various factors such as the mother’s diet, overall health,
stage of lactation, and mode of delivery. Additionally, the pasteurization process, such
as HoP, is known to affect the levels of certain components in human milk. However,
despite any potential changes, human milk remains an excellent source of nutrition and
immune protection for infants [52,53]. Earlier findings shed light on how the hormonal
components of milk have sex-specific effects on offspring growth during early postnatal
life with varying temporal windows of sensitivity [54,55]. The total dietary antioxidant
capacity of patients’ diets significantly depended on the season and was highest in the
summer [56]. It is known that maternal diet influences the composition of BM [51,52,57,58]
and may result in epigenetic changes [59]. Our results demonstrate that the antioxidant
content of BM is influenced by the seasons and may reflect maternal diet as well.

The antioxidant properties of human milk limit the consequences of excessive oxida-
tive damage. After birth, especially in premature infants, the gastrointestinal tract is under
development, which leads to incomplete or slow protein digestion [60], promoting the
absorption and bioavailability of BM components. Previous research has demonstrated
that the addition of antioxidants to infant formula increases infant resistance to oxidative
stress [27,61]. Continuous ROS exposure can induce metabolic changes such as hyper-
glycemia in extremely-low-birth-weight infants [62].

Hormone levels (e.g., leptin) [63] and supplementation (e.g., thyroxin) [64] show a
connection with developmental outcomes in early childhood, suggesting that continuous
monitoring of antioxidant levels or supplementation during intensive care should be inves-
tigated in clinical trials. Anti- and prooxidants control a sensitive balance in newborns via
multiple factors, such as immunoglobulins, short-chain fatty acids, and cytokines (which
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can be found in BM), and, through absorption and local effects, influence their reaction to
intensive care treatment, survival, and development [65–68]. The impact of oxidative stress
and the balance or imbalance of pro- and antioxidants control intrauterine development
and postnatal life [69–71]. Obstetrical complications, like the premature rupture of mem-
branes [72] or preeclampsia [73], also intensify OS-induced processes. During postnatal
adaptation oxidative stress may have an impact on adult diseases affecting the cardiovas-
cular or endocrine system [74,75]. OS, similar to inflammation, promotes aging-related
pathologies, endothelial dysfunction, and adverse pregnancy outcomes [76]. Maternal
nutrition influences the nutritional programming of the offspring; in later life, cardio-
vascular diseases, metabolic syndrome, diabetes, insulin resistance, glucose intolerance,
fertility issues [77,78], and hypertension may develop in adulthood [79]. Dysfunction of hy-
pothalamic appetite control results in obesity through increased lipogenesis [80]. Preterm
infants with a higher total antioxidant status are more likely to be protected from free
radicals, blocking ROS accumulation and OS [81]. BM is a known source of antioxidant
capacity, providing and supporting breastfed preterm neonates [82]. Antioxidant treatment
has become a potential and predictably essential therapeutic strategy in the treatment of
preterm newborns with bronchopulmonary dysplasia [83,84] or necrotizing enterocoli-
tis [85,86]. The prevention of chronic morbidities of extremely premature newborns by
different therapeutic options and adjuvant perinatal strategies are already highlighted
in clinical practice [87–89]; therefore, supplementing antioxidants during intensive care
should be investigated.

Our study has limitations. We only examined the chosen antioxidants in BM samples
before and after HoP but revealed higher transferrin levels in the BM produced for female
infants and in the BM of mothers with BMIs of 30 or above. Our results suggest that some
antioxidants are present in higher concentrations in BM in the summer than in the winter.
Elevated maternal age was associated with higher glutathione and TAC levels in BM, and
after vaginal delivery, glutathione was present in higher concentrations in BM than after
Cesarean section. Our results have augmented our knowledge about the effects of HoP:
glutathione concentration was not impacted by HoP, but TAC, ORAC, and transferrin levels
were reduced.

5. Conclusions

Breast milk is considered the most optimal feeding option for an infant, with it having
greater benefits in the case of preterm birth [90–93]. Breastfeeding influences the rate of OS
bias postnatal adaptation, through impacting insulin sensitivity, choline and prostaglandin
metabolism, and lipid profile during early infancy [94–96]. Although HoP modifies the
antioxidant content of BM, donor milk is still considered the most suitable alternative
to a mother’s own BM. HoP reduced the TAC, ORAC, and transferrin concentration in
BM. The clinical significance of the changes in BM antioxidants with HoP is unknown;
further research is necessary to improve our knowledge. Transferrin levels are higher in BM
produced for female infants, the TAC concentration was found to be elevated in BM after
vaginal delivery, and an elevated maternal BMI resulted in higher transferrin levels. Our
present results demonstrate that the antioxidant intake of the infant is influenced by the
gender of the infant and maternal and environmental factors. Knowing that these antioxi-
dant compounds actively influence physiological processes, antioxidant supplementation
and guidance of human milk banks in testing different pasteurization processes in order to
maximize the preservation of antioxidant properties are highly recommended.
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