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Abstract: Reprogrammed metabolism is regarded as a hallmark of cancer and offers a selective
advantage to tumor cells during carcinogenesis. The redox equilibrium is necessary for growth, spread
and the antioxidant pathways are boosted following Reactive Oxygen Species (ROS) production to
prevent cell damage in tumor cells. Human herpesvirus 8 (HHV-8), the etiologic agent of Kaposi
sarcoma KS and primary effusion lymphoma (PEL), is an oncogenic virus that disrupts cell survival-
related molecular signaling pathways leading to immune host evasion, cells growths, angiogenesis
and inflammatory tumor-environment. We recently reported that primaquine diphosphate causes
cell death by apoptosis in HHV-8 infected PEL cell lines in vivo and exhibits therapeutic anti-tumor
activity in mice models and advanced KS. Our findings also suggest that the primaquine-induced
apoptosis in PEL cells is mostly influenced by ROS production and targeting the redox balance
could be a new approach to treat HHV-8 related diseases. In this review, we summarized the
knowledge about the influence of ROS in cancer development; more specifically, the proof of evidence
from our work and from the literature that redox pathways are important for the development of
HHV-8 pathologies.

Keywords: HHV-8; Kaposi sarcoma; primary effusion lymphoma; metabolism; oxidoreduction
disruption; oncogenesis

1. Introduction

Although the first reports of the metabolic changes that are typical of tumors date back
over a century, the study of cancer metabolism has recently attracted new attention. Studies
on cancer cell metabolism have increased our knowledge of the processes and practical
effects of tumor-associated metabolic abnormalities at different phases of carcinogenesis
with the use of novel biochemical and molecular biology methods. It has become clear that
tumorigenesis-related metabolic changes affect all phases of cell-metabolite interaction,
including (i) affecting metabolite influx by enhancing the capacity to obtain the necessary
nutrients, (ii) determining how the nutrients are preferentially assigned to metabolic
pathways that contribute to cellular tumorigenic properties, and (iii) exerting long-lasting
effects on cellular fate, including altera.

In this review, we summarized the knowledge about the redox homeostasis and
its implication in cells cancer. More specifically, we focused our work on the neoplasia
associated with HHV-8 and the interest of redox balance as a potential therapeutic target
for the management of these diseases.
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2. Reprogrammed Metabolism and Cancer Cell Biology

By around 50 years, one of the most crucial fields of cancer biology study is cancer
metabolism. The field is founded on the idea that cancer cells’ metabolic processes are
different from those of normal cells, and that these differences help cancer cells develop
and maintain their malignant characteristics. Reprogrammed metabolism is regarded as a
hallmark of cancer since several changed metabolic characteristics are seen relatively often
across many different kinds of cancer cells [1–3]. One of the main issues guiding research
in the subject is how exactly metabolism is reprogrammed in cancer cells, what functions
or malignant characteristics are permitted by these activities, and how to take advantage of
metabolic modifications for therapeutic benefit.

Reprogrammed activities enhance cellular fitness to offer a selective advantage during
carcinogenesis. The majority of the traditional examples of reprogramming activity either
help cells survive under adverse circumstances or let cells to thrive and proliferate at
abnormally high rates.

According to logic, if changed bioenergetics, increased biosynthesis, and redox im-
balance are advantageous to the malignant cell, then some of these factors may be good
therapeutic targets.

Numerous cases where suppression of an increased metabolic activity leads in re-
duced development of experimental tumors corroborate this interpretation of cancer
metabolism [4,5]. In certain instances, the unique metabolic vulnerabilities of cancer
cells have been translated into successful treatments for cancer in people. The enzyme
asparaginase, which changes the amino acid asparagine into aspartic acid and ammonia, is
a crucial part of acute lymphoblastic leukemia (ALL) therapy [6]. ALL cells need a steady
supply of asparagine from the plasma because to their high rates of protein synthesis and
inadequate capacity to generate asparagine de novo. By giving asparaginase throughout
the body, this supply is largely removed. Ultimately, determining the stage of tumor
development at which each route benefits the cancer cell will be necessary for metabolic
treatment to be effective. Early in carcinogenesis, when the developing tumor starts to
suffer nutritional restrictions, several activities become crucial [7]. In other circumstances,
alterations to pathways could be unnecessary for primary tumors but necessary for metas-
tasis [8,9]. It will be crucial to specify their context-specific functions in physiologically
correct models of tumor start and development since new treatment targets are proposed
from straightforward experimental models like cultured cells.

3. Human Herpesvirus 8 Neoplasia Is a Cell Proliferation-Causing Virus That Disrupts
Cell Survival-Related Molecular Signaling Pathways

Several human malignancies, including Kaposi’s sarcoma (KS), multicentric Castle-
man’s disease (MCD), and primary effusion lymphoma (PEL), are caused by the oncogenic
Kaposi’s sarcoma-associated herpesvirus (KSHV, also known as Human Herpesvirus 8,
HHV-8). These HHV-8-associated disorders, which are all considered orphan diseases,
pose significant clinical issues that are challenging to treat and have limited available
treatment choices. Infection with the human immunodeficiency virus (HIV), as well as
other illnesses and/or therapies related to immunological deficiencies, are usually linked to
these disorders. Although combination antiretroviral treatment (cART) has been effective in
improving HIV-infected patients’ outcomes, its advantages are relatively limited in patients
with PEL and MCD, and KS continues to be the most frequent malignancy in HIV-infected
people [10,11]. Combination cytotoxic chemotherapies are a widely used treatment for
systemic KS and PEL [12]. However, systemic chemotherapy’s toxicity interacts with that of
immune suppression or antiretroviral therapy, and there are alternative effective treatments
available, which further reduces the effectiveness of the treatment [13,14]. Thus, there is
a medical need for efficient and less harmful treatments that focus on the HHV-8 virus,
infected cells, or important cellular pathways. The likelihood of success with antiviral
anti-herpesvirus treatment is minimal given the low degree of virus lytic infection in PEL
and KS patients [10]. In fact, HHV-8 has created a variety of mechanisms to create chronic
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latent infection, which continues to predominate in the majority of infected cells [15]. By
allowing host immune evasion and encouraging tumor cell survival and proliferation
through the production of a small number of oncogenic latent genes, HHV-8 uses latency to
thwart the death of tumor cells that are infected with it [16,17]. It’s significant to note that
diverse infected cell types, from primary latent infection of endothelium cells to long-term
latency of lymphoma cells, exhibit highly comparable HHV-8 transcription patterns and
viral survival mechanisms [18]. Therefore, a key area of focus for the elimination of HHV-8-
infected cells and, eventually, the treatment of the usual HHV-8-associated malignancies, is
the molecular signaling pathways implicated in the survival of infected cells.

In the current investigation, we discovered primaquine diphosphate (PQ) as a brand-
new, incredibly promising targeted therapeutic medication that precisely causes cell death
by apoptosis in HHV-8-infected PEL cell lines when used in vitro [19]. In an in vivo
nonobese diabetic (NOD)/SCID PEL mice model and in patients with advanced KS, we
demonstrated that PQ exhibits therapeutic anti-tumor activity [19].

4. Redox Unbalance in Cancer

ROS (Reactive Oxygen Species), including superoxide anion (O2), hydrogen peroxide
(H2O2), and the hydroxyl radical (OH), are oxygen-containing chemical entities that are
produced inside of cells [20]. The formation of O2 arises from the reduction of oxygen by
one electron in the mitochondria and cytosolic NADPH (Nicotinamide adenine dinucleotide
phosphate) oxidases (NOXs) [21]. The process that converts O2 into H2O2 is catalyzed by
the superoxide dismutase 1 or 2, which can be located in the cytosol or mitochondrial matrix,
respectively. H2O2 is then detoxified to water by the enzyme activity of mitochondrial
and cytosolic peroxiredoxins (PRXs), which as a result suffer H2O2-mediated oxidation
of their active-site cysteines [22]. Thioredoxin (TXN), thioredoxin reductase (TrxR), and
the reducing equivalent NADPH are used to reduce oxidized PRXs in order to complete
the catalytic cycle [23]. Through the oxidation of reduced glutathione (GSH) by H2O2,
glutathione peroxidases (GPXs) can also convert H2O2 to water in the mitochondrial matrix
and cytoplasm [24]. Finally, glutathione reductase (GR) and NADPH work together to
transform oxidized glutathione (GSSG) back into GSH. Otherwise, the strong antioxidant
catalase, which is present in the peroxisomes, has also the potential to detoxify H2O2 to
water on its own.

However, when combined with ferrous and cuprous ions, H2O2 may quickly be
transformed into OH and cause the oxidation of lipids, proteins, and DNA resulting in
cellular damage. The rising of H2O2 levels could also activate the cell death signaling
pathways. For the maintenance of several antioxidant defense mechanisms, NADPH is
necessary. In addition to the one-carbon metabolism, the cytosol also produces NADPH
from the oxidative PPP, malic enzyme 1, and IDH1. One-carbon metabolism and IDH2
have a role, in part, in the regulation of NADPH production in the mitochondria.

In the past, ROS were thought to be harmful metabolic by-products of protein folding
and cellular respiration. However, research over the last two decades has uncovered a
hitherto unrecognized role for ROS in cellular signaling. Low concentrations of ROS, in
particular H2O2, can reversibly oxidize protein cysteine residues to stimulate cell growth
and adaptability to metabolic stress [25]. Compared to normal cells, cancer cells produce
more spatially confined mitochondria- and NOX-dependent ROS [26,27]. As a result,
the signaling pathways PI3K and mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK), as well as the transcription factors HIF and NFkB might be
activated proximally, both being required for the carcinogenic process. Oncogenic lesions
and the tumor microenvironment both contribute to the increased rate of spatially localized
ROS generation that is particular to cancer cells. For instance, in cancer cells, hypoxia
(low oxygen levels) and the activation of oncogenes induce the increased rate of ROS
generation from the mitochondria and NOXs in cancer cells [28–30]. Antioxidants that
target the mitochondria and NOX inhibitors can stop tumor growth, hypoxic activation of
HIF, metastasis, and cancer cell proliferation [31–33].
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The enhanced production of antioxidant proteins is required to prevent the elevated
localized ROS from reaching levels that cause cellular damage in cancer cells. This increased
localized ROS in cancer cells stimulates signaling pathways and transcription factors to
support carcinogenesis [34]. In that perspective, cancer cells also have higher levels of ROS
scavenging enzymes than normal cells do, in order to prevent ROS-mediated activation
of death-inducing pathways such as c-Jun N-terminal kinase (JNK) and p38 MAPK and
oxidation of lipids, proteins, and DNA, which causes permanent damage and cell death.
By activating the transcription factor nuclear factor (erythroid-derived 2)-related factor-
2 (NRF2), cancer cells might boost their antioxidant capacity [35]. NRF2 is specifically
activated once the contact between NRF2 and its binding partner Kelch-like ECH-associated
protein 1 is broken (KEAP1). Critical KEAP1 cysteine residues are susceptible to oxidation,
succination, and glutathionylation, which prevents the KEAP1-NRF2 connection and causes
NRF2 to be degraded by proteasomes. NRF2 activation is also possible without KEAP1
participation [36]. GPXs and TXNs, along with enzymes involved in GSH production and
cysteine import via the cystine/glutamate antiporter, are only a few of the antioxidant
proteins that NRF2 stimulates the transcription of after it has been active. To keep GPXs and
TXNs’ antioxidant abilities, NADPH is also required and NRF2 is crucial for triggering the
enzymes that raise cytosolic NADPH levels. Additionally, the serine biosynthesis pathway,
which generates NADPH in the mitochondria and is crucial for preserving redox balance
in hypoxic environments, is also controlled by NRF2 [37,38]. Therefore, blocking NRF2 or
antioxidative proteins would allow ROS to accumulate to dangerous levels and prevent the
proliferation of cancer cells [36,39,40].

A schematic representation of the redox balance in cancer cells is presented in Figure 1.
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Figure 1. Schematic representation of the redox homeostasis in cancer cells. The redox balance is
crucial for normal and cancer cells survival. In normal condition, an increase of ROS generation
leads to the activation of different pathways involved in programmed cell death. In cancer cells,
metabolism is disrupted and lead to an increase of ROS levels which can also activate different pro
oncogenic pathways inducing cell survival and proliferation. To thwart the high rates of ROS, the
oxidative stress can also stimulates the antioxidant system to reduce ROS levels and prevent the cells
from cell death.
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Redox equilibrium is necessary for the growth and spread of tumors. A growing
idea of redox balance postulates that the metabolic activity of cancer cells rises as a tumor
grows [41]. Because of this, ROS production increases, which activates signaling pathways
that support cancer cells survival, proliferation and metabolic adaptation [34]. As a result,
tumor cells boost their antioxidant ability to prevent harmful levels of ROS, enabling
the growth of cancer [42]. Low glucose levels restrict the amount of oxygen that can
pass through the cytosolic oxidative PPP, increasing ROS levels brought on by the hostile
tumor microenvironment. The result is a decrease in cytosolic NADPH levels. In these
nutrient-deficient situations, cells activate AMPK to raise NADPH levels by promoting
PPP-dependent NADPH and decreasing anabolic processes, such as lipid synthesis, that
need high NADPH concentrations [43,44]. For a tumor to spread, increased mitochondrial
respiration and ROS-dependent signaling are also necessary [32,45]. However, when tumor
cells detach from a matrix and are exposed to high levels of ROS that result in cellular
damage, they must activate adaptative ROS-mitigating pathways in order to survive and
grow [46,47]. Distant metastasis is enabled by the capacity to up-regulate antioxidant
proteins and boost flow via NADPH-producing metabolic pathways. According to these
findings, it would be advantageous to disable the antioxidant ability of cancer cells to
increase ROS levels in order to avoid spreading.

5. ROS and Kaposi Sarcoma

Risks factors associated with the transmission of HHV-8 and the development of
related diseases remain debated in the literature.

In epidemiological studies, poppers have been described as a risk factor for the
transmission of HHV-8 in men having sex with men population [48,49], but also in the
development of KS, even if no dose-dependent association has been found [50]. In vitro, we
also reported that poppers could induce HHV-8 replication after a short time of incubation
on PEL BC-3 cell line [51]. Physiologically, amyl nitril could either behave like ROS due to
the presence of oxygen in its molecular structure [52,53], or induce their production, as it
was reported for certain drugs used in therapeutics, i.e., bortezomib and placlitaxel [54,55],
in order to induce HHV-8 viral replication. Furthermore, amyl nitrile was reported to induce
methemoglobinemia in patients using poppers as recreational drugs. It was hypothesized
that it occurred directly through their activity as oxidizing agents [52]. The increase of
methemoglobinemia might also induced locally hypoxia and thus indirectly, promotes
HHV-8 reactivation [56].

In the environment, several chemical compounds have also been described as risk
factor for the development of classic or endemic Kaposi sarcoma [57]. Patients residing in
regions with soils rich in iron, aluminum and silica, particularly near volcanoes, have an
increased risk of developing KS [58,59]. Furthermore, studies have shown that on the one
hand, iron can function as a catalyst for the generation of ROS under pathological conditions
and on the other hand that the use of an iron chelator (i.e., deferoxamine) controls the
development of Kaposi sarcoma in vitro [60]. However in mice and human studies, the
use of iron chelator induce the opposite effect with a growth of the Kaposi sarcoma lesion,
suggesting that this molecule could also induce an anti-apoptotic mechanism to stimulate
lesion growth [61,62].

Thus, there is epidemiological evidence that compounds with chemical structure near
ROS or involving redox may contribute to the development of Kaposi sarcoma.

6. Modulating ROS Balance to Fight against HHV-8 Associated Diseases

The need for a more specialized therapeutic strategy still exists because the efficacy
of the available treatments for HHV-8-related disorders is limited [63]. The antimalarial
primaquine diphosphate was originally found in our laboratory following a thorough
pharmacological screening as a possible targeted treatment agent to treat HHV-8-associated
PEL and KS. As opposed to HHV-8-uninfected cells, we were able to establish in vitro that
primaquine is selective to HHV-8-infected PEL cell lines and generates cytotoxic effects
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through executioner caspases-3/-7-dependent apoptosis. Understanding how primaquine
causes apoptosis, we showed that caspase-8 and -9 are activated, demonstrating the partici-
pation of both intrinsic and extrinsic apoptosis pathways in primaquine-induced cell death
in PEL cells.

As apoptotic triggers and modulators of cell death, ROS and oxidative stress are
well-known [64,65].

We assessed primaquine’s pro-oxidant action in PEL cells since primaquine-induced
oxidative stress has been shown to be strongly connected to the hemolytic toxicity of
primaquine and certain of its metabolites in G6PD-deficient erythrocytes [66,67]. We
demonstrated that GSH depletion and intracellular ROS production were both enhanced by
primaquine. N-acetylcysteine, an antioxidant, was used as a pre-treatment to significantly
reduce ROS production and to mitigate the cytotoxicity and caspases-3/-7 activation
caused by primaquine. These findings suggested that the primaquine-induced apoptosis
in PEL cells is mostly influenced by ROS production. This result was confirmed by the
up regulation of OSGIN1 expression seen in PEL cells treated with primaquine. OSGIN1
is a tumor suppressor gene that is activated by oxidative stress and has been previously
reported to play a role in the apoptosis of PEL cells, in part through the control of ROS
production and GSH synthesis [68] (Figure 2).
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Figure 2. Schematic representation of primaquine action on KSHV-infected cells to induce apoptosis.
Oxidative stress induced by the primaquine leads to an increase of ROS and decrease of the GSF. In
response to the oxidative stress, the pro-apoptotic UPR pathway is activated and induced the up-
regulation of the ATF3, CHAC-1 and OSGIN1 transcripts. Caspase-4 pathway could also be activated
directly through the activation of the UPR pathway. The oxidative stress induced by primaquine could
also inhibated the NFkB pathway, leading to the lifting of the negative retrocontrole on the expression
of the caspase-3. Altogether, our result suggest that the primaquine could induced apoptosis on
KSHV-infected cells by stimulating different pro-apoptotic pathways.

According to earlier research, large amounts of ROS mostly caused cell death, which
is why they are crucial for controlling the balance between HHV-8 reactivation and PEL
cell death [53]. We noticed that extracellular HHV-8 virion generation was boosted after a
prolonged 48-h incubation of BC-3 cells with primaquine. Primaquine caused a significant
amount of cell death within 48 h, thus it seems likely that the virus would detect these
signals and use them to flee from the dying cells. It is unclear, nevertheless, whether
these virions originated from enhanced release of HHV-8 virions in lytic PEL cells or from
the viral reactivation of latent cells. It is significant that our findings did not reveal any
direct effects of primaquine until 24 h after treatment, even when apoptotic pathways that
cause PEL cell death had already been active. Furthermore, we found no evidence of an
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increase in HHV-8 viral load in either the ascites or the intraperitoneal solid sample from
primaquine-treated NOD/SCID PEL xenograft mice. These results clearly suggest that
viral lytic replication was not necessary for primaquine’s induction of cell death.

RNA-seq investigation brought to light the activation of some hallmarks of the endo-
plasmic reticulum (ER) stress-mediated apoptosis signaling pathway as we studied the
cell death signaling pathways associated with primaquine modes of action. The increased
protein requirement of cancer cells can cause ER stress and, as a result, the unfolded protein
response (UPR) to maintain ER homeostasis, which promotes tumor cell survival due to
their accelerated rate of growth and proliferation [69,70]. However, the pro-apoptotic path-
ways of the UPR are activated, including the production of the pro-apoptotic transcription
factor CHOP and activation of caspase-4, which results in apoptosis if the ER stress is too
severe, persistent, or cannot be addressed [71–75]. As a result, ER stress-targeting treatment
provides an intriguing approach for anti-tumor, including anti-PEL, therapies by inducing
pro-apoptotic pathways of the UPR [69,76–79]. Our research revealed that primaquine-
treated PEL cells also had elevated expression of ATF3 and CHAC1, as well as a targeted
induction of CHOP, in addition to ER stress-dependent caspase-4 activation. Downstream
of ATF3 and CHOP, CHAC1 is a pro-apoptotic ER stress-inducible gene that can partially
mediate the pro-apoptotic effects of both of these transcription factors [80–82]. The molecu-
lar basis of the activation of the ER stress-mediated apoptotic signaling will require more
research but our findings might suggest that primaquine-induced apoptosis in HHV-8-
infected cells is produced by activation of the pro-apoptotic ER stress-inducible gene.

It has been revealed that HHV-8 expression patterns and viral latency processes are
remarkably identical in every infected cell [18,83], which contributes to HHV-8-induced
pathogenesis and malignancies. Therefore, we speculate that a compound that targets
signaling pathways linked to latently infected cells, cell death will eliminate various latently
infected cell types, resulting in the treatment of HHV-8-related cancers. An exploratory
proof of concept clinical trial on Kaposi’s sarcoma was carried out with the help of our
in vitro and in vivo primaquine anti-tumor efficacy and safety findings in PEL cells and
mouse models, as well as the fact that primaquine has been used all over the world
since the 1950s with remarkable tolerance among glucose 6-phosphate dehydrogenase
(G6PD)-normal patients [84]. Primaquine was well tolerated and showed some promising
anti-tumor activity in this pilot clinical investigation on Kaposi’s sarcoma-related lesions
and lymphoedema. These findings support expanding the clinical study to include more
patients with KS and/or PEL receiving a variety of primaquine doses to more thoroughly
assess the drug’s therapeutic effectiveness. Importantly, giving primaquine medication
prior to a thorough G6PD deficiency diagnosis would significantly lower the risk of drug-
induced acute hemolytic anemia in susceptible people.

7. Rational for Combining Different Therapeutic Approach in HHV-8 Associated
Diseases Treatment

As it is now well known, tumors grow and evolve trough a constant crosstalk with the
surrounding microenvironment [85], and emerging evidence indicates that angiogenesis
and immunosuppression frequently occur simultaneously in response to this crosstalk.
For instance, hypoxia in cancer cells can promote ROS generation, assumed leading to
programmed death cell [86]. On the other hand, hypoxia also stimulates angiogenic
factors to ensure sufficient nutrient and oxygen supply and allow metastatic spread. [87].
Several anti-angiogenic drugs, such as anti-vascular endothelial growth factor (VEGF)
has been approved alone or in combination for cancer treatment. Indeed, angiogenesis
is now considered a driver of immunosuppression and immune evasion in the tumor
microenvironment [88]. However, fast enough, resistance to anti-angiogenic therapies has
been reported suggesting that the association of multiple anti-angiogenic molecules or a
combination of anti-angiogenic drugs with other treatment regimens would be benefit to
overcome this resistance. For instance, Ribatti et al. reported that combining anti-VEGF
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and immunotherapy might have the potential to tip the balance of the tumor environment
and improve treatment response [87].

In Kaposi sarcoma, lesions are characterized by a proliferation of spindle cells infected
with HHV-8, neo angiogenesis, inflammation and immune cells infiltration. On its own,
the HHV-8 genome code for a plethora of viral factors, including proteins and non-coding
RNAs, some of which have been shown to deregulate angiogenic pathways and promote
tumor growth [89]. Several anti-angiogenic drugs has been tested to treat Kaposi sarcoma,
and the most interesting results were obtained with the thalidomide and its deritatives and
the inhibitors of the mTOR pathway as sirolimus (rapamycin) and temsirolimus [63]. Still
several cases relapse, for instance epidemic Kaposi sarcoma in patients under efficiency
cART [90]. In regards to the results described in several cancers and considering that HHV-
8 associated diseases make no exception in the constant crosstalk with the surrounding
environment, we assume that combining the primaquine with other therapies might be
more efficient in patients with severe and recurrent Kaposi sarcoma.

8. Conclusions

In order to support the survival, development, and advancement of cancer, ROS forma-
tion, signaling, and control are changed physiological processes. A deeper comprehension
of the function of redox balance in cancer biology is anticipated to offer novel targets
for the prevention of cancer, the avoidance of treatment resistance, and the achievement
of clinically advantageous outcomes. According to the nature and stage of the tumor,
the reliance on antioxidant pathways can change. Inter- and intra-tumoral genetic and
metabolic heterogeneity in malignancies is a crucial factor to take into account. Targeting
redox dependency in one subpopulation of cancer cells may spare other subpopulations
Additionally, there are differences in the redox regulation of tumor-resident cells and cells
in circulation that are headed for colonization by metastatic cells. Consequently, a compre-
hensive understanding of the ROS axis will aid in identifying the potential and difficulties
in creating ROS-based therapies that are more clinically successful.

These approaches can be used in the treatment of HHV-8 related diseases with for
example of the antimalarial primaquine diphosphate that causes cell death by induc-
ing apoptosis, specifically in infected with HHV-8. This is done by activating apoptosis
pathways that are mediated by oxidative stress and ER stress. This compound has to be de-
veloped, using other galenic formulations, as a novel, promising targeted therapeutic agent
in the treatment of, at least, HHV-8-associated PEL and KS because of its dose-dependent,
anti-tumor efficacy in vivo in a PEL mouse model and in patients with severe KS as well as
its good tolerance and lack of significant side effects. For severe and recurrent forms of KS,
combining primaquine with others therapies could be relevant.
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