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Abstract: Bromelain, a cysteine protease found in pineapple, has beneficial effects in the treatment
of inflammatory diseases; however, its effects in cardiovascular pathophysiology are not fully un-
derstood. We investigated the effect of bromelain on atherosclerosis and its regulatory mechanisms
in hyperlipidemia and atheroprone apolipoprotein E-null (apoe−/−) mice. Bromelain was orally
administered to 16-week-old male apoe−/− mice for four weeks. Daily bromelain administration
decreased hyperlipidemia and aortic inflammation, leading to atherosclerosis retardation in apoe−/−

mice. Moreover, hepatic lipid accumulation was decreased by the promotion of cholesteryl ester
hydrolysis and autophagy through the AMP-activated protein kinase (AMPK)/transcription fac-
tor EB (TFEB)-mediated upregulation of autophagy- and antioxidant-related proteins. Moreover,
bromelain decreased oxidative stress by increasing the antioxidant capacity and protein expression of
antioxidant proteins while downregulating the protein expression of NADPH oxidases and decreas-
ing the production of reactive oxygen species. Therefore, AMPK/TFEB signaling may be crucial in
bromelain-mediated anti-hyperlipidemia, antioxidant, and anti-inflammatory effects, effecting the
amelioration of atherosclerosis.
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1. Introduction

Bromelain, a proteolytic enzyme, exists in the stem, fruit, leaves, and peel of pineap-
ples. Stem bromelain has been revealed to possess several beneficial effects in humans and
has been used for decades as a clinical medication to alleviate inflammation, coagulation
disorders, and cancer [1–3]. Currently, it is used for the treatment of osteoarthritis and the
prevention of swelling and inflammation after surgery [4,5]. In addition to the abovemen-
tioned benefits, emerging evidence indicates that bromelain also has beneficial effects on
metabolic disorders [6–8]. Our previous study had indicated that bromelain upregulates the
levels of proteins related to retinoid X receptor, peroxisome proliferator-activated receptor a
(PPARα), and PPARγ, which are involved in the fatty acid β-oxidation for bioenergetics in
mitochondria, leading to the decrease in high-fat diet (HFD)-induced lipid accumulation in
the liver [7]. Recently, we further reported that bromelain alleviates NAFLD by activating
the AMP-activated protein kinase (AMPK) autophagy signaling pathway [8]. Nevertheless,
the effect of bromelain and the underlying mechanisms on the pathophysiology of the
cardiovascular system require further investigation. Therefore, studies delineating the
effects and mechanisms of bromelain in the development of cardiovascular diseases (CVDs)
are warranted.
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The liver is the most important organ in controlling aspects of lipid metabolism, in-
cluding cholesterol and triglycerides, by regulating the lipid fluxes between the de novo
lipid synthesis of liver, dietary, circulating, and peripheral local lipid pools [7,9,10]. To
maintain the appropriate circulating levels of cholesterol, the delivery of apoB-containing
lipoproteins from the liver to peripheral tissues, and high-density lipoprotein (HDL)-
mediated reverse cholesterol transport from tissues back to the liver, are key regulatory
mechanisms for the human body [11,12]. Either increases in the circulating level of low-
density lipoprotein (LDL) or decreases in HDL-mediated cholesterol transport may result in
hyperlipidemia, which is known to be the most important risk factor for the development
of atherosclerosis. Atherosclerosis, a lipid deregulation and chronic inflammatory vascular
disease, is characterized by excess lipid accumulation and persistent low-grade inflamma-
tion within the vessel wall [13–16], eventually resulting in severe clinical complications of
arterial diseases, such as myocardial infarction and stroke [17–20]. On the other hand, the
transcription factor EB (TFEB) plays a crucial role in regulating gene expression related to
autophagy, lysosomal biogenesis, and antioxidants [21–23]. Recently, a growing body of
studies have indicated that TFEB regulates the homeostasis of the cardiovascular system
and confers protection from CVDs such as aortic aneurysms, cardiotoxicity, and atheroscle-
rosis [24–26]. Moreover, TFEB decreases the inflammatory response and ROS production in
endothelial cells and promotes autophagy and lysosomal biogenesis in macrophages, and
it additionally leads to the alleviation of atherosclerotic progression [26,27]. These lines of
evidence have emphasized the benefits of TFEB for vascular diseases; however, whether
TFEB is involved in the bromelain-mediated protection from hepatic lipid accumulation
and atherosclerosis requires further investigation.

In view of the effect of bromelain in the dysfunction of hepatic lipid metabolism, we
aimed to investigate the effects and involved mechanisms of bromelain in the pathogenesis
of atherosclerosis. First, we examined the effect of bromelain on adiposity, blood pressure,
and the lipid profile by using a hyperlipidemia and athero-prone mouse model. Second,
we investigated the effect of bromelain on hepatic lipid accumulation and atherosclerosis
progression in apoe−/− mice. Third, we delineated the involvement of the AMPK/TFEB
signaling pathway in bromelain-conferred protection from hepatic lipid accumulation and
atherosclerosis in apoe−/− mice. Here, we provide new evidence to define the protective effect
and molecular mechanism of bromelain on hepatic lipid metabolism and atherosclerosis.

2. Materials and Methods
2.1. Reagents

Bromelain was purchased from Cayman Chemical (Ann Arbor, MI, USA). Rabbit
antibodies against inducible nitric oxide synthase (iNOS) were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Rabbit antibodies against intercellular adhesion
molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), C-X-C motif chemokine
receptor 4 (CXCR4), NADPH oxidase 2 (NOX2), superoxide dismutase 1 (SOD1) and SOD2,
and rat antibodies against F4/80 were obtained from Abcam (Cambridge, MA, USA). Rabbit
antibodies for NOX1 and NOX4 were purchased from Proteintech (Rosemont, IL, USA).
Mouse antibodies against 4-hydroxynonenal (4-HNE), goat antibodies against glutathione
peroxidase (GPx), and cytokine ELISA kits were obtained from R&D Systems (Minneapolis,
MN, USA). Rabbit antibodies against neutral cholesteryl ester hydrolase 1 (nCEH1) were
obtained from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Rabbit antibodies against
heme oxygenase-1 (HO-1) were obtained from Assay Designs (Plymouth Meeting, PA, USA).
Rabbit antibodies against LC3, sequestosome 1 (SQSTM1), and p-AMPK were purchased
from Cell Signaling Technology (Danvers, MA, USA). Rabbit antibodies for lysosomal acid
lipase (LAL) were obtained from GeneTex (Irvine, CA, USA). Rabbit antibodies for AMPK
and mouse antibodies against β-actin were purchased from ABclonal (Woburn, MA, USA).
Cholesterol, HDL-cholesterol (HDL-c), and triglyceride assay kits were purchased from
Randox (Crumlin, Antrim, UK). The malondialdehyde (MDA) assay kit was obtained from
Sigma-Aldrich (St. Louis, MO, USA). Total cholesterol, free cholesterol, cholesteryl ester,
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triglyceride, fatty acid, glycerol, and total antioxidant capacity fluorometric assay kits were
obtained from BioVision (Milpitas, CA, USA).

2.2. Mice

This study conformed to the Guide for the Care and Use of Laboratory Animals
(Institute of Laboratory Animal Resources, eighth edition, 2011). All animal experiments
were approved by the Institutional Animal Care and Use Committee of the National Yang-
Ming University (No. 1070314). Apoe−/− mice were purchased from Jackson Laboratory
(Bar Harbor, ME, USA). Mice were housed in barrier facilities and maintained under
a 12 h/12 h light/dark cycle. The temperature (22 ◦C) and humidity (40–60%) of the
vivarium were tightly controlled. Mice were housed in groups of 3–4 per cage and fed a
regular chow diet containing 4.5% fat by weight (0.02% cholesterol) (Newco Distributors,
Redwood, CA, USA). The apoe−/− mice, at the age of 16 weeks, received oral administration
of bromelain (20 mg/kg/day, n = 8) or phosphate-buffered saline (PBS; vehicle control,
n = 8) for four weeks. The body weight; the weight of white adipose tissue (WAT), brown
adipose tissue (BAT), and the liver; and the mean arterial pressure (MAP) of mice were
measured. The mice were then euthanized with CO2 at the age of 20 weeks. At the end
of the treatment, the plasma, heart, aorta, WAT, BAT, and the liver were collected and
subjected to further experiments.

2.3. Histological Examination

The histological examination of the heart, WAT, BAT, and liver was performed as
previously described [8,9]. The heart, WAT, BAT, and liver harvested from mice were fixed
with 4% paraformaldehyde and serially dehydrated using increasing concentrations of
alcohol (30%, 50%, 70%, 90%, and 100%), followed by treatment with xylene, for 60 min.
The tissues were immersed in paraffin overnight at 60 ◦C and then embedded in paraffin.
The tissue blocks were sectioned at 8 µm thickness. For histological examination, the
sections of heart, WAT, BAT, and liver were subjected to hematoxylin and eosin (H&E)
staining. For the quantification of atherosclerotic lesions, 50 serial sections from the aortic
sinus of each mouse were collected. A total of 10–12 sections, sampled from every three
consecutive sections, were deparaffinized and subjected to H&E staining. Photomicro-
graphs of atherosclerotic lesions in the aortic sinus were obtained using a Motic TYPE 102M
microscope (Motic Images Plus 2.0, Xiamen, China).

2.4. Plasma Lipid Profile Analysis

The plasma levels of cholesterol, HDL-c, and triglycerides were determined as previ-
ously described [8–10]. Blood was collected via a cardiac puncture. Plasma was isolated,
and the levels of cholesterol, HDL-c, and triglycerides in plasma were determined using
Spotchem EZ SP 4430 (ARKRAY, Kyoto, Japan).

2.5. Measurement of Inflammatory Cytokines

The concentrations of pro-inflammatory cytokines, including tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), monocyte chemoattractant protein-
1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2), in aortas were assessed
according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA).

2.6. Western Blot Analysis

The expression of target proteins in the aortas and livers were evaluated as previously
described [7–10]. Aortas and livers were lysed in a lysis buffer (50 mmol/L Tris pH 7.5,
5 mmol/L EDTA, 300 mmol/L NaCl, 1% Triton X-100, 1 mmol/L phenylmethylsulfonyl
fluoride, 10 µg/mL leupeptin, and 10 µg/mL aprotinin), and proteins were separated
electrophoretically on 8–15% sodium dodecyl sulfate–polyacrylamide gel. The proteins
were then transferred onto a polyvinylidene fluoride (PVDF) membrane and blocked in
5% skim milk for 1 h at 37 ◦C. The blots were incubated with various specific primary anti-
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bodies, followed by incubation with horseradish peroxidase (HRP)-conjugated secondary
antibodies. The protein bands were visualized using an enzyme-linked chemiluminescence
detection kit (PerkinElmer, Waltham, MA, USA), and the band density was evaluated using
TotalLab 1D (TotalLab, Newcastle Upon Tyne, UK). To ensure equal loading, β-actin was
used as the internal control in each experiment.

2.7. Immunohistochemistry

The immunohistochemistry was performed as previously described [19]. The deparaf-
finized sections were incubated with a retrieval buffer for 10 min at 37 ◦C. The sections were
then blocked with 2% BSA for 1 h at 37 ◦C, incubated with primary antibody overnight at
4 ◦C and then with FITC-conjugated or HRP- and FITC-conjugated secondary antibody
overnight at 4 ◦C. Antigenic sites were visualized by adding 3,3-diaminobenzidine and
observed under a Leica DMIRB microscope (Leica, Wetzlar, Germany) or a Nikon TE2000-
U microscope (Nikon, Tokyo, Japan) with an image analysis system (QCapture Pro 6.0,
QImaging, BC, Canada).

2.8. PET/CT Acquisition

PET/CT imaging was performed on a Bioscan scanner (Washington DC, USA) fol-
lowing an intravenous tail vein injection of [68Ga]-APD into apoe−/− mice, as previ-
ously described [28]. PET/CT imaging was performed on a Bioscan scanner (matrix
size, 128 × 128 × 159; CT attenuation-corrected; non-scatter-corrected) (Washington DC,
USA) following an intravenous tail vein injection of approximately 14.8 MBq (0.4 mCi) of
[68Ga]-APD into apoe−/− mice (3-5 miceper group), as previously described [28]. Dynamic
scans were acquired in a list mode format for at least 120 min and sorted into 22 frames, with
0.5 mm sinogram binsfor image reconstruction (4 × 15 s, 4 × 60 s, 11 × 300 s, 3 × 600 s).
Mice were anesthetized with isoflurane (3% for induction and 2% for maintenance) through-
out the experiment. Apoe−/− mice were imaged with [68Ga]-APD (11.1 MBq) on treatment
with or without bromelain to characterize differences in the severity of atherosclerotic
lesions. To estimate the radioactivity concentration, volumes of interest were defined on
coregistered PET/CT images using PMOD software. The target/background ratio (TBR)
was calculated by placing a circular 2 mm volume of all studied organs/tissues around a
site. TBRs were then calculated as the focal uptake divided by the blood pool.

2.9. Determination of Hepatic Lipids

The levels of total cholesterol, free cholesterol, cholesteryl ester, triglycerides, fatty
acids, and glycerol were evaluated as previously described [7,9,10]. They were evaluated
using fluorescence assay kits (BioVision, Milpitas, CA, USA) according to the manufac-
turer’s instructions.

2.10. Lipid Peroxidation Assay

The levels of MDA, a product of lipid peroxidation, in the aortas of bromelain-treated
apoe−/− mice were determined by the relevant assay kit (Sigma-Aldrich, St. Louis, MO,
USA) according to the manufacturer’s instructions. Consequently, the results served as a
biomarker for oxidative stress.

2.11. Total Antioxidant Capacity Assay

The levels of total antioxidant capacity, antioxidant proteins, and small molecules in
the livers and aortas of bromelain-treated apoe−/− mice were evaluated using fluorescence
assay kits (BioVision, Milpitas, CA, USA) according to the manufacturer’s instructions.

2.12. Statistical Analysis

Comparisons between two groups were analyzed by the Mann–Whitney U test. SPSS
v20.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Differences were
considered statistically significant at p < 0.05.
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3. Results

3.1. Effect of Bromelain on Body Weight, Fat Tissue Weight, and Hyperlipidemia in apoe−/− Mice

The apoe−/− mice were used as our animal model. We first investigated the effects
of bromelain on body weight, MAP, and adiposity in apoe−/− mice. Daily treatment with
bromelain for four weeks decreased the body weight without affecting MAP (Figure 1A,B).
Additionally, bromelain decreased the weight of WAT; however, it increased BAT weight
compared to that of vehicle-treated apoe−/− mice (Figure 1C,D). The size of adipocytes
in WAT (Figure 1C) and that of the lipid droplets (whitening) in BAT were decreased in
bromelain-treated apoe−/− mice (Figure 1D). Moreover, the plasma levels of total cholesterol,
non-HDL-c, and triglycerides were significantly decreased in bromelain-treated apoe−/−

mice (Figure 1E). These findings suggest that bromelain confers a protective effect against
adiposity and hyperlipidemia in apoe−/− mice.
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Figure 1. Effects of bromelain on body weight, blood pressure, adiposity, and hyperlipidemia in
apoe−/− mice. Male apoe−/− mice were orally administered bromelain (BL, 20 mg/kg/day) or vehicle
(PBS) for four weeks. (A) Body weight. (B) Mean arterial pressure. (C,D) The weight and histology
of white adipose tissue and brown adipose tissue. Scale bar = 50 µm. (E) Plasma levels of total
cholesterol, non-high-density lipoprotein cholesterol (non-HDL-c), HDL cholesterol (HDL-c), and
triglycerides. * p < 0.05 vs. vehicle-treated apoe−/− mice.

3.2. Bromelain Attenuates Aortic Inflammation and Results in the Retardation of Atherosclerosis in
apoe−/− Mice

We then investigated the effects of bromelain on the inflammatory response and
atherosclerosis progression. Our results showed that the daily administration of bromelain
for four weeks significantly decreased the aortic levels of ICAM-1 and VCAM-1, F4/80,
and iNOS in apoe−/− mice (Figure 2A). Moreover, the levels of TNF-α, IL-1β, IL-6, MCP-1,
and CXCR4, but not MIP-2, were decreased in the aortas of apoe−/− mice (Figure 2B,C).
These results suggest that bromelain inhibits the inflammatory response in apoe−/− mice.
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We next used CXCR4-directed macrophage PET imaging with [68Ga]-APD to track the
atherosclerotic lesions in apoe−/− mice, as previously described [28–31]. The PET/CT im-
ages showed that treatment with bromelain decreased the TBR of [68Ga]-APD in apoe−/−

mice as compared to that of vehicle-treated apoe−/− mice (Figure 3A). Histological exami-
nation with H&E staining showed that bromelain significantly decreased the sizes of the
atherosclerotic lesions in the aortic sinuses of apoe−/− mice (Figure 3B). These findings
suggest that bromelain mitigates the inflammatory response and level of atherosclerosis in
apoe−/− mice.
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Figure 2. Effects of bromelain on aortic inflammatory response of apoe−/− mice. Male apoe−/− mice
were orally administered bromelain (BL, 20 mg/kg/day) or vehicle (PBS) for four weeks. (A) Western
blot analysis of ICAM-1 and VCAM-1, two endothelial dysfunction markers; F4/80, a macrophage
marker; iNOS, an inflammation marker; and β-actin, in the atherosclerotic aortas of bromelain- or
vehicle-treated apoe−/− mice. (B) ELISA of TNF-α, IL-1β, IL-6, MCP-1, and MIP-2 in the aortas.
(C) Western blot analysis of CXCR4 and β-actin in atherosclerotic aortas and immunohistochemistry
for CXCR4, the most widely expressed chemokine receptor in physiological and pathological condi-
tions. Cell nuclei were stained with hematoxylin. Scale bar = 100 µm. * p < 0.05 vs. vehicle-treated
apoe−/− mice.

3.3. Effects of Bromelain on Hepatic Levels of Lipids in apoe−/− Mice

The liver plays a crucial role in regulating lipid metabolism [32]. We next investigated
the effect of bromelain on the hepatic lipid metabolism of apoe−/− mice. We found that
treatment with bromelain for four weeks reduced lipid accumulation and the ratio of liver
weight to body weight (Figure 4A,B). In addition, bromelain decreased the levels of total
cholesterol, free cholesterol, cholesteryl ester, triglycerides, free fatty acids, and glycerol
in the livers of apoe−/− mice (Figure 4C). These findings indicate that bromelain has an
advantageous effect on lipid metabolism in the livers of apoe−/− mice.
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Figure 3. Bromelain attenuates atherosclerosis lesion size in apoe−/− mice. Male apoe−/− mice were
orally administered bromelain (BL, 20 mg/kg/day) or vehicle (PBS) for four weeks. (A) The highest
target/background ratio (TBR) of [68Ga]-APD on atherosclerotic aortas. (B) Atherosclerotic lesions at
aortic roots, highlighted by H&E staining. Scale bar = 300 µm. Atherosclerotic lesions at the aortic
sinus were indicated by arrows. * p < 0.05 vs. vehicle-treated apoe−/− mice.
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Figure 4. Bromelain reduces lipid accumulation in the livers of apoe−/− mice. Male apoe−/− mice
were orally administered bromelain (BL, 20 mg/kg/day) or vehicle (PBS) for four weeks. (A) Repre-
sentative images of H&E staining in bromelain- or vehicle-treated apoe−/− mice. Scale bar = 25 µm.
CV: central vein. The foamy hepatocytes were indicated by arrows. (B) The liver weight and the ratio
of liver weight to body weight. (C) The hepatic levels of total cholesterol, free cholesterol, cholesteryl
ester, triglycerides, fatty acids, and glycerol. * p < 0.05 vs. vehicle-treated apoe−/− mice.
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3.4. TFEB Activation Is Involved in Bromelain-Induced Activation of Autophagy Flux and
Antioxidant Capacity

The TFEB-mediated activation of autophagy is known to be a key event in orchestrating
the metabolism of intracellular lipid droplets [33,34]. Therefore, we explored the role of the
TFEB–autophagy pathway and found that bromelain conferred a beneficial effect on hepatic
lipid accumulation. The results demonstrated that bromelain administration elicited the
activation of the TFEB–autophagy pathway, as evidenced by the increase in the protein
levels of LC3 and TFEB, and the decrease in the protein levels of SQSTM1, in the livers of
apoe−/− mice (Figure 5A,B). Additionally, we found that treatment with bromelain induced
an increase in the phosphorylation of AMPK protein, which is an upstream regulator of
the TFEB–autophagy pathway (Figure 5B). Moreover, bromelain upregulated the protein
expression of LAL and nCEH, two key enzymes for the hydrolysis of lipids like triglycerides
and cholesteryl ester (Figure 5B). These results suggest that bromelain may promote the
hydrolysis of lipids by activating the AMPK–TFEB–autophagy pathway in the livers of
apoe−/− mice. On the other hand, TFEB has been reported to reduce ROS by upregulating
antioxidant genes such as GPx, HO1, SOD1, and SOD2. We therefore examined whether
the TFEB-mediated increase in antioxidant capacity is involved in the beneficial effects of
bromelain on hepatic lipid accumulation in apoe−/− mice. As shown in Figure 6, treatment
with bromelain decreased the levels of lipid peroxidation and 4-HNE in the livers of
apoe−/− mice (Figure 6A,B). Moreover, bromelain downregulated the protein expression of
NOX1, NOX2, and NOX4 in the livers of apoe−/− mice (Figure 6C). Moreover, bromelain
increased the antioxidant capacity, including the levels of total antioxidants, antioxidant
proteins, and small molecules, as well as the protein levels of GPx, HO-1, SOD1, and SOD2,
in the livers of bromelain-treated apoe−/− mice (Figure 6D,E). These findings suggest that
bromelain may increase antioxidant capacity by activating the AMPK–TFEB–autophagy
pathway in the livers of apoe−/− mice.
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Figure 5. Bromelain triggers autophagy in the livers of apoe−/− mice. Male apoe−/− mice were orally
administered bromelain (BL, 20 mg/kg/day) or vehicle (PBS) for four weeks. (A) Immunostaining
with anti-LC3 antibody in the livers of bromelain- or vehicle-treated apoe−/− mice. Scale bar = 25 µm.
The hepatocytes with LC3 positive signals were indicated by arrows. (B) Western blot analysis of
p-AMPK, AMPK, TFEB, LC3, SQSTM1, LAL, nCEH, and β-actin. * p < 0.05 vs. vehicle-treated
apoe−/− mice.
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Figure 6. Bromelain decreases oxidative stress by increasing antioxidant capacity in the livers of
apoe−/− mice. Male apoe−/− mice were orally administered bromelain (BL, 20 mg/kg/day) or vehicle
(PBS) for four weeks. (A) The hepatic levels of lipid peroxidation in the livers of bromelain- or vehicle-
treated apoe−/− mice. (B,C) Western blot analysis of 4-HNE, NOX1, NOX2, NOX4, and β-actin.
(D) The levels of total antioxidant capacity, antioxidant proteins, and small molecules. (E) Western
blot analysis of GPx, HO-1, SOD1, SOD2, and β-actin. * p < 0.05 vs. vehicle-treated apoe−/− mice.

Moreover, similar results regarding the beneficial effects of bromelain on AMPK–TFEB
pathway-mediated autophagy and antioxidant capacity were observed in the atherosclerotic
aortas of apoe−/− mice (Figures 7 and 8). Together, these results indicate that the activation
of the AMPK–TFEB pathway is important for the valuable effects of bromelain in regulating
autophagy-mediated lipid hydrolysis and antioxidant capacity. This regulation leads to the
alleviation of atherosclerosis in apoe−/− mice (Figure 9).
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Figure 7. Bromelain activates autophagy in the aortas of apoe−/− mice. Male apoe−/− mice were orally
administered bromelain (BL, 20 mg/kg/day) or vehicle (PBS) for four weeks. (A) Immunostaining
with anti-LC3 antibody in aortas of bromelain- or vehicle-treated apoe−/− mice. Scale bar = 25 µm.
The vascular cells with LC3 positive signals were indicated by arrows. (B) Western blot analysis
of p-AMPK, AMPK, TFEB, LC3, SQSTM1, LAL, nCEH, and β-actin. * p < 0.05 vs. vehicle-treated
apoe−/− mice.
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Figure 8. Bromelain decreases oxidative stress by increasing antioxidant capacity in the aortas of
apoe−/− mice. Male apoe−/− mice were orally administered bromelain (BL, 20 mg/kg/day) or vehicle
(PBS) for four weeks. (A) The aortic levels of lipid peroxidation of bromelain- or vehicle-treated
apoe−/− mice. (B,C) Western blot analysis of 4-HNE, NOX2, and β-actin. (D) The levels of total
antioxidant capacity, antioxidant proteins, and small molecules. (E) Western blot analysis of GPx,
HO-1, SOD1, SOD2, and β-actin. * p < 0.05 vs. vehicle-treated apoe−/− mice.
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Figure 9. The proposed molecular mechanisms by which bromelain activates TFEB to reduce lipid
accumulation, oxidative stress, and inflammation and also to retard atherosclerosis progression.
Bromelain induces TFEB activation, which upregulates the expression of autophagy- and antioxidant-
related proteins and alleviates lipid accumulation, oxidative stress and inflammation, leading to the
retardation of atherosclerotic progression in apoe−/− mice.

4. Discussion

Bromelain is reported to exert protective effects against inflammatory diseases and
NAFLD [1–3]. However, the effects of bromelain and the underlying molecular mechanisms
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in the physiology and pathology of the cardiovascular system remain elusive. We therefore
used a hyperlipidemia- and atherosclerosis-prone mouse model to investigate the involved
mechanism. In this study, we provide new evidence supporting the beneficial effect and
regulatory mechanism of bromelain on the pathology of atherosclerosis. We found that
treatment with bromelain for four weeks in apoe−/− mice decreased the body weight and
the organ weight, including of the WAT and the liver. These results were in line with the
previous findings that the daily treatment of mice with bromelain for 12 weeks alleviated
high-fat-diet-induced obesity as compared to vehicle-treated C57BL/6 mice [7]. Regarding
the anti-obesity properties, Dave et al. reported that bromelain inhibits adipogenesis by
inducing apoptosis and lipolysis in adipocytes [6]. We further demonstrated that brome-
lain improved hyperlipidemia and aortic inflammation in apoe−/− mice and ultimately
slowed down the progression of atherosclerosis. These findings suggest that bromelain has
beneficial effects against atherosclerosis by regulating lipid metabolism and inflammation.
However, the means by which bromelain regulates the hepatic lipid metabolism and aortic
inflammatory response in apoe−/− mice and its detailed molecular mechanism(s) remain
blurred. Additional research exploring the cellular and molecular mechanisms underlying
the anti-atherogenic action of bromelain is warranted.

Notably, Castell et al. reported that the pharmacokinetics of bromelain in human
has been performed and that they found that, after oral administration with bromelain
(3 g/day) for 3 days, the non-degraded bromelain can enter into circulation through
intestinal absorption and retain its biological enzyme actimvity [35]. They demonstrated
that the levels of bromelain in blood are range from 3.9 to 26.9 µg/mL after 600 mg
oral administration in human. In this study, 20 mg/kg/day of bromelain was adopted.
According to the Meeh–Rubner equation, the daily intake of 20 mg/kg of bromelain for
mice is comparable to the daily intake of 200 mg of bromelain for humans [7]. Moreover,
our preliminary results demonstrated that boiled bromelain failed to inhibit the oleic acid-
induced lipid accumulation in hepatocytes (data not shown). Therefore, we thought that the
proteolytic activity is required for the anti-atherogenic action of bromelain. Nevertheless,
the molecular mechanism underlying the beneficial effect of bromelain and its target
proteins on the enzymatic activity remains to be investigated.

In addition to pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and MCP-1,
chemokines such as macrophage migration inhibitory factor and CXCL12 play an im-
portant role in the initiation and the progression of arteriosclerosis [28–31]. CXCR4, the
specific receptor for CXCL12, is expressed in the vascular cells and macrophages and
plays a crucial role in leukocyte recruitment into vessel walls and monocyte–macrophage
differentiation, as well as macrophage polarization, during the development of atherosclero-
sis [35,36]. CXCL12 promotes atherosclerosis by deregulating the cholesterol metabolism of
macrophage foam cells and leads to the acceleration of atherosclerosis [37,38]. In contrast, a
functional CXCR4 blockade exacerbates the progression of atherosclerosis [39], and the cell-
specific deletion of CXCR4 in arterial endothelial cells or smooth muscle cells accelerates
the progression of atherosclerosis in apoe−/− mice [40]. These lines of evidence suggest that
the role of CXCL12 and CXCR4 in atherosclerosis is still under debate. Nevertheless, our
results showed that treatment with bromelain decreased the aortic levels of TNF-α, IL-1β,
IL-6, MCP-1, and CXCR4, and consequently lessened the size of atherosclerotic lesions.
This is in the agreement with the previous findings that the inhibition of the inflammatory
response within the artery wall decelerates atherosclerotic progression [41,42]. Based upon
our observations, we further confirmed the anti-atherogenic effect of bromelain by using
PET/CT imaging with [68Ga]-APD, which has been designed as a PET tracer of CXCR4 for
the imaging of atherosclerosis [43].

Autophagy is an indispensable biological process by which cytoplasmic components
are sequestered in double-membrane vesicles and degraded on fusion with lysosomal
compartments [33]. Hu et al. reported that bromelain triggers the activation of autophagy,
which is closely regulated by AMPK and plays an important role in treating NAFLD
and related lipid disorders [7,8]. Additionally, TFEB activity is also regulated by AMPK
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phosphorylation [27,44]. Under physiological conditions, TFEB is located in the cytoplasm;
however, certain conditions, such as starvation, lysosomal dysfunction, or oxidative stress
by lipid accumulation, induce the translocation of TFEB to the nucleus, where it stimulates
the transcription of its target genes, including autophagic and lysosomal genes [45–47]. Our
results further confirmed this notion. Treatment with bromelain induced the levels of LC3
puncta in the liver and atherosclerotic lesions of apoe−/− mice and the phosphorylation of
AMPK protein expression, leading to upregulated TFEB and triggering the expression of
autophagy-related proteins, including LC3-I and LC3-II, but reducing the protein levels of
SQSTM1, suggesting that AMPK phosphorylation is required for the activation of TFEB.
Triggering the autophagy pathway leads to the beneficial effects of bromelain in reducing
lipid metabolism, both in the liver and atherosclerotic lesions of apoe−/− mice. These results
are consistent with previous findings that fenofibrate, a PPARα agonist, improved hepatic
lipid accumulation by upregulating TFEB-mediated lipophagy [48]. In view of its function,
TFEB activation, induced by nuclear receptor PPARα with currently available drugs or new
molecules, might be a therapeutic target for the treatment of metabolic diseases.

Oxidative stress is an imbalance between pro-oxidants and antioxidants, have often
been inconsistent in demonstrating health benefits in terms of quantitative measures of
disease outcome [49,50]. Furthermore, oxidative stress can be quantified in humans as
the redox state of plasma glutathione/oxidized glutathione ratio (SH/GSSG) [50]. Several
lines of evidence indicate that the deregulation of NOX–ROS signaling plays an important
role in the key events in the development of atherosclerosis [51–54]. Targeting the ROS
pathway with antioxidants has therapeutic value in preventing oxidative stress-mediated
metabolic disorders [51–54]. As a consequence, antioxidant therapy is a typical method for
atherosclerosis treatment. Thus, the TFEB-mediated increase in antioxidant capacity could
partially explain its anti-inflammatory function [55]. Interestingly, our data revealed that
treatment with bromelain decreased ROS generation and NOX activity in the livers and
aortas of apoe−/− mice. Moreover, the levels of antioxidants were significantly increased
in the livers and aortas of bromelain-treated apoe−/− mice. Our results suggest that TFEB
activation is required to trigger the autophagy pathway under the beneficial effects of
bromelain in reducing lipid metabolism in the aortas of apoe−/− mice. Our findings are
consistent with those of Lu et al. (2017), who found that TFEB overexpression in endothelial
cells decreased the intracellular ROS and upregulated the gene expression of antioxidants
HO-1 and SOD2, which was attributed to the anti-inflammatory effect of TFEB [56,57]. In
view of its function, treatment with bromelain confers protection against oxidative stress
and inflammatory responses, leading to the alleviation of the progression of atherosclerosis
by activating TFEB to stimulate antioxidant generation.

5. Conclusions

In conclusion, our findings elucidate the novel function of bromelain. This suggests
that TFEB activation to stimulate autophagy- and antioxidant-related proteins is the mecha-
nism by which bromelain provides protection from the deregulation of lipid metabolism,
oxidative stress, and inflammation, leading to the mitigation of atherosclerosis (Figure 9).
Our study reveals a new molecular mechanism underlying the protective effects of brome-
lain on atherosclerosis. We thus offer supporting evidence for a link between bromelain
and TFEB, a link which activates the autophagy component and antioxidant generation
in the liver and aortas. Our findings are vital for a better understanding of the regula-
tory mechanism of bromelain and for the identification of new therapeutic targets for the
treatment of atherosclerosis.
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