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Abstract: The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy
not only seriously reduces people’s quality of life and increases morbidity and mortality, but also
causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal
muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise
therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable
for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore,
understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new
therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles
that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy.
Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system,
autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically
expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This
review focuses on current treatments and strategies for skeletal muscle atrophy, including drug
treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme
and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-
derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy
(electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser
therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate,
and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation,
and oxygen supplementation). Considering many treatments have been developed for skeletal
muscle atrophy, we propose a combination of proper treatments for individual needs, which may
yield better treatment outcomes.

Keywords: skeletal muscle atrophy; drug treatment; gene therapy; stem cell therapy; cytokine
therapy

1. Introduction

Skeletal muscle is one of the largest, most dynamic, and plastic tissues in the body,
comprising approximately 40% of the total body mass and containing 50–75% of overall
body protein stores. Skeletal muscle is primarily responsible for body movement, protein
storage, thermogenesis, metabolism, and visceral protection [1]. Mechanically, the major

Antioxidants 2023, 12, 44. https://doi.org/10.3390/antiox12010044 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox12010044
https://doi.org/10.3390/antiox12010044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-5145-4761
https://orcid.org/0000-0003-1889-1561
https://doi.org/10.3390/antiox12010044
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox12010044?type=check_update&version=1


Antioxidants 2023, 12, 44 2 of 30

function of skeletal muscle is to convert chemical energy into mechanical energy to generate
force and momentum, maintain posture, and produce movements that affect physical activ-
ities. Metabolically, skeletal muscle promotes basal energy metabolism, stores important
substrates such as amino acids and carbohydrates, and generates heat to maintain core
temperature. Skeletal muscle is also a library of amino acids required for the synthesis
of organ-specific proteins by other organs, such as the skin, brain, and heart. Amino
acids released by skeletal muscle are beneficial for maintaining glucose homeostasis under
starvation conditions [2]. Given the above, the maintenance of skeletal muscle homeostasis
plays a crucial role in maintaining good life and health. Various factors can disturb skeletal
muscle homeostasis and thus trigger skeletal muscle atrophy, including diseases (such
as diabetes mellitus, cancer, and chronic obstructive pulmonary disease), weightlessness,
denervated disuse states, fasting, and aging [3,4]. Ageing is accompanied by a progressive
decline in skeletal muscle mass and strength, which may lead to primary sarcopenia [5].
Skeletal muscle atrophy impairs the body’s ability to respond to stress and chronic diseases,
severely reduces people’s quality of life, increases morbidity and mortality, brings a huge
socioeconomic burden, and impacts patient prognosis [6]. Therefore, the prevention and
treatment of skeletal muscle atrophy aroused great concern of scholars and clinicians. How-
ever, because the molecular mechanism of skeletal muscle atrophy is not fully understood,
there is currently no effective treatment for skeletal muscle atrophy.

2. Methods

The review article is based on a selective literature search in PubMed for publications
of the five years from 2017 to 2022. The following keywords were used: “muscle atrophy”
and “therapy”. Further targeted searches were performed including “Drug treatment”,
“Gene therapy”, “Stem cell”, “physical therapy”, “cytokines”, and “Nutrition” as a therapy
for muscle atrophy. The screening process was independently performed by two reviewers
who were blind to each other’s results. First, we screened the articles based on the title and
abstract. Then, we thoroughly read the full texts and screened. If there were disagreements
on the inclusion of an article, a consensus was reached through the participation of the
third reviewer. From the search results, we screened the reference lists of above included
articles and added corresponding studies. After investigations of all searched articles,
179 manuscripts were finally selected to accomplish this review (Figure 1).Antioxidants 2023, 12, x FOR PEER REVIEW 3 of 31 
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3. Molecular Mechanisms of Skeletal Muscle Atrophy

The molecular mechanism of skeletal muscle atrophy is complex and has not yet been
fully elucidated. The continuous renewal of muscle proteins is the result of the balance
between protein synthesis and degradation in muscle tissue [7]. Decreased protein syn-
thesis and increased proteolysis will trigger skeletal muscle atrophy (Figure 1). Increased
oxidative stress, inflammation, and decreased mitochondrial function are considered im-
portant triggering signals for skeletal muscle atrophy caused by various diseases. This is
because these phenomena can activate downstream proteolysis and inhibit protein synthe-
sis, thereby causing skeletal muscle atrophy (Figure 2) [8,9]. Our previous study proposed
for the first time that denervation-induced muscle atrophy can be divided into four stages:
oxidative stress, inflammation, atrophy, and atrophic fibrosis. This can be explained as the
loss of contractile function of the target muscle due to denervation, resulting in reduced
blood perfusion and making the target muscle in a state of relative hypoxia. Then, excessive
reactive oxygen species can generate and cause oxidative stress injury, which induces
the production of a large number of inflammatory cytokines, such us IL-1, TNF-α, and
IL-6. These inflammatory cytokines further activate inflammatory response pathways,
including nuclear factor NF-κB, and JAK/STAT and TAK1/p38MAPK pathways initiate
the expression of genes related to the downstream proteolysis system and cause atrophy
of the target muscle [10]. Inflammation, oxidative stress and some other factors may in-
crease Myostatin (MSTN) synthesis while excessive MSTN can activate Smad2/3 pathway,
which subsequently promotes proteolysis, ultimately causing muscle atrophy [11]. There
are four main pathways available for proteolysis, including ubiquitin-proteasome system
(UPS), autophagic-lysosomal pathway (ALP), caspases, and calpains [12–15]. Complete
protein degradation requires the synergy of these hydrolysis systems [16]. Caspase-3 and
calpain mainly function to cleave target proteins into fragments while ALP and UPS further
degrade proteins and protein fragments into amino acids [14]. UPS, ALP, and caspase-
3 act as “erasers” to degrade and eliminate substrate proteins. In contrast, calpain can
also hydrolyze its substrates at a limited number of protein sites to change or modulate
its substrate structure and activity, enabling the substrate to further exert its biological
functions [17]. IGF-1/Akt is the major pathway for protein synthesis in skeletal muscle.
IGF-1 increases protein synthesis in skeletal muscle via the PI3K/Akt/mTOR pathways.
PI3K/Akt can also inhibit the transcription of E3 ubiquitinligase by inhibiting FoxOs,
thereby slowing proteolysis [18]. Histone deacetylase 4 (HDAC4) is a negative regulator of
Dach2, which subsequently regulated the expression of MYOG. HDAC4 Knockdown can
alleviate denervation-induced muscle atrophy by inhibiting myogenin-dependent atrogene
activation [19]. Overall, the molecular mechanism of muscle atrophy is very complex and
has not been fully elucidated so far. Further studies are still needed to provide potential
targets and new therapeutic strategies for muscle atrophy.
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Figure 2. The molecular mechanism of skeletal muscle atrophy. ALP, autophagy–lysosome pathway;
DACH2, dachshund homolog 2; FOXO, forkhead transcription factor O-box subfamily; HDAC4,
histone deacetylase 4; IGF-1, insulin-like growth factor 1; IL-6, interleukin 6; IL-1, interleukin 1;IRS,
insulin receptor substrate; IL, interleukin; JAK, janus kinase; mTOR, mammalian target of rapamycin;
NF-kB, nuclear factor-kB; PI3K, phosphoinositide 3-kinases; ROS, reactive oxygen species; STAT3,
signal transducer and activator of transcription 3; TAK1, transforming growth factor b-activated
kinase 1; TNF-α, tumor necrosis factor-a; TRAF, TNF receptor-associated factor; UPS, ubiquitin–
proteasome system.

4. Treatments

Skeletal muscle atrophy is characterized by a marked reduction in muscle mass, a
reduced quality of life for patients, and increased morbidity and mortality. Muscle atrophy
is mainly caused by the imbalance of protein synthesis and degradation. Oxidative stress
and inflammation are the main factors that cause muscle atrophy. The treatment of skeletal
muscle atrophy has made rapid progress. The current treatment methods are mainly
aimed at anti-inflammatory, anti-oxidation, promoting protein synthesis, inhibiting protein
degradation, and promoting muscle regeneration, thereby preventing or reducing muscle
atrophy. These potential therapeutic methods mainly include drug treatment, gene therapy,
stem cell and exosome therapy, cytokine therapy, physical therapy, nutrition support, and
other therapies (Figure 3).
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Figure 3. The current potential therapeutic strategy for skeletal muscle atrophy. VEGF, vascular
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factor-1; PEDF, pigment epithelium-derived factor; BMP, bone morphogenetic protein-7.

4.1. Drug Therapy

Currently, the drugs commonly used to treat skeletal muscle atrophy mainly include
active substances of traditional Chinese Medicine, chemical drugs, antioxidants, hormone
drugs, enzyme, or enzyme inhibitors (Table 1).

Table 1. Drugs in the treatment of skeletal muscle atrophy.

Drug/
Compound Mechanism of Action Function Ref.

Active
Substances of

Traditional
Chinese

Medicine

Magnesium
Lithospermate B

Activation of the PI3K-Akt-FoxO1
pathway and inhibition of the
TNF-α/TNFRI/NF-κB pathway
Inhibition of MAFbx- and
MuRF1-mediated muscle
degeneration

Alleviates
obesity-related
myasthenia
gravis

[20]

Puerarin Activation of AKT/mTOR and
inhibition of autophagy

Anti-diabetic rat
muscle atrophy [21,22]

Tetramethylpyrazine

Inhibition of Ca2+/reactive
oxygen species increase and
subsequent protein hydrolysis
and apoptosis

Alleviates
waste-induced
muscle atrophy

[23]
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Table 1. Cont.

Drug/
Compound Mechanism of Action Function Ref.

mulberry leaf
flavone

Increases levels of
p-AMPK and PGC-1α;
Improvement of insulin
resistance and mitochondrial
function

Anti-type 2
diabetes mellitus [24]

Ginsenosides
Promotes myogenic cell
differentiation; Regulates the
Akt/mTOR/FoxO3 pathway

Protects
dexamethasone
-treated C2C12
myotube

[25]

Triptolide

Up-regulates protein
synthesis signals;
Downregulates
ubiquitin-proteasome,
autophagy-lysosome-related
molecules and inflammatory
mediators

Alleviates
LPS-induced
inflammation
and skeletal
muscle atrophy

[26,27]

Salidroside

Inhibits overproduction of ROS
and pro-inflammatory cytokines;
Reduce expression of Foxo3A
and inhibition of UPS and ALP
activation

Alleviates
denervation-
induced muscle
atrophy

[28–30]

Baicalin

Reversal of mitochondrial
dysfunction with reduced
expression of Cytochrome c and
apoptosis-inducing factor;
Reversal of caspase-3 and
caspase-9 activation

Protect c2c12
myoblast against
apoptosis

[31]

Corylifol A

Activates p38 MAPK pathway;
Inhibition of NF-κB-mediated E3
ligase mechanism and activation
of Akt

Protects
myotubes
against
dexamethasone
damage

[32]

Chemical Drugs

Metformin

Reduce intramuscular lipid
sediments, and increase glucose
utilization through the
AMPK/Sirt1 pathway

Alleviates
skeletal muscle
atrophy in grx1
ko mice

[33,34]

Lithium chloride
Inhibition of expression of
inflammation-related factors and
atrophy genes

Therapeutic
effects on
sepsis-induced
muscle atrophy
and cancer
cachexia.

[35,36]

Imidazolo-
oxindole

Anti-inflammatory;
Attenuates MuRF1 and
MAFbx expression;
Promotes protein synthesis
through AKT/mTOR/S6K1 axis

Therapeutic
effects in C2C12
myotubes and
LPS-treated
mouse skeletal
muscle

[37]

Antioxidants

Resveratrol

Reversal of mitochondrial
dysfunction via
PKA/LKB1/AMPK pathway;
Reversal of oxidative stress

Therapeutic
effects on
sarcopenia

[38]

Carnosol
Inhibition of TNF-α/NF-κB
pathway;
anti-malignant effects

Alleviates
muscle atrophy
and fat lipolysis
induced by
cancer cachexia

[39]

Isoquercetin
Reversal of oxidative stress;
Conversion of skeletal muscle
from slow to fast fiber types

Protective effect
on denervated
muscle atrophy

[9]
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Table 1. Cont.

Drug/
Compound Mechanism of Action Function Ref.

N-acetyl-L-
cysteine

Reduces ROS levels in
mouse muscle
Increase myosin heavy chain

Alleviates
denervation or
fasting-induced
skeletal muscle
atrophy

[3]

Pyrroloquinoline
quinone

Inhibition of Jak2/STAT3,
TGF-β1/Smad3, JNK/p38 MAPK
and NF-κB signaling pathways

Alleviates
denervation or
fasting-induced
muscle atrophy

[40]

Hormone Drugs Testosterone

Stimulates the Ras/MEK/ERK
pathway and inhibits
MSTN expression;
Inactive FoxO

Protects C2C12
skeletal muscle
cells against
apoptosis

[41,42]

Enzyme
Inhibitors and

Activators

Aspirin

Regulates STAT3 inflammatory
signaling pathway;
Regulates the Sirt1/PGC-1α
signaling axis

Alleviates
denervation-
induced muscle
atrophy

[43]

Celecoxib

Inhibition of skeletal muscle
inflammation and oxidative stress;
Inhibition of ALP and UPS;
Improves blood flow

Alleviates
denervation-
induced muscle
atrophy

[44]

Trichostatin A

Activates SMN2 gene expression
Inhibit HDAC4/MYOG/FoxO axis;
Downregulates UPS,
markers of apoptosis;
Partially preventing the reduction
of type I and type IIa fibers

Increases
survival of SMA
mouse;
Anti-atrophy
induced by
cigarette smoke
exposure and
unloading

[45–48]

Rolipram
Decrease MAFbx and MuRF1 levels;
Decrease the activity of calpain
and caspase-3

Alleviates
skeletal muscle
atrophy in
diabetes mellitus
rats

[49]

Roflumilast

Upregulates of the NRF2,
sirtuin-1 pathway;
increases cAMP signaling;
decrease UPS and MSTN gene
expression

Therapeutic
effect of muscle
wasting in
patients with
COPD

[50]

Torbafylline(HWA
448)

Anti-inflammation;
Activates
PDE4/cAMP/Epac/PI3K/AKT
pathway

Alleviates
skeletal muscle
atrophy caused
by injury,
denervation,
diabetes
mellitus, cancer,
and sepsis

[51]

Pentoxifylline
Activates cAMP and AKT;
Inhibits the expression of
atrogenes and calpain/caspase-3

Mitigates the loss
of muscle mass in
diabetic rats

[52]

ALKBH5
Demethylation of HDAC4 mRNA
and stabilization of HDAC4 mRNA;
Block the activation of FoxO3

Alleviates
denervation-
induced muscle
atroph

[53–55]

4.1.1. Active Substances of Traditional Chinese Medicine

The main hydrophilic component of Salvia miltiorrhiza is magnesium lithospermate
B. In high fat diet-induced obese mouse models, administration of magnesium lithosper-
mate B could prevent obesity-related skeletal muscle atrophy by inhibiting MAFbx and
MuRF1-mediated muscle degeneration [20]. Puerarin is a flavonoid isoflavone extracted
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from pueraria, which can reduce hyperglycemia and various diabetes-associated compli-
cations. After 8 weeks of oral administration of puerarin, the muscle strength and body
mass of type I diabetes mellitus rats were enhanced, and the cross-sectional area of the
skeletal muscle was also enlarged, which may be closely related to the fact that puerarin can
activate AKT/mTOR and inhibit autophagy [21,22]. Tetramethylpyrazine is the main active
component of Ligusticum wallichii Franchat. ITetramethylpyrazine may also ameliorate
the disuse-induced loss of muscle mass by inhibiting calcium overload and reactive oxygen
species (ROS)-mediated proteolysis and apoptosis [23]. Morus alba L., an effective tradi-
tional Chinese medicine or beneficial medical supplement, has been widely used to control
blood glucose [56]. Morus alba L. could increase the levels of p-AMPK and PGC-1α in
skeletal muscle and significantly improve insulin resistance and mitochondrial dysfunction
in skeletal muscle and L6 myocytes of db/db mice through the AMPK-PGC-1α signaling
pathway [24]. Ginsenosides, the main active compounds in ginseng, can prevent memory
loss, and they have anti-inflammatory, antioxidant, anti-diabetes mellitus, and anti-tumor
effects [25,57]. In Drosophila melanogasters and dexamethasone-treated C2C12 myotube
atrophy models, 20(S)-ginsenoside Rg3 has been confirmed to promote myoblast differenti-
ation and protect myotube atrophy by regulating the AKT/mTOR/FoxO3 pathway [58,59].
In lipopolysaccharide-treated C2C12 myotubes, triptolide up-regulated protein synthesis
signals (IGF-1/Akt/mTOR) and down-regulated protein degradation signal. Triptolide
prevented LPS-induced inflammation and skeletal muscle atrophy and might be a novel
agent for preventing muscle wasting [27]. Salidroside acts as a bioactive component of
Rhodiola rosea and has various functions, such as anti-inflammation, antioxidant, and
anti-apoptosis. In a denervation-induced muscle atrophy model, salidroside inhibited the
overproduction of ROS and pro-inflammatory cytokines (IL-6), decreased the expression of
Foxo3A (a major mediator of skeletal muscle atrophy), inhibited the activation of UPS and
ALP, which alleviated muscle atrophy [28,29]. Baicalin is a flavonoid glycoside extracted
from Scutellaria baicalensis with anti-apoptotic and anti-inflammatory effects. It can effec-
tively reverse mitochondrial dysfunction, decrease the expression of Cytochrome-c and
apoptosis-inducing factors, and activate caspase-3 and caspase-9, thereby inhibiting apopto-
sis in C2C12 myoblasts and protecting skeletal muscle from injury [31]. Atractylenolide I is
a natural sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, inhibited
the phosphorylation of STAT3 and PKM2, leading to the downregulation of glycolysis
effect and p-SNAP23 expression, reduced EV secretion, thus attenuating muscle wasting
and adipose degradation [60]. Corylifol A is one of the active ingredients isolated from
Psoralea corylifolia L. and has a strong ability of myogenesis [61]. Corylifol A reduces the
expression of muscle-specific E3 ubiquitin ligases (MAFbx and MuRF1) and MSTN while
activating AKT and protecting myotubes from dexamethasone-induced injury [32]. To
conclude, the active substances of traditional Chinese medicine mainly prevent and treat
muscle atrophy through anti-inflammatory and antioxidant mechanisms.

4.1.2. Chemical Drugs

IL-6/JAK/STAT3 signaling pathway activated in denervation-induced skeletal muscle
atrophy [62,63]. Inhibition of IL-6/JAK/STAT3 signaling pathway by tocilizumab (an
anti-IL-6 receptor antibody), ruxolitinib (a JAK1/2 inhibitor), or C188-9 (a STAT3 inhibitor)
can suppress proteolysis to alleviate skeletal muscle atrophy [33]. Metformin is a widely
used drug for type 2 diabetes mellitus, which can maintain redox homeostasis and induce
few side effects [64]. Continuous intraperitoneal injection of metformin for 15 days can
alleviate skeletal muscle atrophy in grx1 ko mice, reduce intramuscular lipid sediments,
and increase glucose utilization through the AMPK/Sirt1 pathway [34]. Lithium chloride
has been shown to enhance muscle differentiation in vitro and prevent muscular dys-
trophy [35]. In an in vitro and in vivo experiment, lithium chloride exerted therapeutic
effects on inflammation-mediated skeletal muscle wasting, such as sepsis-induced muscle
atrophy and cancer cachexia [36]. Malotilate, a clinically safe drug and 5-lipoxygenase
inhibitor, prevents skeletal muscle atrophy by targeting organogenesis signalling and
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insulin-like growth factor-1 [65]. Imidazolo-oxindole is a chemical substance that inhibits
the autophosphorylation and activity of dependent kinases. It can attenuate LPS-induced
inflammation and MuRF1 expression in mouse skeletal muscle, and can alleviate skeletal
muscle atrophy by promoting protein synthesis through the AKT/mTOR/S6K1 axis in
C2C12 myotubes [37,66]. To conclude, the chemical drugs mainly prevent muscle atrophy
through anti-inflammation.

4.1.3. Antioxidants

Damage to the antioxidant defense system can increase ROS production, which further
causes mitochondrial dysfunction and apoptosis [67]. Excessive ROS can also up-regulate
the expression of IL-6, TNF-α, and TGF-β, acting on MSTN to unbalance protein synthesis
and degradation and eventually leading to skeletal muscle atrophy [23,68]. Thus, antioxi-
dants may have great potential as adjunctive therapy against injury, chronic inflammation,
or oxidative stress. For example, melatonin, coenzyme Q10, creatine, vitamin D, and vita-
min E have been shown to effectively prevent skeletal muscle atrophy [69,70]. Polyphenols
are potent natural antioxidants that significantly inhibit oxidative stress and inflammation,
thereby reversing mitochondrial dysfunction [71]. Resveratrol prevents sarcopenia by
reversing mitochondrial dysfunction and oxidative stress through the PKA/LKB1/AMPK
pathway [38]. Carnosol is a bioactive diterpene compound in Lamiaceae plants, which has
antioxidant, anti-inflammatory, and anticancer properties. It mainly exerts anti-cachexia
effects by inhibiting the TNF-α/NF-κB pathway and reducing muscle and fat loss [39].
Isoquercetin is a bioactive flavonoid with antioxidant and anti-inflammatory properties.
Our previous study showed that ROS production decreased in denervated skeletal mus-
cle after treatment with isoquercetin, which may be related to the up-regulation of an-
tioxidant factors (SOD1, SOD2, NRF2, NQO1, and HO1) and the down-regulation of
ROS production-related factor (Nox2), and isoquercetin also reversed slow-to-fast fiber
type transition after denervation to alleviate target muscle atrophy and mitophagy [9].
In another study, treatment with N-acetyl-L-cysteine (a clinically used antioxidant) or
pyrroloquinoline quinone (a natural antioxidant) could reduce ROS levels in mouse dener-
vated mouse muscle, increase myosin heavy chain and cross-sectional area, and reverse
nutrient deprivation-induced C2C12 myotube atrophy [3]. Intraperitoneal injection of
pyrroloquinoline quinone (5 mg/kg/d) for 14 days could attenuate denervation-induced
mitophagy, fiber-type transition, and skeletal muscle atrophy by inhibiting Jak2/STAT3,
TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways [40]. Therefore, antioxi-
dants are important candidates for the prevention and treatment of muscle atrophy.

4.1.4. Hormone Drugs

Hormones are crucial for cell growth and development. Testosterone is an andro-
genic steroid with a major effect on fat composition and muscle mass of the male body.
Androgens attenuate muscle loss and inhibit the slow-to-fast fiber type transition after
spinal cord injury in a manner independent of mechanical strain while promoting motor
neuron survival. Androgens can increase follistatin expression, decrease MSTN expression,
downregulate Acvr2b receptor and Smad 2/3 phosphorylation, inhibit MSTN signaling
molecules, and upregulate myogenic markers (MyoD, myogenin, myotube formation, and
myonuclei) [72,73]. In the case of cachexia and sarcopenia, exercise is impracticable, and
the use of testosterone may be a viable intervention strategy to enhance muscle function.
Testosterone in muscle cells can directly stimulate the Ras/MEK/ERK pathway and inhibit
MSTN expression [74]. Testosterone also has a potent anti-apoptotic effect in muscle, which
inactivates FoxO elements and counteracts H2O2-induced upregulation of pro-apoptotic
genes [41]. Selective androgen receptor modulators are also being developed to avoid
various side effects of currently available anabolic steroids [75]. Selective androgen receptor
modulators cannot be metabolized into dihydrotestosterone or estrogen, thereby reducing
the risk of benign prostatic hyperplasia. However, whether selective androgen receptor
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modulators can be used in combination with other drugs to treat skeletal muscle atrophy
remains to be explored.

Ghrelin is a growth hormone-releasing polypeptide containing 28 amino acids, mainly
produced by gastrointestinal tissues, especially the stomach [76]. Ghrelin assists in food
absorption and controls the expression of IGF-1 and growth hormone at certain levels to
maintain body and muscle mass [77]. However, ghrelin is unfit for medicinal use due to
its short half-life. Therefore, anamorelin, which is an orally available and long half-life
non-peptide ghrelin mimetic, has been developed [78,79]. Despite their promise, growth
hormone-releasing peptides may induce peripheral insulin resistance and diabetes mellitus.
Therefore, further research and exploration are still needed.

4.1.5. Enzyme Inhibitors and Activators
Cyclooxygenase-2 Inhibitors

Cyclooxygenase exists as two isoforms, namely Cox-1 and Cox-2. Among all these
isoenzymes, Cox-2 is the rate-limiting enzyme for prostaglandin synthesis and has been
identified as a positive regulator of pathophysiological processes, such as inflammation
and oxidative stress. Cox-2 is generally expressed at low or no levels in tissues but is
rapidly expressed in response to noxious stimuli or cytokines such as inflammation, ox-
idative stress, autoimmune responses, mechanical damage, and TGF-β stimulation [80,81].
Aspirin is an inhibitor of Cox-1 and Cox-2 and can effectively relieve denervation-induced
skeletal muscle atrophy via the intraperitoneal approach. Aspirin can relieve denervation-
induced skeletal muscle atrophy by regulating STAT3 inflammatory signaling pathway
and Sirt1/PGC-1α signaling axis, and it can suppress slow-to-fast fiber type transition
and mitophagy [43]. Celecoxib is a selective inhibitor of Cox-2. Celecoxib can inhibit
denervation-induced skeletal muscle inflammation and oxidative stress, thus controlling
the autophagy-lysosomal hydrolysis system and proteasome hydrolysis system, improving
blood flow to target muscles, and ultimately alleviating denervation-induced skeletal mus-
cle atrophy [44]. Meloxicam can attenuate lipopolysaccharide-induced protein catabolism
in rat muscle by inhibiting the expression of Cox-2, MAFbx, and MuRF1 [82]. Existing
evidence has shown that blocking Cox-2 can inhibit fiber formation after injury-induced
skeletal muscle atrophy and can inhibit AKT signaling by inhibiting upstream PDK1 ex-
pression and impeding TRAF4 recruitment to AKT [83]. Therefore, the Cox-2/PDK1/AKT
signaling pathway is expected to become a target for the treatment of skeletal muscle
atrophy. Celecoxib treatment has been reported to increase SMN protein levels, improve
motor function, and increase survival in a mouse model of severe SMA [84]. After anterior
cruciate ligament reconstruction, Celecoxib can effectively reduce quadriceps atrophy while
inducing a small increase in C-reactive protein level [85]. Overall, Cox-2 inhibitors can
effectively relieve skeletal muscle atrophy, which are important candidates for the treatment
of muscle atrophy in clinical practice.

Histone Deacetylase Inhibitors

Maintaining the homeostasis between histone acetyltransferases and histone deacety-
lases is critical for maintaining muscle mass. Under atrophic conditions, this process is
disturbed, which activates proteolytic machinery and leads to the degradation of muscle-
specific proteins [86]. Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase
inhibitor has become a candidate drug for the treatment of SMA. SAHA is more effective
than valproic acid and has been commonly used in clinical practice. SAHA treatment sig-
nificantly increased SMN levels and vascular density in a SMA mouse model, suggesting
that vascular defects in SMA mice could be treated with SAHA [87]. Trichostatin A is also
a well-known class I and class II histone deacetylase inhibitor. It activates SMN2 gene
expression in vivo and ameliorates SMA phenotypes when administered after onset [47].
Studies have shown that trichostatin A can treat C2C12 myotube atrophy caused by nutri-
tional deficiency and inactivate FoxO by reducing HDAC4 activity and myogenin levels,
thus alleviating denervation-induced skeletal muscle atrophy [86,88]. Trichostatin A can
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inhibit cigarette smoke exposure-induced skeletal muscle atrophy by downregulating the
markers of UPS, apoptosis, and pyroptosis via HDAC1/2 inhibition [45]. Trichostatin A
inhibits unloading-induced soleus muscle atrophy through MuRF1 regulation, partially
suppressing the decline in type I and type IIa fibers in the soleus muscle and reversing
the transition from slow-twitch to fast-twitch muscle fibers [48]. Continuous injection of
HDAC1 inhibitor CI-994 (1 mg/kg/day) for 3 days in male Wister rats suspended from
the hindlimb significantly inhibited the decrease and atrophy of actin content in the soleus
muscle of rats [89]. In conclusion, Histone deacetylase inhibitor can be used as a candidate
drug in preventing or reducing skeletal muscle atrophy.

Phosphodiesterase Inhibitors

Phosphodiesterase (PDE) is an intracellular enzyme that can degrade cAMP and/or
cGMP. The use of PDE inhibitors is very promising in modulating multiple pathophys-
iological conditions including skeletal muscle atrophy. Rolipram and roflumilast, two
PDE-selective inhibitors, have been confirmed to alleviate skeletal muscle atrophy in ani-
mal models of chronic diseases. Rolipram can reduce the levels of MAFbx and MuRF1 in
the soleus muscle and extensor digitorum longus and reduce the activity of calpain and
caspase-3 to treat skeletal muscle atrophy in diabetes mellitus rats [49]. In myotubes of
patients with cachexia and chronic obstructive pulmonary disease, roflumilast improves the
expression of slow myosin and fast myosin isoforms, increases cAMP signal, and reduces
UPS and MSTN gene expression via NRF2 upregulation to promote antioxidant defense
pathways and histone deacetylase sirtuin-1 pathway, thus treating muscle dysfunction
and atrophy [50]. Torbafylline (HWA 448) and pentoxifylline are two non-selective PDE
inhibitor xanthine derivatives that help prevent skeletal muscle atrophy induced by cancer,
sepsis, trauma, sepsis, chronic obstructive pulmonary disease, and fasting. Torbafylline
reduces inflammatory cytokine levels in skeletal muscle atrophy caused by injury, denerva-
tion, diabetes mellitus, cancer, and sepsis. In animal models, pentoxifylline administration
downregulates Ca2+-dependent calpain and Ca2+-independent Cathepsin L, stimulates
cAMP formation, and reduces the overall rate of protein degradation. Burn increases
muscle PDE4 activity and proteolysis and decreases cAMP levels. Torbafylline can reverse
the burn-induced upregulation of PDE4 activity; decrease the cAMP level; and increase
the levels of TNFα, IL-6, ubiquitin, and E3 ligase in rat skeletal muscle, and it can then
activate the PDE4/cAMP/Epac/PI3K/AKT pathway to inhibit burn-induced muscle pro-
teolysis in the rat model of burn [51]. Pentoxifylline also mitigates the loss of muscle mass
under catabolic conditions, primarily by inhibiting protein degradation. In a rat model of
diabetes mellitus, pentoxifylline could activate cAMP and AKT and inhibit the expression
of atrogenes and calpain/caspase-3, thus relieving muscle atrophy [52]. In conclusion,
phosphodiesterase inhibitors can effectively inhibit muscle atrophy and act as candidate
drugs for the prevention and treatment of muscle atrophy.

m6A Demethylase ALKBH5

Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is a major
m6A demethylase, and the potential regulatory mechanisms of ALKBH5 that depend upon
m6A modification are related to long non-coding RNA, autophagy, and hypoxia [53,54].
Recent studies have found that ALKBH5, an m6A demethylase, can control adult muscle
mass, and m6A is a regulator of muscle health and diseases. The overexpression of ALKBH5
reduces m6A levels and further activates FoxO3 signaling, thus inducing an excessive
reduction in muscle mass. ALKBH5 demethylates HDAC4 mRNA and stabilizes HDAC4
mRNA. HDAC4 interacts with and deacetylates FoxO3, resulting in a marked increase in
FoxO3 expression and activity, whereas the specific deletion of ALKBH5 impedes FoxO3
activation and denervation-induced skeletal muscle atrophy in the mouse model [55].
These results indicate that ALKBH5 is a potential therapeutic target for neurogenic muscle
atrophy.
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4.2. Gene Therapy
4.2.1. Gene Medicine

Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular dis-
order due to mutations in the DMD gene coding for dystrophin. DMD is characterized
by progressive skeletal muscle atrophy and myocardial weakening, ultimately inducing
death. Existing evidence has shown that patients with DMD can live up to their 30 s
with the assistance of ventilators and intensive care [90]. FDA-approved ASO drugs for
DMD include eteplirsen (EXONDYS 51®), golodirsen (VYONDYS 53™), and viltolarsen
(VLTEPSO®) [91]. Ataluren (Translarna™) was the first FDA-approved drug for DMD,
primarily for use in patients with nonsense mutation DMD aged 2–5 years [92]. In 2016,
eteplirsen was FDA-approved for treating DMD with mutations in the dystrophin gene
by inducing exon 51 skipping to promote the production of functional dystrophin [93]. In
2019 and 2020, golodirsen and viltolarsen were also approved for the treatment of DMD
patients with a confirmed mutation in the dystrophin gene that is amendable to exon
53 skipping [91,94,95]. Viltolarsen is the first and only exon 53-skipping therapy to increase
dystrophin levels in children at the age of 4 years or less [95,96]. The large size of the
dystrophin gene is the major limitation for the use of gene therapy in the treatment of
DMD. Current treatment regimens generally applicable to all DMD types remain limited
in their potential benefits and are likely not to specifically target dystrophin upregulation.
Therefore, in-depth research in this field is still required.

4.2.2. Gene Overexpression and Knockdown

Muscle atrophy can be treated via the knockdown of muscle atrophy-related genes. A
recent study showed that NLRP3 knockout protected mice from sepsis-induced skeletal
muscle atrophy [97]. The knockdown of HDAC4 inhibits the conversion of type I fibers to
type II fibers by reducing the expression of MYOG, muscle-specific E3 ubiquitin ligases
(MuRF1 and MAFbx), and autophagy-related proteins (Atg7, LC3B, PINK1, and BNIP3),
and it further enhances the expression of SIRT1 and PGC-1α to alleviate denervation-
induced skeletal muscle atrophy. This provides a theoretical basis for the study of potential
drugs for neurogenic skeletal muscle atrophy [19]. The knockdown of TRAF6 attenu-
ates dexamethasone-induced skeletal muscle atrophy [4]. TRAF6-shRNA transfected into
nutrient-deprived C2C12 myotubes or injected into the tibialis anterior muscle of den-
ervated mice can simultaneously reduce the expression of MuRF1 and MAFbx, thereby
blunting the reduction of the myotube diameter and the loss of tibialis anterior muscle
mass [98]. Activated STAT3 (pSTAT3) stimulates MSTN through C/EBPδ to initiate skeletal
muscle atrophy. The knockdown of STAT3 or C/EBPδ or MSTN may serve as therapeutic
targets for skeletal muscle atrophy [33,99]. The knockdown of these key molecules can
indeed alleviate skeletal muscle atrophy, but the specific molecular mechanisms remain to
be further explored in order to provide scientific evidence for future clinical treatments.

SIRT1 is a member of the sirtuin family of class III nicotinamide adenine dinucleotide-
dependent protein deacetylases. The knockout of SIRT1 in satellite cells impairs muscle
function, and the overexpression of SIRT1 increases muscle repair and muscle fatigue
resistance in aged mice [100]. During intermittent fasting, SIRT1 can also suppress type
I fiber atrophy by deacetylating and inhibiting the transcriptional activity of FoxO1 and
FoxO3 [101]. JunB is a transcription factor that promotes cell division. When JunB is
transfected into denervated muscle, it blocks FoxO3 binding to the MAFbx and MuRF1
promoters and inhibits MAFbx and MuRF1 expression, thereby reducing proteolysis and
preventing muscle fiber atrophy [102]. The overexpression of the mitochondrial transcrip-
tion factor A (TFAM) gene reduces both soleus and gastrocnemius muscle atrophy that
occurs during hindlimb suspension [103]. TFAM is also able to protect mtDNA from ROS
degradation and initiate mitochondrial protein transcription while improving mitochon-
drial function [104]. The overexpression of PGC-1α can alleviate the effects of aging on
Fis-1 and Drp-1 expression, enhance mitochondrial oxidative function and antioxidant en-
zyme activity, reduce lipid peroxidation and endomembrane damage, effectively improve
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mitochondrial defects, and reduce muscle fiber atrophy in aged mice [105,106]. PGC-1α
can also induce myonuclear hyperplasia and reduce myonuclear domain (MND) volume
via sufficient transcription and the synthesis of mitochondria-associated proteins [107].
Mitophagy is associated with the degree of skeletal muscle atrophy. STAT3 knockdown
significantly inhibits mitophagy, manifested as decreased numbers of autophagic cells and
autophagic vesicles, as well as dramatically the decreased expression of autophagy-related
factors PINK1, BNIP3, LC3B, ATG7, and Beclin 1 [33]. To conclude, there is an emerging
therapeutic strategy for muscle atrophy, which targets the key regulatory molecules in the
process of muscle atrophy via knockdown or overexpression, thus improving the target
muscle microenvironment, inhibiting proteolysis, promoting protein synthesis, and im-
proving mitochondrial function. However, its specific molecular regulation mechanism
and biological safety still need to be further explored.

4.2.3. Non-Coding RNAs (ncRNAs)

In the literature, miRNAs have been identified as important biomarkers with impor-
tant implications for the diagnosis and treatment of various diseases [108]. Freire et al.
revealed that miR-497-5p may be involved in a compensatory mechanism in response
to IL-6-induced skeletal muscle atrophy [109]. The bone marrow-derived miR-223-3p
represses the target gene IL-6 [110]. These two miRNAs modulate the initial immune re-
sponse, rescue impaired regenerative capacity, and reduce fibrosis. In sepsis mice, miR-140
inhibits endotoxin-induced glycolysis and atrophy of skeletal muscle by negatively reg-
ulating the WNT signaling pathway and simultaneously reducing the expression of Wnt
family member 11, β-catenin, and GSK-3β [111]. After type 2 diabetes mellitus, miR-193b
induces the inactivation of the Akt/mTOR/S6K pathway, reducing protein synthesis and
muscle mass and providing a new miRNA therapeutic target for muscle regeneration in
degenerative muscle diseases [112]. With anti-fibrotic activity, miR-29 attenuates skeletal
muscle atrophy in chronic kidney disease (CKD) and miR-26a restricts skeletal muscle atro-
phy through exosome-mediated miRNA transfer [113,114]. In denervation-induced muscle
atrophy, miR-125b-5p targets TRAF6 to inhibit the expression of UPS and ALP-related
proteins, thus reversing the atrophy of rat tibialis anterior muscle and C2C12 myotubes [98].
miR-351 significantly inhibits dexamethasone-induced reduction in C2C12 myotube diame-
ter and denervation-induced muscle atrophy through the negative regulation of TRAF6 and
two downstream signaling molecules of TRAF6, MuRF1 and MAFbx [115,116]. In muscle
atrophy caused by denervation, injury, diabetes mellitus, and CKD, these miRNAs play a
role in the treatment of skeletal muscle atrophy through different molecular mechanisms.
Further in-depth studies of these miRNAs can indeed provide new therapeutic strategies
for skeletal muscle atrophy.

In addition to miRNAs, circRNAs and lncRNAs also play important roles in skeletal
muscle atrophy. CircRNAs are associated with a variety of biological processes. circCCDC91
has potential functions in chicken skeletal muscle development. circCCDC91 can absorb
the miR-15 family (miR-15a, miR-15b-5p, and miR-15c-5p) to regulate IRS-1 expression
and activate the IGF1-PI3K/AKT signaling pathway, promote myoblast proliferation and
differentiation, and alleviate skeletal muscle atrophy [117]. The lncRNAs, acting as ceRNAs,
can exert vital roles in gene expression regulation [118]. lncIRS1 has been used as a ceRNA
of the miR-15 family to regulate the expression of IRS-1. The overexpression of lncIRS1 not
only increases the protein abundance of IRS-1, but also promotes the level of p-AKT, a core
component of the IGF1-PI3K/AKT pathway; regulates the expression of atrophy-related
genes; and reverses skeletal muscle atrophy [119]. However, the specific roles of circRNAs
and lncRNAs in skeletal muscle atrophy remain to be further investigated.

4.3. Stem Cell and Exosome Therapy

Currently, cell therapy is one of the most promising treatment methods. Stem cells
and stem cell-derived exosomes have been used to treat muscle atrophy, and this approach
has become a research hotspot (Table 2).
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Table 2. Stem Cell and Exosome Therapy for skeletal muscle atrophy.

Cells
Exosomes Mechanism of Action Limitation Ref.

Muscle-
Derived
Stem Cells

Satellite cells

Produces progeny and
form muscle fibers for
transplantation into the
defective area

/ [120,121]

CD133+ angioblasts

Repopulated ecological
niches of satellite cells,
regenerative response
after injury

Cells are few
and fragiles;
limited delivery
efficience

[122,123]

Pericytes
Release of nutritional factors;
Modulates local immune
response

lack optimal
harvesting organ and
strategies

[124,125]

Non-Muscle-
Derived
Stem Cells

Bone marrow-derived
MSCs (BM-MSCs)

Improve muscle
contraction

uncertainties regarding
the paracrine effect of
MSC, clinical
optimization, and CM
manufacturing process
standards

[126,127]

Allogeneic
placenta-derived MSCs
(PL-MSCs)

Reduces fibrosis and
inflammation [128]

Umbilical cord-derived
MSCs (UC-MSCs)

Reduced expression of
atrophy-related protein;
inhibition of ROS
production

[129,130]

IPSCs

Activation of myogenic
signaling; Induces
regenerating myogenic
progenitor cells

The residual epigenetic
memory from the
somatic donor cell
source may reduce the
pluripotency of the
generated cell line,
leading to a biased
differentiation potential

[131–133]

Exosomes

Exosomes from
satellite cells
transduced with
Ad-miR29

Downregulation of YY1
and TGF-β pathway
proteins

The follow-up time for
treatment was
relatively short

[134,135]

UC-MSC-EVs

Release of circHIPK3
serves as a miR-421
sponge to inhibit
inflammation, increases
FOXO3a expression and
prevents the activation of
inflammasome

/ [136]

Exosomes from
differentiated human
skeletal myoblasts

Regulate skeletal
myogenesis through the
transfer of diverse
myogenic factors;
Reduces the fibrotic area
and increased the
number of regenerated
myofibers

Unknown about the
key factors in
controlling cell fate
and promoting skeletal
muscle regeneration;
The adverse effects
may arise from high
doses of exosomes
(e.g., cell apoptosis)

[137,138]

SKP-SC-EVs

Reduces ROS production
and inflammation;
Downregulate UPS and
ALP; Improves
microcirulation

/ [6]

exosomes from human
BM-MSCs

Inhibit
dexamethasone-induced
muscle atrophy via
miR486-5p/Foxo1 Axis

/ [139]
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4.3.1. Muscle-Derived Stem Cells (MDSCs)

MDSCs can be expanded in vitro up to 30 passages while maintaining myogenic po-
tential, with great promise in the treatment of various diseases, such as sarcopenia and
diabetes mellitus [140,141]. CD133+ angioblasts, human skeletal muscle pericytes, and satel-
lite cells are the most commonly studied MDSCs in skeletal muscle. CD133+ angioblasts
and pericytes are closely associated with blood vessels in tissues, such as skeletal muscle,
and play a key role in tissue homeostasis. In a mouse model of cryoinjury, intramuscular
transplantation of myogenic CD133+ cells repopulated satellite cell niches, and these donor
cells were observed to generate an efficient regenerative response following subsequent
reinjury [122]. Dysferlin is abundantly expressed in skeletal and cardiac muscles, and its
main function is membrane repair. Transplantation of engineered blood-derived CD133+

stem cells into immune/dysferlin-deficient scid/blAJ mice could induce sufficient dysferlin
expression to correct functional deficits during skeletal muscle membrane repair [142]. In
the case of muscle injury, pericytes contribute to generating a regenerative microenviron-
ment by releasing trophic factors and modulating local immune responses [143]. These
cells also maintain potency via in vitro expansion and spontaneously differentiate into
multinucleated myotubes [124]. Although satellite cells account for only a small fraction
(2–7%) of the muscle cell population, the transplanted cells can produce a large number of
offspring cells and form muscle fibers to transfer into the defective area, thus improving
the contractile function of the host muscle [120]. However, satellite cells are more difficult
than MDSCs to isolate, purify, survive, and massively expand in vitro. Therefore, MDSCs
may be a better choice for the treatment of muscle atrophy.

4.3.2. Non-Muscle-Derived Stem Cells

Non-myogenic stem cells mainly include mesenchymal stem cells (MSCs), induced
pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs).

MSCs possessing multilineage differentiation potentials can be isolated from various
tissues, including adipose tissue, bone marrow, cranial neural crest, tonsils, umbilical
cord, and allogeneic placenta [128,144]. In muscle injury models, MSCs from different
sources can improve muscle contractile function, reduce scar tissue, and increase muscle
fiber formation and blood vessel density. MSCs also secrete multiple cytokines, including
growth factors, that promote angiogenesis, cell recruitment, migration, proliferation, and
differentiation [145]. Bone marrow-derived MSCs (BM-MSCs), allogeneic placenta-derived
MSCs (PL-MSCs), and umbilical cord-derived MSCs (UC-MSCs) have become issues of
concern. The intramuscular and intraarterial transplantation of autologous BM-MSCs
improves muscle contractile function after a severe crush injury or sphincter injury [126,146].
Allogeneic PL-MSCs have been confirmed to reduce fibrosis and inflammation in mdx mice,
a model animal for DMD [128]. For treating dexamethasone-induced muscle atrophy, UC-
MSCs can reduce the expression of skeletal muscle atrophy-related proteins and make the
expression of muscle-specific proteins and oxidase close to normal, and they can effectively
inhibit the production of ROS [129]. Meanwhile, MSC transplantation is a promising
approach to alleviate age-related sarcopenia [147,148]. IPSCs and ESCs have the unlimited
ability to proliferate, self-renew, and differentiate into myogenic progenitor cells and
myotubes, which have become useful tools for drug screening and personalized medicine
in clinical practice, as well as a better choice for the treatment of degenerative diseases [149].
Patient-derived iPSCs and ESCs are ideal cell sources that have no immune rejection after
transplantation. Current approaches for inducing ESCs/iPSCs into skeletal muscle cells
include the overexpression of muscle-associated transcription factors (eg., MyoD, Pax3) or
the addition of small molecules, activation of myogenic signals to generate mesoderm cells
during development, or induction of myogenic progenitor cell regeneration to help restore
lost muscle fibers [131,132]. Recently, iPSCs have been found to help design myogenic
phenotypes, provide biomimetic manufacturing, and play a certain role in skeletal muscle
tissue engineering [133]. The above findings still need to be further explored, in order to
provide a new insight into the treatment of muscle atrophy.
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4.3.3. Exosomes

Exosomes are a natural carrier system that transfers nucleic acids, proteins, lipids,
and cellular signals between donor and recipient cells through autocrine, paracrine, and
endocrine patterns and thus remodels the extracellular matrix, and the exosomes can serve
as a therapeutic agent in various disease models [135,150–152]. Lamp2b is an exosome
membrane protein gene fused with a muscle-specific surface peptide for muscle delivery. A
Lamp2b-containing exosome vector is transfected into muscle satellite cells, and transfected
cells are then transduced with adenovirus expressing miR-26a to generate exosomes-
encapsulated miR-26a (Exo/miR-26a), which can be used for the treatment of CKD mice by
increasing the cross-sectional area of skeletal muscle [114,135]. Exo/miR29 can ameliorate
skeletal muscle atrophy and alleviate renal fibrosis by downregulating YY1, a pro-fibrotic
protein in the kidney, and TGF-β pathway proteins [134,135]. In addition to muscle atrophy
caused by chronic diseases, exosomes can also be used to treat disuse muscle atrophy.
miR-421/FOXO3a is a direct target of circHIPK3. Exosomes from UC-MSCs downregulate
miR-421 by releasing circHIPK3 and thus increase the expression of FOXO3a, thereby
inhibiting cell pyroptosis and release of IL-1β and IL-18 to prevent ischemic skeletal muscle
injury [136]. The treatment of myoblasts with exosomes from PL-MSCs increases the
differentiation of these cells and decreases the expression of fibrotic genes in myoblasts
from DMD patients [128]. Exosomes from differentiated human skeletal myoblasts are rich
in various myogenic factors: TNF, IGFs, and FGF2. These exosomes can induce myogenic
differentiation of human adipose-derived stem cells and increase the fusion index and
expression of myogenic genes (ACTA1, MYOD1, DAG1, DES, TNNT1, and MYH1/2) in the
cells, leading to skeletal myogenesis [137]. Furthermore, exosomes from human BM-MSCs
can promote the proliferation and differentiation of C2C12 cells [153]. Extracellular vesicles
derived from skin precursor-derived Schwann cells (SKP-SC-EVs) contain a large number
of antioxidants and anti-inflammatory factors. In vitro and in vivo studies have found
that SKP-SC-EVs reduce the levels of ROS, IL-1β, IL-6, and TNF-α in nutrient deprivation-
induced myotubes and muscles, inactivate the activity of ALP, and control proteolysis,
thereby alleviating denervation-induced skeletal muscle atrophy [6]. After the treatment
with exosomes from human BM-MSCs, the level of miR-486-5p is up-regulated, and the
nuclear translocation of FoxO1 is inhibited, thereby slowing dexamethasone-induced
muscle atrophy [139]. The specific silencing of atrophic skeletal muscle fibre-derived small
extracellular vesicle miR-690 in the muscle can promote satellite cell differentiation and
alleviate muscle atrophy in aged mice [154]. Exosomes from different states of cells have
unique contents and exert unique effects [135]. Therefore, engineered extracellular vesicles
(EVs) should be a promising issue. It can transmit signal molecules in vesicles directly to
muscle cells, which may become a new drug for the treatment of muscle atrophy.

4.4. Cytokines

Growth factors are a class of cytokines that stimulate cell growth. Common growth
factors for treating skeletal muscle atrophy include vascular endothelial growth factor,
hepatocyte growth factor, fibroblast growth factor (FGF), and human epidermal growth
factor. Sustained delivery of vascular endothelial growth factors can promote angiogenesis
and muscle formation [155]. Rapid release of hepatocyte growth factor loaded on fibrin
microfilament scaffolds promotes functional muscle tissue remodeling and enhances skele-
tal muscle regeneration in a mouse model [156]. FGF19 is an endocrine-derived hormone
that has recently emerged as a potential target for the treatment of metabolic diseases.
FGF19 improves grip strength and muscle atrophy in young and old mice given a high-fat
diet. FGF19 abrogates the increase in the markers of skeletal muscle atrophy (FOXO-3,
MAFbx, MuRF1) in palmitic acid-treated C2C12 myotubes and skeletal muscle in high-fat
diet-fed mice, which can reduce obesity-induced skeletal muscle atrophy through the
AMPK/SIRT-1/PGC-α signaling pathway [157]. FGF19 can ameliorate skeletal muscle
atrophy induced by glucocorticoid treatment or obesity, which has been proved in a mouse
model [158]. The combination treatment of adipose-derived stem cells and basic fibroblast



Antioxidants 2023, 12, 44 17 of 30

growth factor with hydrogel as a carrier can achieve revascularization and reinnervation
and reduce fibrosis in torn muscles [159]. Emerging skeletal muscle tissue engineering tech-
nology attempts to construct exogenous muscle tissue to treat volumetric muscle loss, and
human epidermal growth factor delivered at optimal concentration and delivery time can
enhance in vitro skeletal muscle cell proliferation and differentiation during myogenesis,
providing a new idea for the treatment of muscle atrophy [160].

IGF-1 is a 7.5 kDa polypeptide that is structurally related to insulin. It is a circulating
hormone secreted by the liver in response to pituitary growth hormone, but it is also an
autocrine factor released by muscle fibers. IGF-1 can regulate protein synthesis in skeletal
muscle and promote body growth and has also been shown to activate satellite cell pro-
liferation [161]. Existing evidence indicates that IGF-1/AKT can inhibit skeletal muscle
atrophy-inducing factors and MSTN signaling transduction by inhibiting NF-κB and Smad
pathways, respectively [18]. Local overexpression of IGF-1 has successfully rescued various
chronic and experimental skeletal muscle atrophy, including the injection of dexametha-
sone, aging, hindlimb suspension, ALS, and Duchenne muscular dystrophy [162]. Many
biological pathways regulated by IGF-1 can interact with each other, which limits the study
of IGF-1 in skeletal muscle. Any treatment that increases IGF-1 levels may increase the risk
of tumor formation or the growth of an existing cancer. Therefore, IGF-1 is still worthy of
further exploration in the treatment of muscle atrophy.

In addition to growth factors, some other cytokines also play an important role in the
repair of skeletal muscle atrophy, such as stromal cell-derived factor-1 (SDF-1), pigment
epithelium-derived factor (PEDF), bone morphogenetic protein-7, FilaminC, and Irisin.
SDF-1 is the sole ligand for CXCR4 and is involved in skeletal muscle development. In
chicken embryos, overexpression of SDF-1 can enhance the SDF-1/CXCR4 signaling path-
way to induce somatic cell proliferation. Somatic cells express most SDF-1 in the limb,
which promotes the increase in limb blood vessels. This indicates that SDF-1 promotes
the proliferation of myogenic and vascular-derived progenitor cells, thus controlling the
formation of limb muscles and blood vessels [163]. SDF-1a can act on adipose-derived
stem cells to improve muscle structure and function, reduce fibrosis development, and
modulate immune response [164]. PEDF-derived short peptide is a derivative of PEDF
and can induce the phosphorylation of ERK1/2, AKT, and STAT3 in C2C12 myoblasts.
PEDF/PEDF-derived short peptide stimulates the proliferation of rat muscle fiber pri-
mary satellite cells in vitro while increasing the expression of cyclin D1. The delivery of
PEDF-derived short peptide can stimulate the proliferation of satellite cells and promote
the growth of regenerating muscle fibers in damaged muscle [165]. Bone morphogenetic
protein-7 is an osteoporosis drug, which can target and inhibit cell pyroptosis and improve
muscle function of diabetes mellitus. Therefore, bone morphogenetic protein-7 may be a po-
tential treatment option for diabetes mellitus-induced myopathy [166]. FilaminC plays an
active regulatory role in myoblast development. FilaminC interacts with Disheveled-2 to ac-
tivate the wnt/β-catenin signaling pathway and control skeletal muscle development [167].
Irisin is a skeletal muscle-secreted myokine that can be delivered into the circulation by
cleavage of fibronectin type III domain containing protein 5 (FNDC5). Exercises can induce
Irisin expression [168]. Studies have shown that Irisin can protect skeletal muscles from
denervation-induced atrophy, and it promotes myogenic differentiation and the fusion of
myoblasts by activating IL-6 signaling, thereby promoting muscle regeneration. Further-
more, it rescues the loss of skeletal muscle mass after denervation by enhancing satellite
cell activation and reducing protein degradation [169]. These cytokines can be used as
potential targets for the treatment of skeletal muscle atrophy, but their biological safety
remains to be further studied.

4.5. Physical Therapy
4.5.1. Electrical Stimulation and Optogenetic Technology

Methods using electrical current to alter neuromuscular activity include neuromus-
cular electrical stimulation, transcutaneous electrical nerve stimulation, and functional
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electrical stimulation (FES). Among them, FES is the focus of the current research on restor-
ing muscle function in paralyzed patients. Electrical stimulation of the hypoglossal nerve
has been shown to prevent tongue relaxation and subsequent airway closure in patients
with obstructive sleep apnea [170]. FES-cycling and resistance training can slow muscle
atrophy induced by spinal cord injury or promote muscle hypertrophy [171]. Blood flow
restriction combined with electrical muscle stimulation represents an effective interven-
tion strategy to mitigate the loss of muscle mass during limb disuse but cannot implicate
strength maintenance [172]. Neuromuscular electrical stimulation is safe, practical, and
effective for improving functional capacity and muscle strength in hemodialytic patients.
However, further studies are needed to confirm the clinical relevance of these findings [173].
Direct electrical stimulation of muscle fibers requires a large amount of energy, which can
produce toxic gases and trigger nerve damage [174]. Although indirect electrical stimu-
lation reduces energy and side effects, afferent sensory nerves may still be affected [175].
Electrical stimulation can maintain muscle mass and maximize force production. Unfor-
tunately, when peripheral nerves are damaged or dysfunctional, such as denervation of
skeletal muscles leading to atrophy, electrical stimulation is often invalid for motor function
and even stimulates nearby sensory nerves to produce unpleasant sensations (pain).

Channelrhodopsin-2 (ChR2) is a light-driven cation channel from the green algae/
Chlamydomonas reinhardtii, acting as an optogenetic tool. Routine stimulation of ChR2-
expressing hindlimb muscle fibers within the sarcolemma and T-tubules by percutaneous
irradiation is sufficient to reduce denervation-induced muscle atrophy and maintain mus-
cle contractility even after sciatic nerve injury [176]. To recover muscle motor function,
photosensitive actuators with different spectral sensitivities are used, which are specifically
expressed in different types of muscle fibers, such as slow-twitch and fast-twitch fibers, al-
lowing the precise control of muscle contraction by mimicking physiological patterns [177].
Optogenetic stimulation to restore muscle health is highly sought after for its particular
advantages. It includes both indirect optogenetic stimulation of innervating nerves of FES
and direct optogenetic stimulation of skeletal muscle [178]. Optogenetic stimulation has
been proposed as an alternative to overcome some shortcomings of FES, enabling specific,
spatially and temporally precise stimulation of ChR2-expressing cells [179,180]. The clinical
translation of optogenetic stimulation requires overcoming certain hurdles, including suc-
cessful gene transfer, sustained optogenetic protein expression, and the creation of optically
active implantable devices.

4.5.2. Electroacupuncture

Accumulation of chronic exercise injuries can generate the deposition of collagen fibers
in skeletal muscle, resulting in skeletal muscle fibrosis. Acupuncture can inhibit skeletal
muscle fibrosis by downregulating the TGFβ1/ERK/CTGF signaling pathway [181]. In
a rat model of exercise-induced skeletal muscle injury, acupuncture could effectively im-
prove exercise-induced skeletal muscle injury and reduce endoplasmic reticulum stress
after heavy-load eccentric exercise. The mechanism may be related to the up-regulation of
protein disulfide isomerase and the inhibition of the endoplasmic reticulum stress PERK
pathway [182]. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) can
achieve the intended results of exercise by stimulating muscle contraction, thereby en-
hancing muscle regeneration and preventing muscle loss [183]. This combined treatment
is suitable for patients with serious diseases who cannot exercise regularly. Acu-LFES
counteracts skeletal muscle atrophy induced by diabetes mellitus by increasing IGF-1 and
stimulating muscle regeneration [183]. Potential mechanisms by which Acu-LFES ame-
liorates CKD-induced skeletal muscle atrophy include the activation of M2 macrophages
and reversal of MAFbx expression [184]. Electroacupuncture has been shown to inhibit
MSTN expression, inducing satellite cell proliferation and skeletal muscle repair [185].
Electroacupuncture reduces myocyte apoptosis and improves denervation-induced muscle
atrophy through elevation of p-AKT (Ser473) levels and activation of the AKT signal-
ing pathway [186]. Electroacupuncture combined with massage can alleviate fibrosis by
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modulating TGFβ1-CTGF-induced myofibroblast transdifferentiation and MMP-1/TIMP-1
balance for extracellular matrix production [187]. In conclusion, electroacupuncture has a
good therapeutic effect on skeletal muscle atrophy caused by various factors.

4.5.3. Low-Level Laser Therapy (LLLT)

LLLT is a novel adjunctive intervention that protects cancer patients from doxorubicin-
induced skeletal muscle atrophy. Doxorubicin is an anthracycline drug widely used in
cancer treatment, which produces many adverse effects. LLLT inhibits doxorubicin-induced
mitochondrial dysfunction, apoptosis, and oxidative stress and prevents doxorubicin my-
otoxicity via AMPK activation and upregulation of SIRT1 and its downstream signal
PGC-1α [188]. LLLT can significantly reduce the content of connective tissue in the tibialis
anterior muscle of rats with nerve compression injury [189]. Studies have also demonstrated
the ability of LLLT to delay the progression of disuse muscle atrophy. Furthermore, LLLT
can enhance muscle contraction in healthy control rats [190]. LLLT reduces bupivacaine-
induced fibrosis and necrosis of the sternocleidomastoid muscle and accelerates muscle
regeneration [191]. LLLT exerts a protective effect against skeletal muscle injury after is-
chemia/reperfusion injury by inhibiting early inflammatory responses and muscle necrosis
and stimulating neovascularization [192]. The above findings suggest that LLLT may be
a new auxiliary intervention for the prevention and treatment of muscle atrophy, but the
molecular mechanism of its action remains to be further studied.

4.5.4. Heat Therapy (HT)

HT regulates many signaling pathways, including angiogenesis, anabolism, mitochon-
drial biogenesis, and glucose homeostasis [193–196]. These lines of evidence suggest that
repeated exposure to HT promotes capillary growth and hypertrophy, increases mitochon-
drial content and function, and alters glucose metabolism and insulin signaling. Mild HT
is an effective therapeutic strategy to promote satellite cell proliferation and differentiation
into myofibers. In cells transfected with siRNA targeting PGC-1α, mild HT-induced myo-
genic differentiation and myogenin expression were significantly suppressed, suggesting
that mild HT regulates PGC-1α to promote myogenic differentiation [197]. HT can induce
a stress response and thus increases heat shock protein expression and improves mitochon-
drial function, thereby attenuating limb immobilization-induced muscle atrophy [193]. HT
alleviates muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic
rats by upregulation of HSP72 and HSP25 [198]. HT can restore the dexamethasone-
induced inhibition of PI3K/AKT signaling and reduce the increased expression of REDD1
and KLF15, thereby preventing dexamethasone-induced muscle atrophy [199]. The specific
mechanism of HT remains to be further studied.

4.6. Nutrition Support

For patients with limited mobility or muscle damage, nutritional support may be a
good alternative to slow muscle atrophy. Increasing evidence has shown that proteins, es-
sential amino acids, β-hydroxy-β-methylbutyrate, creatine, vitamin D, and other nutrients
are crucial for the treatment of skeletal muscle atrophy [200,201]. Insufficient protein intake
cannot meet the daily needs of the human body and results in a negative protein balance,
which causes skeletal muscle atrophy and inhibits muscle growth and function. Protein
intake has an important role in the treatment of sarcopenia [202]. Branched chain amino
acids such as leucine can alleviate the loss of muscle mass [203]. A diet of 18% protein + 3%
leucine could improve muscle strength and behaviors, maintain body mass, fat, and muscle
mass and decrease some markers of protein degradation in tumor-bearing Wistar rats. In
fact, a leucine-rich diet alone does not fully cure cachexia but may potentially reduce muscle
protein degradation and promote muscle performance [204]. β-Hydroxy-β-methylbutyrate
supplementation may also be a potential nutritional strategy to counteract muscle mass
loss. A study recruiting 472 patients with cancer who were supplemented with a mixture of
β-hydroxy-β-methylbutyrate, arginine, and glutamine found a decrease in protein break-
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down and an increase in protein synthesis, thus reducing muscle atrophy [205]. In older
adults, creatine supplementation alone appears to have little benefit in muscle function and
mass, but creatine as a supplement to exercise training seems to enhance adaptive muscle
responses to training stimuli [201]. Therefore, creatine may be an effective dietary strat-
egy. Vitamin D supports cellular redox homeostasis by maintaining normal mitochondrial
function. However, vitamin D supplementation remains controversial to overcome skeletal
muscle atrophy. Calcitriol mediates ROS production through PKC, which in turn induces
the atrophy of C2C12 myotubes. Co-treatment with the antioxidant NAC is sufficient to
blunt the myotube-promoting activity of calcitriol while its upstream metabolites, cholecal-
ciferol (vitamin D3) and calcifediol (25-OH-vitamin D3), have anti-atrophic and antioxidant
properties [206]. These findings suggest that the efficacy of vitamin D supplementation
may come from the balance between vitamin D metabolites. In addition, hydrolysates
of crassostrea gigas have been found to inhibit skeletal muscle atrophy by regulating
protein synthesis via the PI3K/AKT/mTOR pathway and by regulating mitochondrial
biogenesis via the SIRT1/PGC-1α signaling pathway [207]. A long-term ketogenic diet
alleviates aging-induced sarcopenia in mice because it improves mitochondrial function
and antioxidant capacity [208]. Dietary supplementation with L-carnitine attenuates muscle
damage and reduces cellular damage and free radical formation while reducing muscle
soreness [209]. Docosahexaenoic acid is a major dietary omega-3 polyunsaturated fatty
acid (omega-3 PUFA); both UPS and ALP are regulated by docosahexaenoic acid, which
has been shown to delay skeletal muscle atrophy by inhibiting UPS [15,210]. Omega-3
polyunsaturated fatty acids have been shown to reduce the development of sarcopenia in
the elderly population via the positive regulation of intracellular metabolic signaling [211].
Therefore, omega-3 polyunsaturated fatty acids may be potential nutrients for the preven-
tion and treatment of muscle atrophy. Studies evaluating the impact of individualized
nutritional interventions on muscle mass and clinical outcomes in patients with cancer and
sarcopenia are very limited, and randomized, large-scale, and long-term clinical trials are
still needed to verify the positive effects of nutritional interventions on muscle metabolism.

4.7. Others

In addition to the above treatment methods, there are other unique methods for use
in the treatment of skeletal muscle atrophy, such as adjuvant treatment with biomaterials
such as hydrogels, intestinal microbial regulation, and oxygen supplementation for muscle
atrophy caused by high altitude. Biomaterials have been developed to wrap and protect
donor cells. For example, the use of scaffolding technology to encapsulate cells in a protec-
tive environment can bypass some limitations of inflammation-related adverse factors and
greatly improve therapeutic efficacy while reducing the number of cells required for the
treatment [212]. Hydrogels are a class of materials with the unique advantage, which are
less invasive and fully degradable in vivo. It is currently being used in conjunction with
cell therapy and/or growth factor delivery to facilitate the treatment of muscle damage
and skeletal muscle atrophy [213] while accelerating angiogenesis and nerve regenera-
tion [214] and benefiting the structural and functional reconstruction of target muscles.
It has been reported that the gut lumen of squirrels contains microorganisms with the
urease gene. That is, these microorganisms can metabolize urea into carbon dioxide and
ammonium. Ammonium is then used by the same microbiota as a nitrogen source to
produce amino acids, and nitrogen losses during protein catabolism and urea formation
can be compensated, thereby counteracting muscle atrophy [214]. The contribution of
microorganisms to urea nitrogen reuse in hibernating mammals provides a potential target
for the development of new therapies for skeletal muscle atrophy and related disorders. In
addition, long-term exposure to high altitudes also causes a decrease in muscle mass due
to hypoxia. The mechanism by which hypoxia causes skeletal muscle atrophy is not fully
understood, but some clinical studies have suggested that supplemental oxygen improves
muscle function. Therefore, oxygen supplementation may also be one of the potential
treatments for muscle atrophy.
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5. Conclusions and Prospects

The mechanisms underlying skeletal muscle atrophy, defined as a reduction of muscle
mass, are complex. Growing evidence suggests that major protein catabolism pathways,
including the ubiquitin-proteasome system, autophagic-lysosomal pathway, and calpains
systems as well as protein synthesis, are disturbed in skeletal muscle atrophy. Oxidative
damage and inflammation are potential factors contributes to muscle atrophy. The current
treatments and strategies for skeletal muscle atrophy mainly aimed at above factors in-
cluding drug treatment, gene therapy, stem cell and exosome therapy, cytokine therapy,
physical therapy, nutrition support, and other therapies. Stem cell and exosome therapies
have the definite potential to treat traumatic skeletal muscle injury, but overcoming existing
limitations and optimizing variables will be the key to clinical translation. Personalized
nutritional interventions are friendly to those who are sick in bed. Although various kinds
of drugs have been developed, the molecular mechanisms of skeletal muscle atrophy are
not completely clarified. Therefore, it is difficult to prescribe the right medicine. Moreover,
drugs like enzyme inhibitors can interfere with the homeostasis of protein synthesis and
there are many uncertainties in their administration. Gene therapy is suitable for muscle
atrophy caused by gene mutations with low prevalence but not universal. New genetic
drugs need to be further developed. At present, some emerging methods, such as optoge-
netic technology, biomaterials, and cell therapy, are worthy of continuous exploration. A
combination treatment of the above types of therapies may be a better choice. For example,
the combination of TFAM and exercise can achieve better results in the treatment of skele-
tal muscle atrophy. The addition of testosterone adjuvant to movement-based physical
rehabilitation therapy can improve musculoskeletal recovery and neuroplasticity in spinal
cord injury-induced muscle atrophy, which has better benefits for neuromusculoskeletal
recovery than any strategies alone [215]. Skeletal muscle atrophy occurs due to a variety
of causes and its molecular mechanism has not yet been fully understood. Therefore, the
clinical treatment of muscle atrophy is still a huge challenge. Research on the molecular
mechanism of muscle atrophy needs to be further explored to provide new potential targets
for the development of new anti-muscle atrophy drugs.
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