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Fig. S1: Typical downstream consequences of proteasome inhibition in
LUHMES cells treated with MG-132

(A) For the metabolomics experiment, parallel LUHMES samples treated with 100 nM MG-132 (MG)
were prepared for assay validation. Previously shown responses (Gutbier et al. 2018) to proteasome
inhibition were confirmed by Western Blot: accumulation of ubiquitinated proteins, and induction of
ATF4, NRF1 and NRF2 stress response pathways. (B) Scheme showing the predicted effect of MG on
proteostasis. The ubiquitination of proteins (Ubi-Prot) normally leads to their degradation by the 26S
proteasome. Inhibition of the proteasome causes an accumulation of Ubi-Prot. In parallel, the
downstream products of degradation are depleted: amino acids (AA) and small peptides. While
amino acids are part of many metabolic pathways unrelated to proteasome activity, small peptides
(here — dipeptides) are mainly generated by proteasomal activity. Quantification of (C) trimethylated
Lys and (D) dipeptides over the time course of MG treatment. Metabolite data are means + SEM of
independent replicates. For MG-132 treatments, 3 different samples were analyzed. For controls
(DMSO0), 4 replicates were prepared to provide for more robust baseline data. * p-value < 0.05; ** p-
value < 0.01; ** p-value < 0.001; n.s., not significant; AA, amino acids; Kme3, N6,N6,N6-
trimethyllysine; Ubi, ubiquitin; Ubi-Prot, ubiquitinated proteins.
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Fig. S2: Overview of all metabolome changes over time.
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Alltogether, 386 metabolites were quantifiable in control samples (Suppl. Table 1). Based on the
limma statistics, 206 of these metabolites were significantly changed (p < 0.05) at least at one
time point by MG-132 treatment. Unsupervised clustering of metabolite time profiles using the
hierarchical clustering method. Heatmap representation of the clustered metabolites (rows) at
the tested time points (columns). Their corresponding trendlines are shown in Fig. 3C. The heat
map colors represent z-scores of the row-wise normalized expression values for each metabolite.
All samples analyzed in this study were prepared separately and treated as independent
(biological replicates). For the metabolomics analysis, 3 treated samples per time point, and 4
control samples were used. A color code was used to visualize the major biochemical groupings
(e.g. lipids, nucleotides) of the metabolites.
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Fig. S3: Comparison between early and late metabolic perturbations

(A), (B) Metabolite concentration levels at 3 h and 10.5 h relative to the DMSO control are shown
side-by-side in a heat map. Data are not z-scores as in Fig. S2. (A) Nearly all metabolites that are
upregulated at 3 h are also upregulated at 10.5 h. (B) Nearly all metabolites that are depleted at 3
h are downregulated at 10.5 h. (C) A scatter plot was used to compare the responses at 3 h [x] and
10.5 h [y], both given as log2 fold changes relative to the DMSO control. The color-coded dots
represent some exemplary relative up-/down-regulations.
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Fig. S4: Correlated down-regulation of metabolites over time during early or late

time points.

To understand if the downward metabolic changes are correlated over time, a comparison
between the significantly depleted metabolites at different time points was conducted. Venn
diagrams were used to check the relationship amongst early-intermediate responses, and
intermediate-late responses to the MG-132 treatment. Numbers in the diagram indicate the
number of metabolites falling into the respective areas. (A) Intersection of the early-intermediate
downregulated metabolites (3 h, 6 h and 9 h). (B) Intersection of the intermediate-late
downregulated metabolites (9 h, 10.5 h and 12 h). The common elements are listed in the area of

overlap.
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Fig. S5: Correlated accumulation of metabolites over time during early or late
time points.

To understand if the upward metabolic changes are correlated over time, a comparison between
the significantly accumulating metabolites at different time points was conducted. Venn diagrams
were used to check the relationship between on the one hand early-intermediate responses, and
on the other hand intermediate-late responses to the MG-132 treatment. Numbers in the
diagram indicate the number of metabolites falling into the respective areas. (A) Intersection of
the early-intermediate upregulated metabolites (3 h, 6 h and 9 h). (B) Intersection of the
intermediate-late upregulated metabolites (9 h, 10.5 h and 12 h). Where the space allowed, the
common elements were listed in the area of overlap. The metabolites significantly upregulated at
all 3 later time points are listed in (C). The metabolites significantly upregulated at all 10.5 and 12
h but not at 9 h are listed in (D).



A time [h]
Pathway 3 6 9 |10.5]| 12 Ref. ID
Pentose phosphate pathway 0.01| n.s.| ns.| ns.| n.s. K hsa00030
cAMP signaling pathway 0.01| ns.| ns.| ns.| n.s. K hsa04024
HIF-1 signaling pathway 0.01| ns.| ns.| ns.| n.s. K hsa04066
GABAergic synapse 0.01| ns.| ns.| ns.| n.s. K hsa04727
Glucose-alanine cycle 0.02| ns.| ns.| ns.| n.s. S SMP00127
Calcium signaling pathway 0.03| n.s.| n.s.| ns.| n.s. K hsa04020
Urea cycle 0.03| n.s.| ns.| n.s.| n.s. S SMPO00059
Glucagon signaling pathway 0.03| n.s.| n.s.| ns.| n.s. K hsa04922
Glycolysis / Gluconeogenesis 0.04| n.s.| n.ss.| ns.| n.s. K hsa00010
Malate-aspartate shuttle 0.05| ns.| ns.| ns.| n.s. S SMP0000129
Ammonia recycling 0.05| n.s.| ns.| ns.| n.s. S SMP0O000009
Gluconeogenesis ns.| ns.| ns.| ns.| n.s. S SMP00128

B time [h]
Pathway 3 6 9 |10.5]| 12 Ref. ID
Phospholipid biosynthesis n.s.| 0.01{0.004| 0.04| n.s. S SMP0000025
Choline metabolism in cancer n.s.| 0.03| ns.| ns.| n.s. K hsa05231
Glycerophospholipid metabolism n.s.| n.s.| 0.01] 0.02|] 0.02 K hsa00564
Ether lipid metabolism n.s.| n.s.| 0.03| 0.01| n.s. K hsa00565
Betaine metabolism n.s.| n.s.| 0.05| ns.| n.s. S SMP0000123
Dopaminergic synapse ns.| ns.| 0.03| n.s.| n.s. K hsa04728
Serotonergic synapse ns.| ns.| 0.03| ns.| n.s. K hsa04726
Pyrimidine metabolism ns.| ns.| ns.| 0.04] 0.02 K hsa00240
Phosphatidylcholine biosynthesis ns.| ns.| ns.| n.s.|0.003 S SMP14287
Phosphatidylethanolamine biosynthesis ns.| ns.| ns.| ns.| 0.01 S SMP15109

Fig. S6: Changes of metabolic pathways over time.

Pathway enrichment analysis was performed using 2 different methods: metabolite set
enrichment analysis (MSEA) based on KEGG pathways (K) and overrepresentation analysis (ORA)
based on SMPD pathways (S). Both MSEA and ORA give the same weight to all metabolites in
the pathway and don‘t take into account the relationship between these elements. The type of
algorithm and database used are indicated in the reference (Ref.) column. The pathway
identifiers are specified in the ID column. (A) Table of early deregulated pathways and their p-
value at all tested exposure times. (B) Table of pathways deregulated at any of the later time
points ( 6 — 12 h) and their p-value at all tested exposure times. The p-values indicate the
likelihood of the respective pathway not being regulated. n.s.: not significant.
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Fig. S7: activity predictions for DoRothEA master regulators

The activity of master regulators was predicted based on the expression of their targets using
manually curated DoRothEA human regulons (Garcia-Alonso et al. 2019) with confidence levels A,
B and C which denote high supportive evidence for the transcription factor-target relationship.
Correlated enrichment scores were calculated on the Wald statistic (stat) using the weighted mean
for all experimental conditions. The log2 fold change values of the genes used for the pathway
activity predictions were plotted against their p-values. Volcano plots show the target genes of
transcription factors ATF4, ATF3, NRF2/NFE2L2, HSF1, MEIS2 and TP53. The sign of the product
between a target’s mode of regulation and stat can be positive (red) or negative (blue). The inserts
show the enrichment scores over time, from 0 until 12 h after the MG treatment.
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Fig. S8: activity predictions for progeny pathways

The activity of master regulators was predicted based on the expression of their targets using
manually curated progeny human pathways. For each experimental condition, correlated
enrichment scores were calculated by applying the weighted mean (WMEAN) method to the Wald
statistic (stat). (A) Enrichment scores of all progeny pathways at 12 h MG. (B),(C) The log2 fold
change values of the genes used for the pathway activity predictions were plotted against their p-
values. (B) Volcano plots showing the genes involved in JAK-STAT and p53 signaling after 12 h MG.
(C) For hypoxia, two separate volcano plots were generated, one for 3 h (left) and the other for 12
h (right). The sign of the product between a target’s mode of regulation and stat can be positive
(red) or negative (blue). The inserts show the enrichment scores over time, from 0 to 12 h MG

treatment.
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Fig. S9: Display of genes most strongly regulated by MG-132 exposure

Following the differential gene expression analysis (Wald statistics) of each test condition against the
DMSO control (Suppl. Table 2), for each of the selected time points, the significantly dysregulated genes
(adjusted p-value < 0.05) were ranked according to their fold changes. Bar plots show the top 20 up-
(red) and respectively downregulated (blue) genes, with separate axes for up- (bottom) and down-
regulated (top) genes (in fold changes (FC)). Few genes (NQO1, HMOX1, AIFM2, ME1, GSR, GCLM)
related to oxidative stress are highlighted (green) for an easier overview. The genes TRIB3, CHAC],
DDIT3, ATF4 (cell damage indicators) were highlighted in turquoise. All samples analyzed in this study
were prepared separately and treated as independent (biological replicates). For the transcriptomics
analysis, 6 samples were produced and measured for each condition.
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Fig. S10: Overview of significantly dysregulated genes.

The differential gene expression data was explored in Volcano plots to illustrate the relationship
between logl10 adjusted p-value and log2 fold change (FC) after 3, 6, 9 and 12 h exposure of
LUHMES cells to MG-132. Some of the most responsive genes are highlighted.
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Fig. S11: Integrated view of the most highly dysregulated genes over

time

All hits from Fig. S9 were collected in a list which was used to extract (from the gene expression
matrix) and combine the statistical information of these genes for all exposure times. The
obtained log2 fold change matrix was then clustered by rows (i.e. genes) using the hierarchical
clustering method. Heat map of the clustered hits, where a linear blue-white-red color scale was
used for fold-changes and p-adjusted values were represented by asterisks. * adjusted p-value <
0.05; ** adjusted p-value £ 0.01; *** adjusted p-value < 0.001.
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Fig. S12: Concentrations of all measured metabolites related to glycolysis and
the citric acid cycle.

LUHMES cells were treated as described in Fig. 1 to obtain time-dependent metabolomics data, following
addition of 100 nM MG-132. Data on all measured glycolysis and tricarboxilic acid metabolites were
extracted from the metabolome data matrix (Suppl. Table 1.2). MG-132 exposure time-dependent changes
of (A) glycolysis and (B) Krebs cycle metabolites. (C) The oxygen consumption rate (OCR) was measured for
6 h after 1 uM MG treatment, then the “Mito Stress Test” was performed. Each trace was obtained from
one culture well. The data were pooled from two fully separate experiments. (D) Quantification of viability
parameters (total ATP and resazurin reduction) over time. Metabolite data are means + SEM of
independent replicates. For MG-132 treatments, 3 different samples were analyzed. For controls (DMSO), 4
replicates were prepared to provide for more robust baseline data. * p-value < 0.05; ** 0.001 < p-value <
0.01; Acetyl-CoA, acetyl-coenzyme A; Fructose 1,6-BP, Fructose 1,6-bisphosphate; 3-PG, 3-
phosphoglycerate; PEP, Phosphoenolpyruvate; rot, rotenone; anti A, antimycin A.
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Fig. $S13: Change of oxidative stress- and lipid-related metabolites over
time.

LUHMES cells were treated as described in Fig. 1 to obtain time-dependent metabolomics data,
following addition of 100 nM MG-132. Data on all measured oxidative stress- and lipid-related
metabolites were extracted from the metabolome data matrix (Suppl. Table 1). Data for cysteine and
cystathionine were obtained by amino acid analysis. MG-132 exposure time-dependent changes of
lipid metabolites (A, B) and GSH synthesis intermediates (C, D). Metabolite data are means + SEM of
independent replicates. For MG-132 treatments, 3 different samples were analyzed. For controls
(DMSO0), 4 replicates were prepared to provide for more robust baseline data. * p-value < 0.05; ** p-
value < 0.01; *** p-value < 0.001; n.s., not significant; #, absence of statistical data (only 2 out of 4
replicates of the control were measured); ACh, acetylcholine; CDP-choline, cytidine diphosphate-
choline; CDP-EA, cytidine diphosphate-ethanolamine; Cys, cysteine; Cysta, cystathionine; GPC,
glycerylphosphorylcholine; GSH, oxidized glutathione; GSSG, reduced glutathione; Homocys,
homocysteine; Met sulfoxide, methionine sulfoxide; NAC, N-acetyl cysteine; N-carb-L-Asp, N-
carbamoyl-L-aspartate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.
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Fig. S14: Rescue time window of proteasome-inhibited LUHMES cells by
using a thiol supply

(A-C) In parallel to the samples prepared for metabolomics, additional LUHMES dishes were rescued
by addition of 1 mM cysteine (Cys) after 3, 6, 9, 10.5 and 12 h of treatment with MG. These were
imaged at 26 h, along with the MG (positive) and DMSO (negative) controls, to visually assess the cell
viability. MG, MG-132.
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Fig. S15: Effect of iron chelation on MG-132-induced neuronal cell death

(A-B) On day 6, separate wells containing LUHMES cells were treated with either 100 nM MG, 50 uM
deferoxamine (DFO) or a combination of both. Viability was assessed 24 h later by resazurin
reduction to resorufin (A) or by Calcein/H-33342 co-staining (B) and then normalized to the DMSO
control. Results are means + SD of 12 biological replicates. MG, MG-132.
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