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Abstract: Neuroinflammation causes various neurological disorders, including depression and
neurodegenerative diseases. Therefore, regulation of neuroinflammation is a promising therapeutic
strategy for inflammation-related neurological disorders. This study aimed to investigate whether
yomogin, isolated from Artemisia iwayomogi, has anti-neuroinflammatory effects. First, we evaluated
the effects of yomogin by assessing pro-inflammatory mediators and cytokines in lipopolysaccharide
(LPS)-stimulated BV2 microglial cells. The results showed that yomogin inhibited the increase in
neuroinflammatory factors, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2,
interleukin-6, and tumor necrosis factor-α, and suppressed phosphorylation of c-Jun N-terminal
kinase, extracellular signal-regulated kinase and p38, which participate in the mitogen-activated
protein kinase (MAPK) pathway. To confirm these effects in vivo, we measured the activation of
astrocyte and microglia in LPS-injected mouse brains. Results showed that yomogin treatment
decreased astrocyte and microglia activations. Collectively, these results suggest that yomogin
suppresses neuroinflammation by regulating the MAPK pathway and it could be a potential candidate
for inflammation-mediated neurological diseases.

Keywords: yomogin; neuroinflammation; p38 mitogen-activated protein kinases; JNK mitogen-
activated protein kinases; ERK extracellular signal-regulated kinase; Artemisia iwayomogi

1. Introduction

Neuroinflammation, an immune reaction within the central nervous system (CNS),
is a response to inflammatory stimulus or neuronal insult [1]. Microglial cells are the
major immune cells in the brain and play a pivotal role in the innate immune response [2].
Microglia are activated by inflammatory stimuli, including lipopolysaccharides (LPS),
and the activated microglia release various pro-inflammatory molecules and cytokines,
including nitric oxide (NO); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); and free
radicals [3,4]. Excess of these inflammatory factors activates another immune-related cell
in CNS, astrocyte. Activated microglia and astrocyte contribute to the development of
psychiatric disorders and neurological disorders, such as depression, stroke, and neurode-
generative disease [5–7]. Thus, suppression of neuroinflammation can be a therapeutic
approach for psychiatric disorders and neurological disorders.

A number of studies have shown that compounds derived from natural products
prevent or treat neurological disorders via exerting anti-neuroinflammatory effects [8–10].
For example, berberine, a compound isolated from Coptis chinensis, was reported to improve
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depressive behavior by inhibiting pro-inflammatory cytokines such as TNF-α and IL-6 in
a mouse depression model caused by chronic unpredictable mild stress [11]. Rosmarinic
acid was found to suppress pro-inflammatory cytokines and apoptotic regulators and
reduce acetylcholinesterase activity in memory and cognitive impairment models induced
by LPS [12]. Fisetin, a natural flavonoid found in various fruits, was reported to reduce
inflammatory mediators by inhibiting the nuclear factor kappa B pathway, thereby resulting
in amelioration of Alzheimer’s disease (AD) pathology in an amyloid beta injected AD
mouse model [13].

In our previous study, we discovered the anti-neuroinflammatory effect of Artemisiae
Iwayomogii Herba (AIH) and isolated yomogin as one of the active compounds in the
ethyl acetate fraction of AIH exrtacts. Yomogin eudesmane sesquiterpene lactone present in
Artemisia princeps and Artemisia vulgaris [14,15]. Studies have reported that yomogin exerts
anticancer properties, whereby it increases caspase-8 activation, with the subsequent release of
cytochrome c into the cytoplasm, and inhibits degranulation in basophilic leukemia RBL-2H3
cells. Furthermore, it downregulates inflammatory response by suppressing NO and inducible
nitric oxide synthase (iNOS) in LPS-treated macrophage RAW 264.7 cells [16–18]. However,
the effect of yomogin on the inflammatory response in the CNS has not been studied.

In this study, we aimed to evaluate whether yomogin has an anti-neuroinflammatory
effect in LPS-stimulated BV2 microglial cells and to confirm its effect in LPS-injected mice.
To estimate the effects of yomogin on LPS-induced NO production without causing cell
toxicity, we performed NO and MTT assays. To investigate possible yomogin mechanisms,
we measured mRNA and protein levels of iNOS, cyclooxygenase-2 (COX-2), TNF-α, and
IL-6, and analyzed the phosphorylation of mitogen-activated protein kinases (MAPKs) in
BV2 microglia cells by performing quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR) and Western blotting. Additionally, we evaluated the inhibitory
effect of microglia activation in LPS-injected mouse brains by immunofluorescence and
performed a forced swimming test (FST) to determine whether yomogin improved the
behavior in mice subjected to LPS-induced behavior alteration.

2. Materials and Methods
2.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS), penicillin-
streptomycin were purchased from Hyclone Laboratories, Inc. (Logan, UT, USA). Rab-
bit antibodies against COX-2, iNOS, c-Jun N-terminal kinase (JNK), phospho-JNK, p38,
phospho-p38, extracellular signal-regulated kinase (ERK) and phospho-ERK were pur-
chased from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-ionized calcium-
binding adapter molecule-1 (Iba-1) was purchased from Millipore Bioscience Research
(Bedford, MA, USA). Mouse β-actin antibody and goat anti-Glial fibrillary acidic protein
(GFAP) were purchased from Santa Cruz Biotechnology (Temecula, CA, USA). Anti-rabbit
horseradish peroxidase (HRP) secondary antibodies were purchased from Enzo Life Science,
Inc. (Farmingdale, NY, USA). Skim milk was purchased from BD Transduction Laboratories
(Franklin Lakes, NJ, USA). Polyvinylidene difluoride (PVDF) was purchased from Millipore
(Burlington, MA, USA). Chicken anti-goat Alexa Fluor 488 was purchased from Invitrogen
(Carlsbad, CA, USA). 4′,6-diamidino-2-phenylindole (DAPI) were purchased from Vector
Laboratories (Burlingame, CA, USA). IL-6 and TNF-α enzyme-linked immunosorbent assay
(ELISA) mouse kits were purchased from BD Transduction Laboratories (Franklin Lakes,
NJ, USA). Tetramethylethylenediamine, protein assay reagent, acrylamide and enhanced
chemiluminescence (ECL) reagent were purchased from Bio-Rad Laboratories (Hercules,
CA, USA). Radio-immunoprecipitation assay (RIPA) buffer and protease/phosphatase
inhibitor cocktail were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Fluo-
rescent mounting medium was purchased from Dako Cytomation (Glostrup, Denmark).
3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and all other
reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless noted.
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2.2. Extraction and Isolation of Yomogin

Yomogin were isolated from AIH according to previously published procedures [19].
The dried AIH (3.0 kg) were extracted twice with 90% ethanol (30 L) 48 h at room tempera-
ture, and then the solvent was evaporated in vacuo at 45 ◦C. The 90% EtOH extract (300.0 g)
was suspended in distilled water, and partitioned with ethyl acetate three times. The
ethyl acetate fraction (130.0 g) was chromatographed on Diaion HP-20 (Φ 11.3 × 55.6 cm)
with a gradient system (CH3COCH3:H2O = 30:70 ~ 100:0, v/v) to obtain 19 subfractions
(P1 ~ P19). Finally, yomogin (979.7 mg) was isolated from fraction P7 (8.76 g) by recrystal-
lization in acetone and methanol mixture (1:1, v/v) at room temperature. The chemical
structure of yomogin (Figure 1) was determined by comparison of its ESI-MS data and
NMR spectroscopic data (Figures S1–S3) with previously published data [20].
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Yomogin

White crystal; ESI-MS (positive mode) m/z = 245.02 [M + H]+ (mass tolerance = 0.5 amu);
1H-NMR (500 MHz, CDCl3) δH 1.31 (3H, s, H-14), 1.67 (1H, dd, J = 15.5, 5.0 Hz, H-9a),
1.94 (3H, s, H-15), 2.27 (1H, dd, J = 13.0 Hz, H-6a), 2.42 (1H, dd, J = 15.5, 3.0 Hz, H-9b), 2.96 (1H,
dd, J = 14.5, 7.5 Hz, H-6b), 3.09 (1H, ddd, J = 12.0, 7.0, 5.5 Hz, H-7), 4.48 (1H, m, H-8), 5.72 (1H,
d, J = 1.0 Hz, H-13a), 6.22 (1H, d, J = 9.5 Hz, H-2), 6.25 (1H, d, J = 1.0 Hz, H-13b), 6.78 (1H,
d, J = 9.5 Hz, H-1); 13C-NMR (125 MHz, CDCl3) δC 11.01 (C-15), 25.87 (C-14), 30.15 (C-6),
38.76 (C-10), 39.12 (C-9), 42.09 (C-7), 75.56 (C-8), 122.22 (C-13), 126.59 (C-2), 131.38 (C-4),
140.56 (C-11), 154.67 (C-5), 155.48 (C-1), 169.91 (C-12), 185.82 (C-3).

2.3. Cell Culture and Measurement of Cell Viability

BV2 microglial cells were cultured in DMEM supplemented with 10% FBS and 1%
penicillin-streptomycin at 37 ◦C in a 5% CO2 humidified incubator. All experiments
were performed 24 h after BV2 microglial cell seeding. Cell density of each plate was
3.0 × 104 cells/well for 96-well plates and 5.0 × 105 cells/well for 6-well plates. The BV2
microglial cells were treated by yomogin (0.1, 1, or 10 µM), or quercetin (10 µM) in serum
free media for 24 h or 1 h before 23 h of LPS (100 ng/mL) treat. After replacing the culture
medium with MTT solution (1 mg/mL), the BV2 microglial cells were incubated for 3 h at
37 ◦C. Formulated by MTT, the formazan was diluted in dimethyl sulfoxide and measured
on a microplate reader at 570 nm.

2.4. Measurement of Extracellular NO

The BV2 microglial cells that were pre-treated yomogin (0.1–10 µM) or quercetin
(10 µM) for 1 h and were stimulated with LPS (100 ng/mL) for 23 h. NO was measured by
microplate reader at 540 nm by mixing supernatant and Griess reagent (1% sulfanilamide,
0.1% naphthylethylenediamine dihydrochloride, 2% phosphoric acid). Sodium nitrite was
used as a standard to calculate the nitrite concentration.

2.5. Molecular Docking Calculation

The crystal structure of murine iNOS was retrieved from RCSB PDB database (PDB
ID: 3E6T, resolution: 2.0 Ǻ). Prior to molecular docking, iNOS protein was prepared by
removing ligands and water, followed by adding polar hydrogen atoms. As a ligand,
the 3D structure of yomogin was minimized using the force field MMFF94 calculation
in Chem3D Pro 14.0 (Cambridge Soft; PerkinElmer Inc., Waltham, MA, USA). Molecular
docking calculations were performed with AutoDock Vina and AutoDock Tools 1.5.6 (The
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Scripps Research Institute, La Jolla, California, United States of America) utilizing the
hybrid Lamarckian Genetic Algorithm (LGA). The size of grid box was 30 Ǻ × 30 Ǻ × 30 Ǻ
with the spacing of 0.375 Ǻ. The conformation with the lowest energy (RMSD < 1.0) was
selected to investigate protein-ligand interaction using Maestro 12.9 software (Schrödinger
LLC, New York, NY, USA). PyMOL 2.4.1. (Schrodinger LLC, New York, NY, USA) was
used to construct the final 3D protein-ligand complex visualization.

2.6. Western Blot Analysis

BV2 microglial cells were harvested after LPS (100 ng/mL) stimulation for 30 min
or 23 h in 6-well plates. The BV2 microglial cells were lysed with RIPA buffer containing
protease/phosphatase inhibitor cocktail. Proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis and transferred into PVDF membranes. The
membranes were blocked with 5% skim milk or 5% bovine serum albumin (BSA) for
1 h, then incubated with primary antibody diluted in 1% blocking solution overnight.
After washing with mixture Tris-buffered saline (10 mM Tris-HCl, 150 mM NaCl, pH 7.5)
including 0.1% Tween 20, membrane was replaced with secondary antibody for 1 h. Protein
were detected by ECL reagent, and visualization and quantitative assessment of band were
measured using Image Lab Software (Bio-Rad, Hercules, CA, USA).

2.7. RNA Extraction and qRT-PCR Analysis

BV2 microglial cells were harvested after 23 h of LPS (100 ng/mL) stimulation in
6-well plates. mRNA was extracted from the harvested cells using Hybrid-R™ (GeneAll,
Seoul, Republic of Korea). The extracted mRNA was reverse transcribed into cDNA
using TOPscript™ RT DryMIX (Enzynomics, Daejeon, Republic of Korea). The cDNA
was subjected to qRT-PCR using TOPreal™ qPCR 2X PreMIX (SYBR Green; Enzynomics)
and the CFX Connect Real-Time PCR System (Bio-Rad Laboratories, CA, USA). Primers,
synthesized at COSMO Genetech (Seoul, Republic of Korea), were as Table 1.

Table 1. Oligonucleotide sequences used in qRT-PCR experiments.

Gene Symbol Primer Sequence Accession Number

iNOS 5′-GTG TTC TTT GCT TCC ATG CT-3′

5′- AGT TGC TCC TCT TCC AAG GT-3′ NM_001313922.1

COX-2 5′-TGG GGT GAT GAG CAA CTA TT-3′

5′- AAG GAG CTC TGG GTC AAA CT-3′ NM_011198.4

TNF-α 5′-GAT TAT GGC TCA GGG TCC AA-3′

5′- GCT CCA GTG AAT TCG GAA AG-3′ NM_001278601.1

IL-6 5′-CCG GAG AGG AGA CTT CAC AG-3′

5′- TTG CCA TTG CAC AAC TCT TT-3′ NM_001314054.1

2.8. Animals and Treatment

Male ICR (7-week-old) mice were purchased from Daehan Biolink (Eumseong, Repub-
lic of Korea). The animals were housed six per cage (size 40 × 25 × 18 cm) with free access
to water and food and were kept under constant temperature (23 ± 1 ◦C) and humidity
(60 ± 10%) and a 12 h light/dark cycle. Mice were adapted to their surroundings for
7 days and kept under the same conditions before the start of the study. All animal studies
were performed in accordance with the “Guide for the Care and Use of Laboratory Animals,
8th edition” (National Institutes of Health, 2011) and approved by the “Animal Care and
Use Guidelines” of Kyung Hee University, Seoul, Republic of Korea (the approval number:
KHSASP-20-556).

2.9. Experimental Design of Animal Study

Mice were randomly assigned to three groups: Control (n = 5), LPS (n = 5), LPS + yomogin
(n = 5). Yomogin liquated in 2% Tween 80 in 1X saline (0.9% NaCl) was administered by oral
gavage at 5 mg/kg/day for 3 days. LPS was dissolved in 1x saline and intraperitoneal injection
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at 5 mg/kg 1 h after the last administration of yomogin. The dosage volume is 1 kg/5 mL.
Meanwhile, an equivalent volume of vehicle (1X saline) was given in each group. In addition,
the mice were sacrificed immediately after the FST at 3 h after LPS injection.

2.10. FST

Each mouse was placed in a glass cylinder (25 cm height× 14 cm diameter) containing
20 cm of water at a temperature of 22 ◦C. The water was changed between each swim
session and the mouse was forced to swim for 6 min. The immobility time was measured
by video surveillance during the last 4 min of the 6 min test.

2.11. Brain Tissue Preparation

Mice were transcardially perfused with 0.05 M phosphate-buffered saline (PBS), and
then fixed with 4% paraformaldehyde in 0.1 M phosphate buffer. Brains were obtained,
post-fixed overnight at 4 ◦C, and then immersed in a solution containing 30% sucrose in
PBS for cryoprotection. Serial 30 µm-thick coronal sections were cut on a freezing sliding
microtome (Leica Microsystems Inc., Nussloch, Germany) and stored in cryoprotectant
(25% ethylene glycol, 25% glycerol, and 0.05 M phosphate buffer) at 4 ◦C until use.

2.12. Immunofluorescence Staining

Brain sections were rinsed in PBS and then replaced with anti-Iba-1 antibody (1:1000 dilution)
or anti-GFAP antibody (1:1000 dilution) for overnight at 4 ◦C containing blocking buffer
(0.3% triton X-100, 1% normal chicken serum and 0.03% BSA in PBS). After rinsing in PBS,
for visualization, the primary antibody was developed by incubating with Alexa Fluor 488
or 594-conjugated secondary antibodies for 1 h at room temperature. Images were captured
with an Olympus BX51 microscope (Olympus, Tokyo, Japan). The areas of Iba-1 and GFAP
positive cells in the hippocampus was analyzed with Image J software.

2.13. Statistical Analysis

Values are expressed as the mean ± standard error of the mean (S.E.M.) and were
produced using Graph Pad Prism 5.0 software (Graph Pad software Inc., San Diego, CA,
USA). The results were analyzed statistically by one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc test. Differences with a p value less than 0.05 were considered
statistically significant.

3. Results
3.1. Effects of Yomogin on Cell Viability and NO Production in LPS-Stimulated BV2 Microglial Cells

To assess the cytotoxicity of yomogin in BV2 cells, cells were treated with yomogin
at various doses (0.1–10 µM). There was no cytotoxicity in the cells cultured in presence
of yomogin (Figure 2A). We measured the concentration of NO in the supernatant of
LPS-stimulated BV2 microglial cells to assess the effect of yomogin on inflammatory
suppression. We found that LPS stimulation elevated NO levels while yomogin at 1 µM
and 10 µM decreased NO levels significantly compared to the LPS-only-treated group
without cytotoxicity (Figure 2B,C). Moreover, the suppressive effect of 10 µM yomogin on
NO production was similar to that of quercetin.

3.2. Molecular Docking Results of Yomogin and iNOS Enzymes

One of three types of NOS proteins, iNOS is a key protein in the synthesis of NO
along with L-arginine and cofactors [21]. To investigate the inhibitory effect of yomogin
on NO synthesis, the molecular docking calculation was conducted between iNOS and
yomogin. The lowest energy conformation showed that yomogin has the good binding
affinity with iNOS (−7.7 kcal/mol, RMSD < 1.0). Hydrophobic pocket was observed in
this conformation with residues TRP340–VAL346 and TRP366–TYR367, suggesting that
they contribute in iNOS binding via non-hydrogen bonding interaction. Two negative
charge interactions with GLU371 and ASP376 as well as one positive charge interaction



Antioxidants 2023, 12, 106 6 of 13

with ARG382 were observed. A polar interaction with residue GLN257 were also found
in the present simulation (Figure 3). This finding indicated that yomogin inhibits the NO
production by binding to the iNOS protein.
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3.3. Effects of Yomogin on Expressions of iNOS and COX-2 in LPS-Stimulated BV2 Microglial Cells

iNOS and COX-2 are reported to produce neurotoxic factors such as NO in the CNS [1].
We observed that yomogin treatment at 10 µM significantly inhibited LPS-stimulated iNOS
and COX-2 mRNA levels. Additionally, iNOS and COX-2 protein levels induced by LPS
were suppressed by yomogin treatment at 10 µM (Figure 4). These results suggest that the
suppression of NO in Figure 2 is due to the decrease in iNOS expression.

3.4. Effects of Yomogin on Secretion of TNF-α and IL-6 in LPS-Stimulated BV2 Microglial Cells

TNF-α and IL-6 are inflammatory cytokines that contribute to the upregulation of
inflammatory reactions [22]. We measured the mRNA levels of TNF-α and IL-6. The LPS-
only-treated group showed increased TNF-α and IL-6 mRNA levels compared to the control
group. However, the levels were significantly lower in cells treated with 10 µM yomogin
than in the LPS-only-treated group (Figure 5A,B). To confirm the mRNA expression results,
we performed ELISA to determine whether yomogin inhibited the release of inflammatory
cytokines in the supernatant. As shown in Figure 5C,D, TNF-α and IL-6 concentrations
increased in the LPS-only-treated group and significantly decreased in yomogin-treated
with 10 µM group. This data shows that yomogin exerts anti-inflammatory effects by
inhibiting cytokines.

3.5. Effects of Yomogin on MAPK Signaling Pathway in LPS-Stimulated BV2 Microglial Cells

We investigated the MAPK signaling pathway that controls inflammatory responses
as an upstream regulator of inflammation. We measured the ratios of p38, JNK, and ERK
in LPS-stimulated BV2 cells. As shown in Figure 6, the LPS-only-treated group showed
an increased ratio of phosphorylated MAPK compared to the control group, whereas the
ratios of p38, JNK and ERK were significantly reduced in cells treated with 10 µM yomogin
(Figure 6). This data shows that yomogin regulates the downstream factors of MAPK
signaling by inhibiting the phosphorylation of p38, JNK and ERK.

3.6. Effects of Yomogin on Microglia and Astrocyte Activation in LPS-Treated Mouse Brain

Next, we investigated the impact of yomogin on microglial and astrocyte activation
in vivo. We performed immunofluorescence using Iba-1 antibody to detect activated
microglia. The LPS-injected group showed an increased Iba-1-positive area compared
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to the control group in the hippocampus and cortex. However, the proportion of Iba-1-
positive area was significantly decreased in the yomogin-treated group compared to the
LPS group in the same region (Figure 7). In addition, astrocyte activation was measured by
GFAP antibody used as a marker for astrogliosis. This data suggests that yomogin inhibits
LPS-induced microgliosis and astrogliosis in the mouse brain.
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treated group. Values are the mean ± SEM.
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Figure 5. Effects of yomogin on secretion of TNF-α and IL-6 in LPS-stimulated BV2 microglial
cells. The cells were pre-treated various concentrations (0.1–10 µM) of yomogin for 1 h before LPS
treatment. The mRNA levels of TNF-α (A) and IL-6 (B) were measured by qRT-PCR (n = 4). The
levels of TNF-α (C) and IL-6 (D) were analyzed in the supernatants by ELISA kit (n = 4 per group).
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to the control group; * p < 0.05 and *** p < 0.001 compared to the LPS-only-treated group. Values are
the mean ± SEM.
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Figure 6. Effects of yomogin on MAPK signaling pathway in LPS-stimulated BV2 microglial cells.
Cells were pre-treated with various concentrations (0.1–10 µM) of yomogin for 1 h before LPS
treatment. The protein levels of p-p38, p38 (A), p-JNK, JNK (B) and p-ERK, ERK (C) were examined
by Western blot analysis (n = 4–6 per group). Data were analyzed by one-way ANOVA, followed
by Tukey’s post hoc test. # p < 0.05 and ### p < 0.001 compared to the control group; ** p < 0.01,
*** p < 0.001 compared to the LPS-only-treated group. Values are the mean ± SEM.

3.7. Effects of Yomogin on Depressive Behavior in LPS-Treated Mouse

Neuroinflammation causes depression by disrupting the neurotransmitter system [23].
Accordingly, to measure the effect of yomogin on alleviating depressive behavior induced
by LPS stimulation, we performed the FST. In the FST, the immobility time significantly
increased in the LPS-injected group compared to the control group, whereas in the yomogin-
administered group, the immobility time was significantly lower than that in the LPS-
injected group (Figure 8). This result suggests that treatment with yomogin can improve
depression induced by LPS.
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after administering yomogin, and mice were sacrificed 3 h later. Representative images are shown
for the Iba-1 and GFAP positive cells in the hippocampus (A). Scale bar = 100 µm. Quantification
of Iba-1 (B) and GFAP (C) positive cells in hippocampus. Data were analyzed by one-way ANOVA,
followed by Tukey’s post hoc test. ## p < 0.01 compared to the control group; * p < 0.05 compared to
the LPS-injected group. Values are the mean ± SEM.
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4. Discussion

This study investigated whether yomogin has inhibitory effects on LPS-induced neu-
roinflammation in silico, in vitro and in vivo. By measuring pro-inflammatory mediators
including iNOS, COX-2, and cytokines in BV2 microglial cells, we showed that yomogin ef-
fectively regulates these factors. Additionally, we confirmed its effects determined from the
in vitro results, which showed that yomogin administration inhibited microglia activation
and improved depressive-like behavior in LPS-injected mice.

LPS is a well-known inducer of neuroinflammation in microglial cells [24]. LPS is
recognized by Toll-like receptor 4, a widely expressed receptor in microglia that regulates
immune responses and activates the MAPK pathway, leading to the production of pro-
inflammatory mediators [25,26]. In this study, we showed that yomogin controls the
phosphorylation of p38, JNK and ERK. This inhibition of the MAPK signaling pathway
results in the reduction of the pro-inflammatory mediators and inducible enzymes, thereby
decreasing the NO and cytokine levels.

MAPK signaling plays important roles in depression-regulating mechanisms [27]. Re-
cently, it was found that SB203580, a p38-specific inhibitor, ameliorated depressive-like behav-
iors and normalized alterations in TNF-α levels in an LPS-injected rat model [28]. Based on
these observations, p38 has been proposed as a new target for neuroinflammation-induced de-
pression [29]. Likewise, JNK has emerged as a potential target in depression [30,31]. SP600125,
a JNK inhibitor, reduced LPS-induced increase in the levels of TNF-α and interleukin 1β
in LPS-injected rat model. Moreover, LPS-induced depressive-like behaviors in rats were
alleviated in response to treatment with SP600125 [32]. In this study, yomogin effectively
decreased LPS-induced phosphorylation of p38 and JNK in microglia. Therefore, we suggest
that yomogin can ameliorate depressive disorders induced by neuroinflammation.

Further, our results confirmed the anti-neuroinflammatory effect of yomogin in LPS-
injected mice, a model of neuroinflammation that exhibits various neuropathological
symptoms [33]. Furthermore, yomogin inhibited microglial cells activation induced by
LPS in the hippocampus and cortex of mouse brains. Additionally, yomogin alleviated
depressive-like behavior as observed in the results of FST. Under conditions of brain in-
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flammation, microglial cells produce inflammatory mediators that may influence brain
neurotransmitter systems and neuron conditions [34]. Pro-inflammatory cytokines activate
inflammatory signaling pathways, leading to changes in neurotransmitters such as gluta-
mate, dopamine, serotonin, and norepinephrine [35]. These alterations are known to cause
a variety of neurological disorders, including depression, anxiety, and dementia [36,37].
In this study, we suggest that yomogin suppresses inflammation-related depression as it
reduces microglia activation and decreases immobility time in the FST.

Since LPS was injected intraperitoneally, it is unclear whether yomogin affected the
brain. Moreover, no study so far has reported that yomogin can pass through the blood–
brain barrier (BBB). However, the above results indicated that yomogin exerts beneficial
effects on the brain. A previous study revealed that fat-soluble substances with a molecular
weight of less than 500 Da are advantageous to the BBB by transmembrane diffusion [38].
Since sesquiterpene lactone is lipophilic and its molecular weight is less than 500 Da,
there is a high probability that yomogin would pass through the BBB [39]. Additionally,
the possibility of yomogin penetrating the BBB was supported by using the Boiled-Egg
algorithm of Swiss ADME calculations. Furthermore, previous studies revealed that
BBB is disrupted by signaling changes and enhanced cellular traffic under inflammation
condition [40,41]. Therefore, injection of LPS increases the probability of yomogin passing
through the BBB in mice. Thus, yomogin might have directly affected the brain by crossing
the BBB, thereby reducing microglia and astrocyte activations in the brain.

5. Conclusions

In conclusion, this study demonstrated that yomogin suppresses LPS-induced neu-
roinflammation in microglial cells and mice. These anti-neuroinflammatory effects can
be applicable for treating neurodegenerative diseases or psychiatric disorders. Further
research is warranted to assess the effects of yomogin on brain disorders or diseases and
reveal the underlying mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12010106/s1, Figure S1: 1H-NMR spectrum of yomogin
(500 MHz, chloroform-d); Figure S2: 13C-NMR spectrum of yomogin (125 MHz, chloroform-d);
Figure S3: ESI-MS data of yomogin.
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