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Abstract: Transmissible gastroenteritis virus (TGEV), a coronavirus that causes severe diarrhea due
to oxidative stress in the piglet intestine, is a major cause of economic loss in the livestock industry.
However, limited interventions have been shown to be effective in the treatment of TGEV. Here,
we demonstrate the therapeutic activity of eugenol in TGEV-induced intestinal oxidative stress and
apoptosis. Our data show that eugenol supplementation protects intestine and IPEC-J2 cells from
TGEV-induced damage. Mechanistically, eugenol reduces TGEV-induced oxidative stress in intestinal
epithelial cells by reducing reactive oxygen species levels. Interestingly, eugenol also inhibits TGEV-
induced intestinal cell apoptosis in vitro and in vivo. In conclusion, our data suggest that eugenol
prevents TGEV-induced intestinal oxidative stress by reducing ROS-mediated damage to antioxidant
signaling pathways. Therefore, eugenol may be a promising therapeutic strategy for TGEV infection.

Keywords: transmissible gastroenteritis virus; coronavirus; eugenol; oxidative stress; reactive oxygen
species; apoptosis; weaned pigs

1. Introduction

The variability of coronaviruses and their cross-species spreading signature are thorny
issues [1]. TGEV, a coronavirus with a length of 28.5 kb, has become a health threat to the
global swine industry, and is the main pathogen causing swine gastroenteritis [2]. Vomiting,
severe diarrhea and dehydration are the main clinical symptoms of TGEV infection [3]. It
is reported that the mortality rate of TGEV-infected piglets at two weeks of age is up to
100% [4]. Even after the widespread use of vaccines, TGEV infection continues to cause
substantial economic losses to the global pig industry [5]. Despite the health impact of
the virus on pigs, unfortunately, drugs with evidence-based efficacy for TGEV and its
associated complications are limited.

In the current literature, the harmful effects of TGEV are mainly due to oxidative stress
caused by virus [6,7], but the exact molecular mechanism remains to be further studied.
Oxidative stress is an imbalance between the production of oxidative substances and an-
tioxidant defense in the body, and the main culprit of oxidative stress is ROS [8–10]. A large
amount of evidence supports that one of the main causes of biological damage caused by
TGEV is the generation of ROS [11]. In addition, ROS is an important inducer of apoptosis.
When ROS accumulates in large quantities, intrinsic apoptosis will be initiated [12,13].
Oxidative stress and consequent apoptosis are the main features of virus-induced intestinal
injury [14]. A previous study showed that TGEV infection could induce increased ROS
levels in IPEC-J2 cells, leading to the occurrence of intestinal cell apoptosis [15].

Natural products provide effective resources for the discovery of potentially therapeu-
tic drugs [16]. It has been shown that plant extracts from green barley (Hordeum vulgare) [17]
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and creosote bush (Larrea tridentata) [18] significantly increase the viability of human cells
undergoing aggressive oxidative stress. Many natural polyphenols inhibit ROS production
and interfere with the interaction with the Keap1-Nrf2 signaling pathway to maintain the
physical balance of the body [19,20]. Eugenol is a natural plant essential oil with strong an-
tioxidant properties [21]. Eugenol, also called clove oil, is the main constituent of extracted
oil from clove (Syzygium aromaticum (L.)). Previous literature has shown that eugenol can
achieve antioxidant effects by inhibiting intracellular levels of ROS, H2O2 and NO [22]. A
similar result has also been shown in the work of Chen et al., indicating that eugenol atten-
uates colitis by activating the intestinal Keap1-Nrf2 signaling pathway to reduce oxidative
stress [23]. The Keap1-Nrf2-ARE signaling pathway is the most important endogenous
antioxidant pathway. Nrf2 is activated under oxidative conditions and induces numerous
antioxidative genes and proteins to alleviate damage to cells, tissues, and organs [24,25].
Therefore, the Keap1-Nrf2-ARE signaling pathway is expected to significantly impact the
prevention and treatment of the virus-induced intestinal oxidative injury. However, little is
known about the physiological function of eugenol in viral infection. More importantly, no
studies have demonstrated the critical regulatory role of eugenol in regulating oxidative
stress during TGEV infection.

Therefore, this study focused on the effects of eugenol on the antioxidant capacity of
intestinal epithelial cells of weaned piglets infected with TGEV, and reveals the underlying
mechanism. Our results suggested that eugenol protects intestinal epithelial function by
alleviating TGEV-induced oxidative stress and apoptosis, which may be related to the
inhibition of TGEV-mediated ROS production.

2. Materials and Methods
2.1. Reagents

We obtained eugenol (≥98%, W246719) from Sigma-Aldrich. N-Acetyl-L-cysteine
(NAC, HY-B0215) was purchased from MedChemExpress.

2.2. Virus, Cell Culture, and Treatment

TGEV TS strain (GenBank accession number: HQ462571.1) was preserved in our
laboratory [26]. IPEC-J2 cell was obtained from ATCC. IPEC-J2 cells were cultured in
DMEM/F12 with 10% FBS and 1% penicillin–streptomycin. Cells were placed in the 37 ◦C
incubator with 5% CO2. The cells were pretreated with eugenol (200 µM) or NAC (5 mM)
for 1 h and then infected with TGEV (MOI = 1).

2.3. Experimental Design and Diet

Twenty-one-day-old Duroc×Landrace×Yorkshire weaned piglets were acquired com-
mercially from a pig farm (Mianyang, Sichuan, China). Piglets were divided into four
groups: (1) control piglets; (2) eugenol piglets (400 mg/kg eugenol); (3) TGEV-infected
piglets (model); (4) eugenol + TGEV-infected piglets (model + 400 mg/kg eugenol). The
piglets were fed basal diets as shown in Table 1, and eugenol was additionally added to the
diet. On day 15, all piglets were gavaged and the gavage was carried out by specialists.
Briefly, 2.8 × 109 PFU TGEV (TCID50 = 10−6.67/100 µL) was administered by gavage to
piglets in the two infected groups, and the same dose of homologous medium was admin-
istered to piglets in the two uninfected groups. In order to avoid the death of piglets, all
piglets were executed on day 18 (date of peak piglet diarrhea) to collect samples.
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Table 1. Composition and nutrient level of basal diet.

Ingredients % Nutrient Level 3 Contents

Corn 33.80 Digestible energy (calculated, Mcal/kg) 3.54
Extruded corn 22.20 Crude Protein (%) 19.49
Soybean meal 7.42 Calcium (%) 0.75

Extruded full-fat soybean 8.79 Available phosphorus (%) 0.37
Fish meal 3.94 Lysine 1.35

Whey powder 5.00 Methionine 0.39
Soybean protein concentrate 8.00 Methionine + cysteine 0.68

Soybean oil 1.65 Threonine 0.80
Sucrose 2.00 Tryptophan 0.22

Limestone 0.62
Dicalcium phosphate 0.46

NaCl 0.20
L-Lysine HCl (78%) 0.32

DL-Methionine 0.07
L-Threonine (98.5%) 0.02

Tryptophan (98%) 0.01
Chloride choline 0.15
Vitamin premix 1 0.05
Mineral premix 2 0.30

Total 100
1 The vitamin premix provided the following per kg of diet: 6000 IU of VA, 3000 IU of VD3, 24 IU of VE, 3 mg of
VK3, 1.5 mg of VB1, 6 mg of VB2, 3 mg of VB6, 0.02 mg of VB12, 14 mg of niacin, 15 mg of pantothenic acid, 0.75 mg
of folic acid, and 0.1 mg of biotin. 2 The mineral premix provided the following per kg of diet: Fe(FeSO4·H2O),
100 mg; Cu(CuSO4·5H2O), 6 mg; Mn(MnSO4·H2O), 4 mg; Zn(ZnSO4·H2O), 100 mg; I(KI), 0.3 mg; Se(Na2SeO3),
0.3 mg. 3 Nutrient level values are calculated.

2.4. Sample Collection

On the 18th day of the experiment, blood was collected from the anterior vena cava of
the experimental pigs. Whole blood was placed in the blood collection tubes and left to rest
at room temperature for 30 min. The samples were centrifuged at 3000 r/min for 10 min
and placed in 200 µL eppendorf tubes. The isolated serum was then stored at −20 ◦C.
After the blood collection, the experimental pigs were euthanized. The middle section of
piglet jejunum was cut, rinsed with normal saline, and dried with filter paper. The mucosal
samples were scraped with glass slides and stored in sterile cryovials and stored at −80 ◦C.

2.5. Serum Antioxidant Indexes

Serum total antioxidant capacity (T-AOC) and malondialdehyde (MDA) concentra-
tions were tested using the commercial kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) following product instructions.

2.6. Western blotting and RT-PCR

After lysis in RIPA buffer at 4 ◦C, the protein concentration of the intestinal tissues
and cells samples was determined using the BCA protein assay kit (Thermo Fisher, MA,
USA, 23225). Western blotting was performed using primary antibodies against Keap1
(1:1000, proteintech, 10503-2-AP), Nrf2 (1:1000, proteintech, 16396-1-AP), HO-1 (1:1000,
proteintech, 10701-1-AP), NQO1 (1:1000, proteintech, 67240-1-Ig), BAX (1:500, Santa Cruz,
CA, USA, sc-7480), and β-actin (1:2000, CST, 3700). Image Lab 5.1 was used to perform the
immunoblotting study quantification.

The extraction of total RNA from cells or tissue homogenates using Trizol reagent
(Takara Bio, Dalian, China, 9109) was performed according to the manufacturer’s manual.
Prime Script TM RT kit (Takara Bio, RR047A) was used to synthesize cDNA. The primer
sequences are shown in Table 2. The 2−∆∆CT method was used to calculate the relative
expression of genes.
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Table 2. Primer sequences table.

Gene Primers Sequences Product size Accession Numbers

β-actin Forward GCAAATGCTTCTAGGCGGAC
148 XM_021086047.1Reverse GCGTCCATCACAGCTTCTCA

Keap1 Forward TCTGCTTAGTCATGGTGACCT
143 NM_001114671.1Reverse AAGGGACAACACCACCACTG

Nrf2 Forward CTACGGGATTGGGGTTTGGG
124 XM_013984303.2Reverse AACTCAAACAGGGGAAGGGC

HO-1
Forward TACCGCTCCCGAATGAACAC

140 NM_001004027.1Reverse TGGTCCTTAGTGTCCTGGGT

NQO1 Forward TGCTTACACATACGCTGCCA
113 NM_001159613.1Reverse CGTGGATACCCTGCAGAGAG

Bcl-2
Forward AGCATGCGGCCTCTATTTGA

120 XM_021099593.1Reverse GGCCCGTGGACTTCACTTAT

Caspase-3 Forward GGATTGAGACGGACAGTGGG
124 NM_214131.1Reverse CCGTCCTTTGAATTTCGCCA

Caspase-8 Forward GGATCCCAGGATTTGCCTCC
135 NM_001031779.2Reverse CAGGCTCAGGAACTTGAGGG

2.7. Intestinal Epithelial Cell Apoptosis and ROS Level Detection

Jejunum mucosal samples of piglets were cut into pieces in PBS at 4 ◦C with surgical
scissors and centrifuged at 300 g for 5 min. The cell pellets were digested with trypsin for
5 min and fully shaken on a shaker. After centrifugation, the cell pellets were re-suspended
with PBS to prepare cell suspension. The suspension was filtered by 70 µm cell sieve, and
the cell concentration was adjusted to 1 × 106 cells/mL with PBS.

Next, 100 µL cell suspension was mixed with 5 µL Annexin-V and 5 µL PI (BD, 556547),
and then stained for 15 min at room temperature, followed by centrifugation at 300 g for
5 min at 4 ◦C. Cell precipitate was suspended with 500 µL PBS. Assays were performed
by flow cytometry (FACSVerse, BD Biosciences, East Rutherfor, NJ, USA) and analyzed by
FlowJo 10.0.7 software. Total apoptotic cells were defined as the sum of the early (Q3) and
late (Q2) apoptotic subpopulations [27].

DCFH-DA (Solarbio, Beijing, China, 4091-99-0) was used to detect intracellular ROS
levels. The cells were incubated with DCFH-DA working solution (5 µM) and 500 µL of
the above regulated concentration cell suspension in the dark for 30 min. Then, the cell
pellets were resuspended with 500 µL PBS at 300 g centrifugation at 4 ◦C for 5 min. FlowJo
software was used to analyze the fluorescence intensity.

2.8. Cell Viability

The cells were seeded into 96-well plates for culture and various treatments. In the cell
viability assay, cells were co-incubated with 10 µL of CCK8 reagent (Beyotime, Shanghai,
China, C0038) for 2 h at 37 ◦C and absorbance was read at 450 nm with a microplate reader.

2.9. Statistical Analysis

Each of the experiments described here was performed in at least three independent
biological replicates. GraphPad Prism 8.0 software was used for data analysis. Data are
presented as mean ± standard error of mean (SEM). Statistical significance was deter-
mined by t-tests (two-tailed) for two groups or one-way ANOVA with Dunnett’s multiple
comparisons test for more groups. Differences with p < 0.05 were considered significant.

3. Results
3.1. Effects of Eugenol on Serum Antioxidant Indicators in TGEV-Infected Weaned Piglets

As shown in Figure 1A,B, eugenol supplementation significantly increased serum
T-AOC level, and TGEV infection significantly reduced serum T-AOC level. In addition,
under the condition of TGEV infection, eugenol supplementation significantly reduced
serum MDA and increased serum T-AOC content.
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Figure 1. Effects of eugenol on serum antioxidant indicators in TGEV-infected weaned piglets.
(A,B) The levels of MDA and T-AOC in serum (n = 8). Data are expressed as the mean ± SEM.
* p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Effects of Eugenol on Jejunum Antioxidation-Related Genes in TGEV-Infected Weaned Piglets

Keap1-Nrf2-ARE signaling plays an important role in protecting cells from endoge-
nous and exogenous stresses [28]. As shown in Figure 2A–D, TGEV infection increased the
mRNA expressions of Keap1 in jejunum of weaned piglets, and eugenol supplementation
increased the mRNA expressions of NQO1 in jejunum of weaned piglets. Of note, eugenol
supplementation increases the mRNA expressions of NQO1 in jejunum of TGEV-infected
piglets and alleviates the increase in Keap1 mRNA relative content.
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Data are expressed as the mean ± SEM. * p < 0.05, ** p < 0.01.
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3.3. Effects of Eugenol on Jejunum Antioxidation-Related Proteins in TGEV-Infected
Weaned Piglets

As shown in Figure 3A,B, TGEV infection significantly decreased the expression levels
of HO-1 and NQO1 protein and increased the expression level of Keap1 protein in jejunum.
In addition, eugenol supplementation significantly increased the TGEV-induced decrease
in HO-1 and NQO1 protein levels and decreased the TGEV-induced increase in Keap1
protein level in jejunum.
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Figure 3. Effects of eugenol on jejunum antioxidation-related protein in TGEV-infected weaned
piglets. (A,B) Protein abundance of Keap1, Nrf2, HO-1 and NQO1 in jejunum mucosa (n = 3). Data
are expressed as the mean ± SEM. * p < 0.05, ** p < 0.01.

3.4. Eugenol Decreases TGEV-Induced ROS Increase in Jejunal Epithelial Cells of Weaned Piglets

Excessive production of ROS caused by abnormal redox regulation may be one of the
causes of cell and tissue damage [29]. As shown in Figure 4A,B, notably, TGEV infection
increased ROS level in the jejunum epithelial cells of weaned piglets. In addition, eugenol
reduced ROS level in the jejunum epithelial cells of piglets induced by TGEV.
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3.5. Eugenol Alleviates TGEV-Induced Jejunal Epithelial Cell Death in Piglets

Apoptosis is a programmed series of events dependent on energy [30]. As shown in
Figure 5A,B, notably, TGEV infection increased the proportion of apoptosis in jejunum
epithelial cells of weaned piglets, and eugenol supplementation tended to decrease the
proportion of apoptosis. Interestingly, eugenol supplementation significantly alleviated the
increase in jejunum epithelial cell apoptosis induced by TGEV infection.
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3.6. TGEV Damages the Antioxidant Capacity of IPEC-J2 Cells

To reveal the underlying mechanism by which eugenol attenuates TGEV infection in
piglets, we further used IPEC-J2 cells infected with TGEV to construct an in vitro model.
As shown in Figure 6A,B, with immunoblotting analysis, TGEV infection significantly
increased Keap1 expression and decreased Nrf2, Ho-1 and NQO1 expression in IPEC-J2
cells for 36 h.
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3.7. Effect of Eugenol on IPEC-J2 Cells Viability

As shown in Figure 7, after IPEC-J2 cells were treated with different levels of eugenol
for 36 h, high concentrations (400, 800 and 1600 µM) of eugenol significantly reduced
IPEC-J2 cells viability. Therefore, eugenol with a concentration of 200 µM was selected for
follow-up study.
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3.8. Eugenol Alleviates TGEV-Induced Oxidative Stress in IPEC-J2 Cells

We then explored the role of eugenol in TGEV-infected IPEC-J2 cells. As shown in
Figure 8A,B, eugenol alleviated the impairment of TGEV infection on Keap1-Nrf2-ARE
signaling in IPEC-J2 cells. With immunoblotting analysis, eugenol significantly decreased
Keap-1 expression and significantly increased Nrf2, HO-1 and NQO1 expression in TGEV-
infected IPEC-J2 cells.
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3.9. Eugenol Relieves Oxidative Stress by Removing ROS

As shown in Figure 9A,B, we found that eugenol significantly reduced ROS in TGEV-
infected IPEC-J2 cells by flow cytometry. ROS play a key role in regulating redox signaling
pathways [31]. Therefore, we used NAC (ROS scavenger) to further explore the mechanism
by which eugenol alleviates TGEV-induced oxidative stress. NAC pretreatment of IPEC-J2
cells for 1 h significantly alleviated the TGEV-induced reduction in Nrf2, HO-1 and NQO1
mRNA expression levels (Figure 9C). However, NAC had no effect on the TGEV-induced
increase in Keap1 mRNA levels. At the same time, we found that NAC treatment increased
Nrf2, HO-1 and NQO1 protein expression levels in TGEV-infected IPEC-J2 cells (Figure 9D).
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eugenol (200 µM) or NAC (5 mM) for 1 h and then infected with TGEV for 36 h. (A,B) The flow
cytometry assays detecting ROS levels in IPEC-J2 cells; SSC means side scatter (n = 3). (C) The
expression of Keap1, Nrf2, HO-1 and NQO1 mRNA in IPEC-J2 cells were examined by RT-PCR
(n = 3). (D) Protein abundance of Nrf2, HO-1 and NQO1 in IPEC-J2 cells. Data are expressed as the
mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.10. Effect of Eugenol on TGEV-Induced IPEC-J2 Cells’ Death Pattern

Apoptosis, a common mechanism of cell death, is currently the most extensively stud-
ied form. As shown in Figure 10A, TGEV infection increased the proportion of apoptosis
(Q3), while eugenol treatment reduced TGEV-induced apoptosis. In addition, eugenol
treatment significantly alleviated the TGEV-induced increase in Bax protein expression
level and caspase-3 mRNA expression level, and decreased caspase-8 mRNA expression
level, but had no effect on Bcl-2 mRNA expression level (Figure 10B,D).
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Figure 10. Effect of eugenol on TGEV-induced IPEC-J2 cells’ death pattern. IPEC-J2 cells were treated
with 200 µM eugenol for 1 h and then infected with TGEV for 36 h. (A) The percentage of apoptosis
in jejunum epithelial cells was analyzed by flow cytometry (n=3). (B,C) Immunoblot analysis and
quantification of BAX in IPEC-J2 cells (n = 3). (D) Relative mRNA expressions of Bcl-2, Caspase-3
and Caspase-8 in IPEC-J2 cells (n = 3). Data are expressed as the mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001.

4. Discussion

Under normal physiological conditions, ROS is produced at low levels and controlled
by endogenous antioxidants [32]. T-AOC is the sum of enzymatic and non-enzymatic
antioxidants. The T-AOC value increases with the increase in antioxidant capacity and
decreases with the increase in lipid peroxidation. Therefore, T-AOC can reflect the antioxi-
dant capacity and the level of oxidative damage [33]. MDA is a toxic end product of lipid
peroxidation. Its expression level can directly reflect the rate and extent of lipid peroxida-
tion, and indirectly reflects the ability to scavenge free radicals [34]. In the present study,
it was observed that TGEV challenge increased the level of ROS in the jejunum of piglets
and decreased T-AOC in serum. Many studies have shown that ROS levels are involved
in apoptosis, and play an important role in regulating apoptosis [35–37]. Therefore, we
hypothesized that the increase in intestinal ROS levels induced by TGEV infection might
be involved in the occurrence of intestinal apoptosis. This may be the reason why TGEV
induces further oxidative stress in the piglet intestine, which has not been reported before.
Eugenol has excellent antioxidant capacity and free radical scavenging properties [38,39],
and its addition to the diet can overcome the production of ROS caused by TGEV infec-
tion. Interestingly, we found a tendency for eugenol to reduce the percentage of apoptosis
compared to the control group. This somewhat suggests that the antioxidant capacity of
eugenol makes the intestine of piglets less exposed to weaning stress. This may be the
direct antioxidant effect of eugenol, or it may be indirectly achieved through antioxidant
pathways such as inhibiting MDA levels and increasing T-AOC. More research is needed.

In common antioxidant pathways, Nrf2 is a transcription factor that regulates the
nuclear transcription of many genes encoding antioxidant proteins that are required to
eliminate oxidative stress [40]. Once activated, Nrf2 dissociates from the Keap1-Nrf2
binding and translocates into the nucleus, where it transactivates genes driven by antiox-
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idant response elements such as NQO1 and HO-1 [41,42]. In this study, TGEV infection
significantly increased mRNA expressions of Keap1 in the jejunum of weaned piglets;
significantly decreased HO-1 and NQO1 protein expression; and increased Keap1 protein
expression in the jejunum of weaned pigs (which may be the indirect reason for the increase
in ROS level induced by TGEV). In addition, under TGEV infection, the relative expression
of NQO1 mRNA in the jejunum of piglets was significantly increased by dietary eugenol
supplementation, which significantly alleviated the TGEV-induced decrease in HO-1 and
NQO1 protein levels and the increase in Keap1 protein levels. We noted differences in
mRNA and protein expression between HO-1 and NQO1 in the animal samples. The possi-
ble reasons may be as follows: (i) The homogeneity between samples is not good and the
follow-up experiment can increase the sample size. (ii) Gene mRNA expression is not neces-
sarily linearly related to protein expression because there are many factors regulating gene
expression, and the regulation of transcription level is only one link. Post-transcriptional
regulation and translational and post-translational regulation all have an impact on the final
protein expression. (iii) Moreover, mRNA degradation, protein degradation, modification
and folding may lead to inconsistency between mRNA expression and protein expression
levels. In general, eugenol could prevent TGEV-induced ROS overproduction and oxidative
stress-mediated intestinal apoptosis by enhancing T-AOC, NQO1 and HO-1 levels and
decreasing MDA and Keap1 levels.

Disturbed redox homeostasis is a common feature of intestinal disease, characterized
by uncontrolled ROS levels and impaired antioxidant defenses [8]. In general, viruses can
benefit from either activating or inhibiting Nrf2 in host cells [43,44]. Our results demonstrate
that TGEV infection disrupts the Keap1-Nrf2-ARE antioxidant defense system in IPEC-
J2 cells. At the same time, eugenol alleviated the TGEV-induced increase in the protein
expression level of Keap-1 in IPEC-J2 cells and ameliorated the TGEV-induced decrease in
Nrf2, HO-1 and NQO1 protein expression in IPEC-J2 cells. We used NAC as a scavenger
of ROS to gain insight into the mechanism by which eugenol alleviates TGEV-induced
oxidative stress. A previous study showed that ROS levels affect the Keap1-Nrf2-ARE
signaling pathway, which is consistent with our findings [45]. Our data demonstrated that
the mRNA and protein expression of Nrf2, HO-1, and NQO1 were increased in IPEC-J2
cells after ROS scavenging in the presence of TGEV infection. This suggests that eugenol
may improve the cellular antioxidant capacity by scavenging ROS, which is associated with
its potent antioxidant capacity.

During viral infection, viruses interfere with many cellular functions by affecting
various intracellular mediators, especially various major cell death pathways [46,47]. The
dynamic balance of cell death mode is the functional basis for maintaining the contin-
uous self-renewal of the body [48]. It is well known that the mitochondrial pathway is
an important mechanism of apoptotic cell death. The mitochondrial pathway activates
apoptotic factors Caspase-9, -8 and -3 [49], and is regulated by Bcl-2 family proteins [50].
TGEV infection simultaneously mediates PK-15 apoptosis through intrinsic and extrinsic
apoptotic pathways [51]. Our results showed that eugenol supplementation alleviated
TGEV-induced increases in Caspase-3 and Caspase-8 mRNA, as well as BAX protein ex-
pression in IPEC-J2 cells. In parallel, the flow cytometry results showed that eugenol
downregulated the apoptotic rate of TGEV-infected IPEC-J2 cells. It is noteworthy that ROS
are involved in virus-induced apoptosis [52–54]. In addition, porcine parvovirus infection
leads to ST cell apoptosis through the activation of the ROS-mediated mitochondrial apop-
tosis pathway [55]. These results imply that eugenol alleviates the apoptosis of IPEC-J2
cells, which may be related to the clearance of intracellular ROS and the enhancement of
antioxidant capacity.

The effect of oxidative stress is not specific to TGEV. According to relevant literature,
other coronaviruses (SARS-CoV [56], SARS-CoV-2 [57,58] and MERS [59]) can also induce
oxidative stress. However, there are no relevant reports showing the effect of eugenol
on other coronavirus. Recent reports suggest that TGEV can provide a good model for
human highly pathogenic coronaviruses [60,61]. In addition, oxidative stress is one of the
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pathogeneses of aging, diabetes and cancer. Therefore, we believe that eugenol, a natural
product with antioxidative stress properties, has the potential to be an antiviral, antiaging,
antidiabetic and anticancer medication.

5. Conclusions

In conclusion, our results reveal the potential therapeutic use of eugenol in TGEV
infection. We confirmed that eugenol alleviates TGEV-induced oxidative stress in intestinal
epithelial cells by regulating ROS, thereby affecting the Keap1-Nrf2-ARE signaling pathway
and reducing TGEV-induced excessive cell apoptosis. This study may reveal the novel
mechanisms by which eugenol alleviates oxidative stress in TGEV infection and contribute
to its future application in coronavirus-related diseases.
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