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Abstract: Anthopleura hermaphroditica is an intertidal anemone that lives semi-buried in soft sediments
of estuaries and releases its brooded embryos directly to the benthos, being exposed to potentially
detrimental ultraviolet radiation (UVR) levels. In this study, we investigated how experimental
radiation (PAR: photosynthetically active radiation; UVA: ultraviolet A radiation; and UVB: ultraviolet
B radiation) influences burrowing (time, depth and speed) in adults and juveniles when they were
exposed to PAR (P, 400–700 nm), PAR + UVA (PA, 315–700 nm) and PAR + UVA + UVB (PAB,
280–700 nm) experimental treatments. The role of sediment as a physical shield was also assessed
by exposing anemones to these radiation treatments with and without sediment, after which lipid
peroxidation, protein carbonyls and total antioxidant capacity were quantified. Our results indicate
that PAB can induce a faster burial response compared to those anemones exposed only to P. PAB
increased oxidative damage, especially in juveniles where oxidative damage levels were several
times higher than in adults. Sediment offers protection to adults against P, PA and PAB, as significant
differences in their total antioxidant capacity were observed compared to those anemones without
sediment. Conversely, the presence or absence of sediment did not influence total antioxidant capacity
in juveniles, which may reflect that those anemones have sufficient antioxidant defenses to minimize
photooxidative damage due to their reduced tolerance to experimental radiation. Burrowing behavior
is a key survival skill for juveniles after they have been released after brooding.

Keywords: antioxidant metabolism; behavior; oxidative damage; sea anemone; sediment burrowing;
UVB radiation

1. Introduction

Many infaunal organisms depend upon burrowing for survival, increasing their levels
of food capture [1–3], generating physical protection against predators or minimizing phys-
iological stress, especially in highly unstable environments [4–6]. Estuaries are considered
highly stressful areas because tidal cycles generate pronounced environmental changes and
high levels of physiological stress in individuals living there [7–9], for example, by exposing
sessile or sedentary organisms to the detrimental action of ultraviolet-B radiation (UVB;
280–320 nm), especially when low tide coincides with the daily peak in environmental
radiation [10]. The absorption of UVB by different chromophores (i.e., DNA, amino acids,
melanin and metabolites) indirectly exacerbates the generation of reactive oxygen species
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(ROS) [11–14] that are normally formed as byproducts of oxygen reduction in the cell. Con-
sequently, ROS over-accumulation can induce structural and functional changes in lipids,
proteins and DNA [15]. ROS attack polyunsaturated fatty acids; they are incorporated
into lipids to form lipid peroxides [16], which can induce the generation of very reactive
long-lived byproducts such as aldehydes (malondialdehydes, MDA; 4-hydroxynonenal,
HNE and keto fatty acids) [17–19]. Consequently, their generation decreases membrane
permeability, inducing electron leakiness in the cell [19]. Proteins with specific amino acids
(e.g., proline, arginine, lysine and threonine) can be rapidly affected by ROS, inducing the
formation of carbonyl groups [20]. Secondary reactions between specific amino acid side
chains and byproducts of lipid peroxidation can induce the formation of carbonyl groups in
proteins [20]. Subsequently, protein carbonylation reduces the catalytic activity of enzymes
and induces further breakdown of proteins [21]. This results in a crosslinked reaction
product, increasing the susceptibility of amino acids and proteins to degradation [18].
Consequently, oxidative damage can trigger physiological [13], anatomical [22], reproduc-
tive [23] and ecological [24,25] problems in marine invertebrates, which can cause death in
severe cases [26]. However, aerobic organisms can synthesize enzymatic (e.g., superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr))
and non-enzymatic (glutathione (GSH), oxidized glutathione (GSSG)) antioxidants that
minimize cellular damage. Antioxidants can transfer electrons to these oxidizing agents
(ROS) by neutralizing them and reducing chain reactions that can cause cell damage [27],
reaching cellular homeostasis.

In southern Chile, the sea anemone Anthopleura hermaphroditica inhabits estuaries
with high levels of ultraviolet B radiation (UVB, 280–315 nm) radiation during summer,
which can exceed 50% of values recorded in areas of the Northern Hemisphere for the
same latitude and season of the year [28]. This temperate anemone burrows in the sedi-
ment, spreading only its tentacles over the surface [29], allowing it to expose its symbiotic
dinoflagellate (Phylozoon anthopleurum) [30] to environmental radiation. This species incu-
bates its young inside the gastrovascular cavity (GVC) and releases them into the benthos
once they reach the tentaculate juvenile stage [31]. Thus, juveniles may be exposed to
significantly higher levels of UVB radiation than those experienced inside the incubation
cavity, which can generate elevated oxidative damage to them, considering that the initial
stages of development are highly affected by UVB radiation [22,32].

In natural conditions, this anemone is found buried in the sediment, projecting only
the tentacular crown on the substrate; however, there is no evidence about the reason for
this behavior. Although UVB radiation generates cytotoxic effects, we hypothesized that
the sediment could provide physical protection against UVB radiation after burial in the
sediment, minimizing photo-oxidative damage and the antioxidant response. We also
postulated that juvenile anemones are much more susceptible to photo-oxidative damage
than adults when exposed to different levels of experimental radiation. This is supported
by the fact that under natural conditions, juveniles develop inside the GVC of adults buried
in the sediment, always exposed to low radiation conditions. Thus, leaving the GVC
and facing an environment with high levels of radiation could generate higher levels of
oxidative damage and antioxidant response than in adult individuals. Considering burial
in the sediment as a natural process in the life cycle of this cnidarian, it is likely that adult
and juvenile anemones exposed to UVB bury themselves in the sediment at higher rates
than those exposed without the presence of UVB, as an evasive response to cell damage.

Considering that anemones are conspicuous organisms that play an important role in
different aquatic ecosystems supporting different organisms through symbiotic relation-
ships [33–35] and being part of different trophic webs [36–38], it is important to understand
the role of sediment in the photooxidative response of A. hermaphroditica as an important
component of the Quempillén estuary.

In order to test the role of sediment in the photooxidative response of anemones and
the elevated susceptibility of juveniles to experimental radiation, adults and juveniles of
A. hermaphroditica were exposed to a combination of UVB, UVA and PAR radiation with
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and without sediment and oxidative damage (lipids and proteins), and total antioxidant
capacity was quantified. In order to test the effects of experimental radiation on the
behavioral response of anemones, juveniles and adults were placed over the substrate
under a combination of UVB, UVA and PAR; time, depth and speed were assessed using
image analysis.

2. Materials and Methods
2.1. Animal Collection and Maintenance

Approximately 200 individuals of A. hermaphroditica and their sediments (60% gravel
and 40% sand) were obtained from the Quempillén estuary (41◦52′17.36′′ S, 73◦46′1.02′′ W,
Figure 1) during the austral summer season, placed in plastic boxes (80 × 45 × 30 cm) and
then transferred to the Laboratorio Costero de Recursos Acuáticos de Calfuco (39◦46′50′′ S,
73◦23′34′′ W) at the Universidad Austral de Chile (Valdivia, Chile).
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Figure 1. Adult of the estuarine anemone Anthopleura hermaphroditica (A) collected from Quempillén
estuary (41◦520 S; 73◦460 W) of Chiloé Island (B), Southern Chile (C). Arrow shows location of Chiloé
Island in Chile. Map generated using Ocean Data View software (version 5.6.2, Schlitzer, Reiner,
Ocean Data View, odv.awi.de, 2021, Germany).
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Anemones were acclimated in an aquarium with sediment (collected from the sam-
pling site) where circulating seawater (35 ppt, 13 ◦C) was provided, with constant aeration
for an acclimation period of 3 days and a photoperiod of 12:12 h with photosynthetically
available radiation (PAR; 400–700 nm) at an irradiance of 1000 µmol m−2 s−1. Prior to
the experiments, anemones were separated into two size ranges as follows: juveniles
(1–2 cycles of tentacles; <2 mm pedal disc diameter) and adults (>3 cycles of tentacle;
>4 mm pedal disc diameter).

2.2. Experimental Treatments

In order to determine the effect of radiation on the substrate burial response, adults
and juveniles of A. hermaphroditica were exposed to the following experimental radia-
tion conditions: PAR (400–700 nm), PAR + UVA (315–700 nm) and PAR + UVA + UVB
(280–700 nm). Three rectangular transparent glass aquaria 30 cm long, 10 cm high and 5 cm
wide were set up for the experiment, with a seawater circulation system activated by a
submersible pump (220 L h−1) (Figure 2).
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Figure 2. Experimental setup for behavioral ((A.1) initial time/(A.2) final time) and cellular re-
sponses ((B.1) with sediment/(B.2) without sediment) in adults and juveniles of the sea anemone
A. hermaphroditica exposed to different radiation conditions generated by a combination of fluorescent
lamps (PAR, UVA and UVB) and cut-off filters (P: PAR, PA: PAR + UVA and PAB: PAR + UVA + UVB).
Figure created using BioRender.com (accessed on 9 August 2022).

The sediment collected in the field was deposited in each aquarium to a thickness
of 4 cm. Anemones were deposited individually on the sediment of the aquaria, which
were immediately covered with Clear 226-UV (Chris James Lighting Filters, London, UK),
Folanorm SF-AS (0.13 mm; Lüerssen Grafische Vertriebs GmbH, Germany) and cellulose
acetate filters (CDA; 0.13 mm; Grafix®, Maple Heights, OH, USA) to generate the radiation
treatments P (400–700 nm), PA (315–700 nm) and PAB (280–700 nm), respectively. PAR
fluorescent tubes (Philips Day Light, Philips, Eindhoven, The Netherlands), UVA (Philips
TL40 W, Philips, Eindhoven, The Netherlands) and UVB (Phillips TL20, Philips, Eindhoven,
The Netherlands) were placed 30 cm above the experimental aquaria to simulate the natural
irradiance conditions registered in the environment [10].

Anemones were thus exposed to an irradiance of 1000 µmol m−2 s−1, 20 W m−2

and 2.3 W m−2 of PAR, UVA and UVB, respectively, for 3 h. The irradiance of the lamps
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was quantified using a portable radiometer (PMA-2100, Solar Light, Glenside, PA, USA)
fitted with a PAR sensor (PMA-2132 model), UVA sensor (PMA-2110) and UVB sensor
(PMA-2106). The experiment was replicated 11 times for each developmental stage. New
individuals were used for each experiment.

2.3. Behavioral Responses

In order to quantify sediment burial responses (time, depth and speed) under different
experimental radiation treatments, adults and juveniles of A. hermaphroditica were recorded
using a set of four digital cameras connected to a digital video recorder. The maximum
recording time was three hours. The burial parameters were defined as follows:

2.3.1. Burial Time

Burial time was defined as the time elapsed from when the adult and juvenile
anemones were placed on the surface of the sediment until the individuals were buried in
the sediment in response to the respective radiation treatments.

2.3.2. Burial Depth

Burial depth was measured as the distance between the sediment surface and the
distal end of the pedal disc of polyps. Analysis of the images recorded during the burial
process allowed calculating the depth to which the body column of adults and juveniles
of A. hermaphroditica were buried in the sediment. Burial depth was measured using as
reference a graduated ruler (mm) previously attached to each experimental aquarium.

2.3.3. Burial Speed

Burial speed was determined in adults and juveniles of A. hermaphroditica exposed to
different radiation treatments (P, PA and PAB) from the ratio of depth to burial time. The
speed data were expressed in mm h−1.

2.4. Cellular Responses

The oxidative damage and the antioxidant capacity of adults and juveniles of
A. hermaphroditica were quantified using the same aquaria and experimental radiation
conditions indicated previously with and without sediment (Figure 2(B.1,B.2)). Anemones
were deposited individually in each aquarium and then exposed to P, PA and PAB radi-
ation treatments for 3 h. The experiment was replicated four times for adults and five
times for juveniles. After the three experimental hours, individuals from both conditions
(with and without sediment) were immediately placed in liquid nitrogen. The tissue was
ground using a pestle and mortar to which liquid nitrogen was added. The fine powder
obtained during grinding was kept in Eppendorf tubes at −80 ◦C until oxidative dam-
age (lipid peroxidation and protein carbonyl formation) and total antioxidant capacity
were quantified.

2.4.1. Oxidative Damage Assays

Levels of lipid oxidation were determined by malondialdehyde (MDA) quantification
using the colorimetric method of thiobarbituric acid reactive substance (TBARS), according
to the methodology described by Salama, A. and Pearce, R. [39]. Thirty g (fresh weight,
FW) of ground tissue was homogenized with 350 µL of trichloroacetic acid (TCA, 0.1%,
Merck KGaA, Darmstadt, Germany) in an Eppendorf tube and centrifuged for 10 min at
13,000 RPM (4 ◦C) (Labnet, Prism R, Edison, NJ, USA). A volume of 200 µL was extracted
from the supernatant and homogenized with 500 µL of TCA (20%) + TBA (thiobarbituric
acid, 0.5%) solution in a new Eppendorf tube and then incubated in a ThermoMixer (Ep-
pendorf, Hamburg, Reinbek, Germany) at 80 ◦C for 30 min. Next, the tubes were incubated
on ice for five minutes and centrifuged again for five minutes at 13,000 RPM (4 ◦C). Finally,
malondialdehyde (MDA) levels were quantified by measuring the absorbance at 532 nm
of 200 µL of the supernatant in a plate reader (Anthos, Biochrom Ltd., Cambridge, UK).



Antioxidants 2022, 11, 1725 6 of 18

The concentration of MDA was determined using the molar extinction coefficient, and the
results were expressed in nm MDA g−1 FW.

Protein carbonyl levels were estimated by the method of dinitrophenylhydrazine
(DNPH) used by Levine [40]. An amount of 80 mg of previously ground tissue was
homogenized with 2 mL of a 50 mM phosphate buffer solution (0.1 mM EDTA and 1%
PVPP polyvinyl polypyroline) at pH 7.0 and centrifuged for 20 min at 13,500 rounds per
minute (RPM) (4 ◦C). Subsequently, 200 µL of the supernatant was homogenized with
200 µL 20% TCA, incubated for 30 min (−20 ◦C) and centrifuged at 13,500 RPM (4 ◦C).
The resulting supernatant was removed to reserve the pellet. Then 300 µL DNPH solution
(100 mM in 2 N HCl) was added to the pellet and incubated in the dark for 1 h. Next, the
mixture was precipitated with 500 µL TCA (20%) and incubated again for 15 min at −20 ◦C.
The resulting mixture was centrifuged for 10 min at 13,200 RPM; then, the supernatant
was removed carefully to reserve the pellet. The resulting pellet was re-suspended with
500 µL ethanol–ethyl-acetate (1:1) solution and centrifuged for 10 min at 13,200 RPM (4 ◦C),
removing the supernatant again. Next, 2 mL guanidine HCL (6 M) in 20 mM sodium
phosphate (pH 6.8) was added to each sample and then centrifuged for 30 min at 9000 RPM
(4 ◦C). Finally, protein carbonyl levels were determined at 380 nm using a Zenyth 100 plate
reader (Anthos, Biochrom Ltd., Cambridge, UK), and their concentrations were determined
using the molar extinction coefficient.

2.4.2. Total Antioxidant Capacity

The method described by Fukumoto, L. and Mazza, G. [41] was applied for the
determination of total antioxidant capacity, which uses 2,2 diphenyl-1-picrylhydrazyl
(DPPH). For this quantification, 60 mg of tissue was homogenized in 1 mL of a 70% acetone
solution, then the tubes with their content were incubated in an ultrasonic bath for 2 h.
Then they were centrifuged for 5 min at 9000 RPM at 4 ◦C and kept under a fume hood for
90 min, allowing the acetone to evaporate. Then, 200 µL DPPH was added to each tube.
Finally, the absorbance was quantified every 10 min for 120 min using a Zenyth 100 plate
reader (Anthos, Biochrom Ltd., Cambridge, UK) at 520 nm. That information generated a
standard curve of 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox) for
calculating the total antioxidant capacity, expressed as mg Trolox Eq FW g−1 of the sample.

2.5. Statistical Analysis

The assumptions of normality and homogeneity of variances of the burial parameters
(time, depth and speed), as well as the levels of oxidative damage and total antioxidant
capacity for juveniles and adults, were confirmed by Levene’s test and the Shapiro–Wilk
test, respectively. When necessary, data transformation (Log10) was used to fulfill the
assumptions of normality and homogeneity of variances. By using a two-way ANOVA, it
was determined whether the development status and/or radiation treatment (P, PA and
PAB) influenced burial behavior (i.e., time, depth and speed). Additionally, a three-way
ANOVA was used to determine if the levels of oxidative damage (protein carbonyl and lipid
peroxidation) in A. hermaphroditica were influenced by the developmental state (juveniles
and adults), experimental radiation (P, PA and PAB) and level of protection provided by
the sediment (presence and absence). Finally, a Tukey a posteriori test was used to identify
the significant differences. Statistical analyses were carried out with SigmaPlot (Sigma Plot
for Windows version 11, Systat Software Inc., Chicago, IL, USA). The significance level was
defined at p < 0.05.

3. Results
3.1. Behavioral Responses
3.1.1. Burial Time

The two-way ANOVA indicated that radiation treatment and development stage, as
well as the interaction of these factors, significantly influenced the burial time of anemones
in the sediment (Figure 3A, Table 1). Significant differences in burial time were observed
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between the developmental stages; juvenile anemones had a shorter burial time than adults
(Figure 3A, Table 1). Additionally, experimental radiation treatments that included UV
radiation (PA and PAB) had a significant effect in reducing the burial time of adults but not
of juveniles (Figure 3A, Table 1).
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Table 1. Two-way ANOVA for comparison of burial parameters (time, depth and speed) in different
developmental stages (adults and juveniles) of A. hermaphroditica exposed to different levels of
experimental radiation P (PAR), PA (PAR + UVA) and PAB (PAR + UVA + UVB). Bold numbers
indicate significant difference (p < 0.05).

Source of Variation df ms f p

Burial time
Developmental stage (DS) 1 15.130 212.389 <0.001
Radiation treatment (RT) 2 2.783 39.066 <0.001

DS × RT 2 1.119 15.71 <0.001
Error 60 0.0712

Burial depth
Developmental stage (DS) 1 1.370 171.89 <0.001
Radiation treatment (RT) 2 0.0663 8.311 0.001

DS × RT 2 0.0152 1.913 0.157
Error 60 0.00797

Burial speed
Developmental stage (DS) 1 0.0190 2.514 0.118
Radiation treatment (RT) 2 0.206 27.244 <0.001

DS × RT 2 0.0338 4.481 0.015
Error 60 0.00755

3.1.2. Burial Depth

The two-way ANOVA indicates that both developmental stages and radiation treat-
ments significantly influenced the depth to which A. hermaphroditica was buried in the
sediment (Figure 3B, Table 1). Particularly, the PAB radiation treatment caused adult
anemones to bury significantly deeper (23%) than those exposed only to P and PA radi-
ation treatments (Figure 3B, Table 1). Although juvenile anemones burrow to shallower
depths than adult anemones, there were no significant differences in the depths that they
burrowed when they were experimentally exposed to the P, PA and PAB radiation bands
(Figure 3B, Table 1).

3.1.3. Burial Speed

Our results indicate that radiation treatment significantly influenced the burrowing
speed of A. hermaphroditica in the sediment (Figure 3C, Table 1). When adults and juveniles
of A. hermaphroditica were exposed to the PAB radiation treatment, they increased their
mean burial rate by 132% and 36%, respectively, compared to those exposed only to the
P-radiation treatment (Figure 3C, Table 1). Radiation treatment PA and PAB showed
significant differences in the burial speed of adult sea anemones compared to P (Figure 3C,
Table 1). PAB radiation treatment of juveniles induced a significant increase in velocity
compared to PA and P. Juvenile sea anemones showed higher burial speed than adults only
under P radiation treatment.

3.2. Cellular Responses
3.2.1. Lipid Peroxidation

The three-way ANOVA indicated that type of radiation treatment (F(2,29) = 25.97,
p < 0.001, Table 2), stage of development (F(1,29) = 158.21, p < 0.001, Table 2) and the
sediment condition (F(1,29) = 12.87, p = 0.001, Table 2) all influenced lipid peroxidation levels
in the sea anemone A. hermaphroditica. Tukey’s a posteriori test showed that the presence
of UVB through PAB radiation treatment exerted a significant role in the generation of
oxidative lipid damage, as opposed to what happens to anemones exposed to P and PA.
Juvenile anemones are more susceptible to lipid peroxidation than adult anemones. The
presence of sediment in the radiation exposure treatments significantly reduced the level of
lipid photo-oxidation in experimental anemones (Table 2).
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Table 2. Three-way ANOVA for the estimation of oxidative response (protein carbonyl and lipid per-
oxidation) and antioxidant capacity in adults and juveniles of the anemone A. hermaphroditica exposed
to different levels of experimental radiation P (PAR), PA (PAR + UVA) and PAB (PAR + UVA + UVB)
with and without sediment. Bold numbers indicate significant difference (p < 0.05).

Source of Variation df ms f p

Lipid peroxidation
Developmental stage (DS) 1 431.96 158.216 <0.001
Sediment condition (SC) 1 35.15 12.875 0.001
Radiation treatment (RT) 2 70.90 25.971 <0.001

DS × SC 1 0.070 0.0258 0.873
DS × RT 2 30.36 11.121 <0.001
SC × RT 2 6.093 2.232 0.125

DS × SC × RT 2 2.257 0.925 0.408
Residual 29 2.730

Protein carbonyl
Developmental stage (DS) 1 0.0000765 351.271 <0.001
Sediment condition (SC) 1 0.00000193 8.848 0.006
Radiation treatment (RT) 2 0.00000260 11.934 <0.001

DS × SC 1 0.00000062 3.043 0.091
DS × RT 2 0.00000186 8.564 <0.001
SC × RT 2 0.0000000305 0.140 0.870

DS × SC × RT 2 0.000000152 0.700 0.504
Residual 32 0.000000218

Total antioxidant capacity
Developmental stage (DS) 1 102.022 4.221 <0.048
Sediment condition (SC) 1 463.94 19.191 <0.001
Radiation treatment (RT) 2 137.22 5.677 0.007

DS × SC 1 674.15 27.891 <0.001
DS × RT 2 69.96 2.895 0.069
SC × RT 2 11.307 0.468 0.630

DS × SC × RT 2 0209 0.00864 0.991
Residual 34 25.634

Only the interaction between the developmental stage and experimental radiation
treatment significantly influenced the generation of lipid oxidation (F(2,29) = 11.12, p < 0.001,
Table 2); PAB generated a significant increase in the level of oxidative lipid damage in
adult anemones. P, PA and PAB radiation significantly influenced lipid oxidation in
juvenile anemones (Figure 4A,B; Table 2). Juveniles exposed with sediment to P, PA
and PAB radiation increased their lipid peroxidation levels by four, five and four times,
respectively, compared to adult anemones exposed to the same conditions (Figure 4A,B;
Table 2). Similarly, juveniles exposed without sediment to P, PA and PAB increased their
lipid peroxidation levels by two, three and three times, respectively, compared to adult
anemones exposed to the same conditions (Figure 4A,B; Table 2).

3.2.2. Protein Carbonyl

The three-way ANOVA indicated that the generation of protein carbonyl levels
in A. hermaphroditica in this study were significantly influenced by the radiation type
(F(2,32) = 11.93, p < 0.001, Table 2), developmental stage (F(1,32) = 351.27, p < 0.001, Table 2)
and sediment condition (F(1,32) = 8.84, p = 0.006, Table 2). PAB generated a significantly
higher level of protein carbonyl than those observed under the PA and P radiation
treatments (Figure 4C,D; Table 2). Juvenile anemones were significantly more suscepti-
ble to protein oxidation than adult anemones, independent of the radiation treatment
(Figure 4C,D; Table 2).
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(PAR + UVA + UVB) radiation treatments with sediment (black bars) and without sediment (white
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Particularly, the presence or absence of sediment had a significant effect on the level
of protein oxidation in adults and juveniles of A. hermaphroditica exposed to experimental
radiation. The presence of sediment in the experimental aquaria protected anemones
against protein oxidation, especially when they were exposed to PAB radiation treatment.
The absence of sediment in the experimental aquaria produced significant differences in



Antioxidants 2022, 11, 1725 11 of 18

the level of protein carbonyls in adults and juveniles. Juveniles exposed to experimental
radiation without sediment significantly increased the level of oxidative damage to proteins
more than adults.

The interaction of the developmental stage and radiation treatment generated a sig-
nificant impact on protein oxidation levels (Figure 4C,D; Table 2). Significant differences
in carbonyl levels were observed when juveniles and adults were exposed to either PA or
PAB. Adults, but not juveniles, showed significant differences in protein carbonyl levels
when anemones with and without sediment were exposed to P radiation. A significant
difference in protein carbonyl level of juvenile anemones was observed between P and PAB
radiation treatment. Juveniles in sediment directly exposed to P, PA and PAB generated
carbonyl levels 28, 9 and 10 times greater, respectively, than adults exposed under the same
conditions (Figure 4C,D; Table 2). When juveniles without sediment were directly exposed
to P, PA and PAB, they generated carbonyl levels 6, 10 and 10 times higher, respectively,
than adults exposed to the same experimental radiations (Figure 4C,D; Table 2).

3.2.3. Total Antioxidant Capacity

Three-way ANOVA indicated that the experimental radiation type (F(2,34) = 5.67,
p = 0.007, Table 2), developmental stage (F(1,34) = 4.22, p = 0.048, Table 2) and sediment
condition (F(1,34) = 19.19, p < 0.001, Table 2) significantly influenced total antioxidant
capacity in A. hermaphroditica (Figure 4E,F). Juveniles exhibited greater total antioxidant
capacity than adults. PAB radiation treatment significantly increased the total antioxidant
capacity response in A. hermaphroditica compared to individuals exposed to P. Adults
exposed to experimental PAB radiation treatment generated significant differences in
total antioxidant capacity only when compared to P-exposed anemones. Juvenile sea
anemones showed higher antioxidant capacity levels when they were exposed to PA and
PAB compared to P-exposed anemones.

The presence or absence of sediment significantly influenced the total antioxidant
response in anemones. A significant difference in total antioxidant capacity was observed
between adults and juveniles exposed to experimental radiation with sediment. The
interaction of developmental stage and sediment condition significantly influenced the
total antioxidant capacity response in A. hermaphroditica (F(1,34) = 27.89, p < 0.001, Table 2).

4. Discussion
4.1. Burrowing Behavior against Experimental Radiation

UVB radiation is an abiotic factor known to control the distribution and abundance
of different marine organisms in a bathymetric profile due to its negative effects on cells,
with physiological and behavioral consequences [42]. Evasive responses to UVR include
habitat selection processes [43,44], vertical/horizontal migration in the water column [45],
burial in the sediment [46] and body covering with physical structures that minimize
damage induced by direct or indirect exposure [47,48]. UVR evasive responses described
previously in sea anemones include covering the body column with either gravel or debris
and contraction of its body column [49].

In the Quempillén estuary, the sea anemone A. hermaphroditica inhabits the sediment,
semi-buried, protecting its complete body column from direct UVR radiation, projecting
only its tentacles over the surface. Our results demonstrate for the first-time burial in
the sediment of the intertidal anemone A. hermaphroditica as an evasive response to UVB
radiation. Similar avoidance responses were found in the mantis shrimp Haptosquilla
trispinosa, which possesses negative phototaxis when exposed to UVB and UVA radiation,
sheltering in its burrow constructed in the sediment [46]. Exposure of A. hermaphroditica
adults to PAR + UVA and PAR + UVA + UVB results in a reduction in burial time. Our
results indicate that juvenile anemones have increased susceptibility to radiation; thus, they
keep their burial times almost constant under different combinations of PAR, PAR + UVA
and PAR + UVA + UVB experimental radiation. This indicates that there is a need for
juveniles to bury as quickly as possible to reduce radiation exposure times and thus
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minimize photo-oxidative damage. Previous observations in the intertidal anemone Actinia
tenebrosa indicate that exposure times are determinant in the levels of DNA damage through
the generation of CPDs, which can increase by approximately 200% and 300% in anemones
exposed to PAR + UVA and PAR + UVA + UVB compared to those exposed only to PAR
(control) for a period of 96 h [50]. Thus, adults and juveniles of A. hermaphroditica should
increase their burial speeds, minimizing exposure time, especially when exposed to UVB
radiation. Rapid evasion to UVB exposure was identified in early developmental stages
(zoea I and zoea II) of the Patagonian crustacean Cyrtograpsus altimanus, which increased
evasion speed by 50% compared to those exposed only to PAR radiation [51].

The ability of anemones to bury themselves in sediment appears to be inversely related
to the development of body outgrowths. A. hermaphroditica tends to adhere to gravel or
pebbles, preventing overexposure to the environment (i.e., avoiding desiccation; [52]).
This adherence process is much more common in the rocky intertidal zone; therefore, the
possibility of burrowing seems to be an adaptive response to the environment where the
sediments are too fine to be attached to the body column. In adults, burrowing has not
only been shown to minimize photo-oxidation during incubation, but also it seems to be a
more successful strategy than sticking stones to the body wall, at least when comparing
population densities reached in hard and soft-bottom habitats [29,31].

4.2. Cellular Response in A. hermaphroditica

The levels of lipid peroxidation and protein carbonyls observed in this study are lower
than those previously reported for A. hermaphroditica in the Quempillén river estuary [10].
Our study demonstrates that exposure to PAR + UVA and PAR + UVA + UVB radiation
generated a significant increase in the levels of oxidative damage to lipids and proteins in
A. hermaphroditica. Similar results were observed in the intertidal anemone Actinia tenebrosa,
where exposure to P, PA and PAB conditions generated lipid peroxidation levels of 3.8, 6.0
and 10 nmol mg FW−1, respectively [50]. In the same species, the levels of protein carbonyls
were approximately 1.8, 5.0 and 6.0 for anemones exposed to P, PA and PAB, respectively,
after 96 h of exposure. It was well established that the presence of photosensitizing
molecules generates greater absorption of UVB radiation in the cell, producing photo-
oxidation of different macromolecules [53]. In this study, higher levels of photo-oxidative
damage were found in juvenile anemones than in adult anemones exposed to P, PA and
PAB treatments, confirming their high susceptibility to photo-oxidation. The above is
consistent with previous studies, showing high susceptibility of the initial developmental
stages of aquatic organisms to UVB, which includes pluteus larvae of urchins [54], zoea I
larvae of crustaceans [55–57], fish larvae [58,59] and amphibian larvae [60]. Meta-analysis
studies support that early stages of development are much more prone to damage than
adult organisms [61–63], mainly due to their limited energy reserve [64].

Prolonged exposure of larvae of the Antarctic urchin Sterechinus neumayerii to PAB
radiation generates increases in the levels of lipid peroxidation and protein carbonyls by
approximately 3-fold compared to larvae exposed to P radiation [65]. However, when larvae
of this echinoderm were cultured under the Antarctic ice cover, the levels of abnormalities
in PAB were like those generated under P radiation. Thus, the Antarctic ice cover may act
as a physical barrier, minimizing the levels of lipid peroxidation and protein carbonyls
in the early stages of development. The above indicates the importance for some marine
invertebrates, which lack external physical protection such as shells or body plates, to
seek shelter that minimizes UVB-induced photo-oxidative damage. In the present study,
the sediment constituted a refuge and played an important role in the physical protection
of both adults and juveniles of A. hermaphroditica against radiation, minimizing photo-
oxidative damage.

A previous study in infaunal organisms (the amphipod Chaetocorophium lucasi and
juvenile stages of the bivalves Macomona liliana and Austrovenus stutchburyi) showed that
exposure to UVR in the absence of sediment generates between 5 and 10 times more
phototoxicity (photoactivation of polycyclic aromatic hydrocarbons (PAH)) than in control
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organisms (without UVR). This indicates the high susceptibility of this type of organism
to UVR radiation, and it is the sediment that acts as a physical barrier to radiation, which
increases the survival of this type of animal by more than 50% [66].

In our study, the increased susceptibility to photo-oxidation in juveniles of A. hermaphrodit-
ica may be associated with acclimation to low levels of environmental radiation offered by
the GVC during embryonic development, coupled with the presence of zooxanthellae that
are acquired during the hatching process [67]. Internal incubation is part of the embryonic
development strategy, which implies that the planulae larvae develop into tentaculate
juveniles inside the GVC of an adult (Cubillos pers. obs.). This process is conceived as a
strategy that allows embryonic care under high levels of environmental stress [68], which
is consistent with the protection identified in this study when juveniles were confronted
with UVR exposure.

A previous study carried out with the symbiont anemone Anthopleura elegantissima
showed that the presence of zooxanthellae generates a negative phototactic response of
the host anemone when exposed to high levels of radiation [69], a response that coincides
with that of the symbiont anemone A. hermaphroditica. In photoautotrophic organisms, the
photosynthetic apparatus represents the most delicate and fragile cellular structure that
can be affected by UVB and UVA [70]. For example, chlorophyll levels in zooxanthellae of
the symbiotic anemone Aiptasia pallida were significantly reduced due to photo-oxidation
because of increased UVB levels [71], resulting in high levels of oxidative damage in the
dinoflagellate Symbiodinium bermudense, reducing its photosynthetic capacity and impacting
RUBISCO activity [72]. Previous studies indicated that overexposure of primary producers
to UVB generates structural damage to the D1 protein of PSII, which is the molecule respon-
sible for maintaining the photoprotection process in primary producers [73–75]. Although
the spectral intensity of UVA is 10 times higher than that of UVB, it is also responsible for
inducing photo-oxidative damage to PSII and PSI in photosynthetic organisms [76,77].

Therefore, when juvenile anemones of A. hermaphroditica leave the GVC where they
are brooded, they must abruptly face a new environment with high levels of UVB and UVA,
which could induce the high levels of photo-oxidative damage observed in this study. A
similar situation was identified in the anemone Actinia tenebrosa, where the rapid transition
from an environment with low levels of UVB to one with increased levels triggered the
production of higher amounts of lipid peroxidation and protein carbonyl, increasing the
basal levels by five and six times, respectively [50]. A. hermaphroditica adults, but mainly
juveniles, increase the burial rate in the sediment, minimizing photo-oxidative damage
when the substrate acts as a protective barrier for their tissues.

Levels of total antioxidant capacity observed in A. hermaphroditica during experimental
exposure to UVB with sediment (68 mg Trolox Eq g−1 FW) are consistent with those
observed (35 to 70 mg Trolox Eq g−1 FW) in the field for the same species in the Quempillén
estuary [10]. Significant increases in total antioxidant capacity at PAB for adults and PA
and PAB for juveniles reinforce the fact that juveniles of A. hermaphroditica show greater
susceptibility to experimental radiation. Similar results were observed in the intertidal
anemone A. tenebrosa, where controlled exposures to PA and PAB generated significant
increases in GPox and GSH levels compared to those exposed only to P radiation [50].
Similarly, increases in SOD and CAT enzyme activity levels of 61% and 42% were recorded
when pluteus larvae of Sterechinus neumayerii were exposed to P and PAB radiation for
a period of 96 h [65]. Our results indicate that the level of antioxidant response in A.
hermaphroditica was mainly associated with the developmental stage and the physical
sediment protection with which they were provided. The sediment acted as a physical
barrier for adults exposed to UVR by reducing total antioxidant defenses by 20–27%
compared to those anemones exposed without sediment.

Although burial is a strategy to minimize UVB absorption damage, the use of photo-
protective compounds such as mycosporine-like amino acids (MAAs) can minimize the
effects of UVR exposure thanks to their high photo-stability since they can absorb wave-
lengths between 295 and 365 nm and dissipate the energy without the generation of
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ROS [78–80]. These secondary metabolites were widely used by sea anemones [81,82]
as a photo-protective mechanism to minimize the generation of cyclobutane pyrimidine
dimmers (CPDs) in the DNA [83], mutations that affect the replication and transcription
of the genetic material [84]. The presence of MAAs in sea anemones was particularly
associated with trophic transference and the presence of symbiotic zooxanthellae that are
involved in the de novo synthesis of these compounds [82].

Although the photodynamic response of MAAs was not analyzed in this study, it is
necessary to indicate that in A. hermaphroditica, the presence of Mycosporine 2-glyicine
(Myc 2-gly) was described, which can absorb mostly λmax = 334 nm, a compound that
would allow minimizing the damage due to UVR absorption [10]. Previous observations
carried out in sea anemones of the Anthopleura genus indicate that the presence of Myc
2-gly is common among different species, and their presence is associated with those that
exhibit symbiotic relations with zooxanthellae [82]. Considering that A. hermaphroditica
is a symbiont anemone [30], the transfer of zooxanthellae to hatched juveniles inside the
GVC (Cubillos pers. obs.) could provide some degree of protection when facing a new
environment characterized by high levels of UVR radiation. However, a previous study
indicates that the density of zooxanthellae in the larvae of the sea anemone A. elegantissima
is directly related to the radiation levels to which they were experimentally exposed [85].
Thus, low levels of radiation within the GVC of adults of A. hermaphroditica semi-buried in
the sediment would generate reduced levels of zooxanthellae infestation in newly hatched
juveniles. Consequently, this may induce a low level of MAAs in juvenile tissues, increasing
the levels of molecular damage when exposed to increased levels of UVR radiation.

Consequently, higher levels of oxidative damage in newly hatched juveniles compared
to adults of A. hermaphroditica exposed to UVB would have serious implications for the
energy budget since the de novo synthesis of enzymes and antioxidant compounds implies
a high demand for ATP [86,87]. The above involves an imbalance in the energy budget,
affecting the cellular processes destined to cell repair activities, as well as the degradation
and synthesis of new cell components damaged by the photo-oxidative effect [88–90]. Ad-
ditional studies are needed to determine whether the body walls of adult A. hermaphroditica
can protect incubated embryos against UVB when they are removed from the sediment by
bioturbation processes.

5. Conclusions

The present study showed that the burrowing activity of the intertidal anemone A.
hermaphroditica is a behavioral response to UVR radiation. Independent of the developmental
stage, PAR + UVA + UVB radiation caused adults and juveniles to conceal their bodies by
burrowing faster into the sediment compared to those exposed only to PAR radiation, providing
evidence that these anemones are evading UVB, reducing oxidative damage. A general pattern
of adult and juvenile anemones exposed to PAB is to suffer higher levels of oxidative damage
than those generated by P radiation treatment alone, indicating its noxious effect. Although the
presence or absence of sediment generated a clear photo-oxidative response in adults under
each radiation treatment, the total antioxidant capacity was significantly higher when anemones
were exposed to different radiations without sediment. The presence of sediment seems to be
important to juvenile anemones, especially when they are exposed to UVB radiation, possibly
due to their elevated photosensitivity, considering that naturally, they develop inside of the GVC
of burrowed adults, a microenvironment characterized by reduced or null radiation conditions.
Further studies should focus on understanding the effect of brooding in the GVC and its role in
protecting embryos against UVB radiation.
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