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Abstract: Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, yet
therapeutic options for CRC often exhibit strong side effects which cause patients’ well-being to
deteriorate. Theabrownin (TB), an antioxidant from Pu-erh tea, has previously been reported to have
antitumor effects on non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma, gliomas,
and melanoma. However, the potential antitumor effect of TB on CRC has not previously been
investigated in vivo. The present study therefore aimed to investigate the antitumor effect of TB
on CRC and the underlying mechanisms. Azoxymethane (AOM)/dextran sodium sulphate (DSS)
was used to establish CRC tumorigenesis in a wild type mice model. TB was found to significantly
reduce the total tumor count and improve crypt length and fibrosis of the colon when compared to
the AOM/DSS group. Immunohistochemistry staining shows that the expression of the proliferation
marker, Ki67 was reduced, while cleaved caspase 3 was increased in the TB group. Furthermore,
TB significantly reduced phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B
(Akt), and the downstream mechanistic target of rapamycin (mTOR)and cyclin D1 protein expression,
which might contribute to cell proliferation suppression and apoptosis enhancement. The 16s rRNA
sequencing revealed that TB significantly modulated the gut microbiota composition in AOM/DSS
mice. TB increased the abundance of short chain fatty acid as well as SCFA-producing Prevotellaceae
and Alloprevotella, and it decreased CRC-related Bacteroidceae and Bacteroides. Taken together, our
results suggest that TB could inhibit tumor formation and potentially be a promising candidate for
CRC treatment.

Keywords: colorectal cancer; AOM/DSS model; theabrownin; gut microbiota

1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide
and has singularly contributed to 10% of global cancer prevalence in 2020 [1,2]. The 5-year
survival rate of CRC drops tremendously from over 50% to slightly above 10% with the
progression from stage III to stage IV [3,4]. Given the asymptomatic nature of CRC until
advanced stages, CRC patients often miss the critical window for treatment, which causes
CRC to be the second most fatal cancer globally as well [2]. Current therapeutic options
for CRC mainly involve surgery, radiotherapy, immunotherapy, and chemotherapy. Yet,
side effects, heavy costs, and long duration of therapy are detrimental to both patients and
healthcare providers [1,4]. Therefore, there is an urgent need for research into an affordable
and effective therapeutic option.

Theabrownin (TB) is a polyphenol oxidized polymer which contains aromatic rings
and residues of polysaccharides and proteins [5,6]. It contributes to the taste and brownish
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color of Pu-erh tea, a dark tea [7,8]. Its production mainly comes from the fungal fermenta-
tion of tea polyphenols, theaflavin and thearubigin, by Aspergillus tubingensis, Aspergillus
marvanovae, and Aspergillus fumigatus [9–11]. Different processes of the production of
fermented tea leaves and extraction method were found to influence the structural compo-
sition and size of theabrownin [12–14]. However, regardless of these different processes,
consistent tumor suppressive effects of TB were found among different research utilizing
TB from different sources. TB was found to have tumor suppressive effects against multiple
cancers, including non-small-cell lung cancer, osteosarcoma, hepatocellular carcinoma,
gliomas, and melanoma, through modulating oncogenic pathways, PI3K/Akt, p53/JNK,
and NF-κB pathway [15–20]. In CRC, TB was recently reported to inhibit cell growth and
promote apoptosis in human CRC cells, HT29 [15]. However, in vitro study disregards the
complex microenvironment in CRC and the contribution of gut microbiota.

Tea polyphenols, including catechins, gallic acid, theaflavins, and tannins, have pre-
viously been found to improve obesity, glucose tolerance, hepatic lipogenesis, intestinal
barrier, and colorectal cancer through modulating gut microbiota [21–25]. Gut microbiota
plays an important role in the development of CRC. The elevation of pathogenic bacteria
abundance in CRC worsens the intestine with a damaged intestinal barrier, promoting
inflammation through bacterial toxins and bacteria infiltration. Gut microbiota alteration
is therefore emerging as a robust candidate in CRC treatment. TB has been proven to
exert modulatory effects on gut microbiota and promote production of short chain fatty
acids (SCFAs) in mice fed with high fat diet [26,27]. However, current studies have only
focused on its prohibitory effects against hypercholesterolemia, hyperlipidemia, oxidative,
gluconeogenesis, and other obesity-related metabolic dysfunctions [26–31].

Based on TB’s reported antitumor properties and ability to modulate gut microbiota,
the objective of this study was to examine the efficacy of TB in alleviating colorectal tumori-
genesis, gut dysbiosis, and the molecular mechanism behind. The azoxymethane/dextran
sodium sulphate model (AOM/DSS) was employed as it highly resembles human CRC
formation [32,33].

2. Materials and Methods
2.1. Chemicals and Antibodies

Azoxymethane (AOM) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Dex-
tran sodium sulphate (DSS) was bought from TdB Labs (Uppsala, Sweden). Theabrownin
(TB) (>99.3% purity) was obtained from PURENZHIZAO (Yunnan, China). All primary
antibodies were obtained from Abcam (Cambridge, UK) and secondary antibodies were
obtained from Biorad (Hercules, CA, USA).

2.2. Animals and Experimental Setup

BALB/c male mice (6 weeks old) were purchased from Centre for Comparative
Medicine Research (CCMR, HKU). The animals were acclimatized and kept in a 12 h
light/dark cycle with regulated temperature and humidity. A normal chow diet and water
was given ad libitum. The animal experiment was approved by Committee on the Use
of Live Animals in Teaching and Research (CULATR) of the University of Hong Kong
(CULATR number: 5481-20). After 1 week of acclimatization, mice (n = 8/group) were
randomly allocated into three experimental groups, namely control, AOM/DSS, and TB
treatment groups. The AOM/DSS model was established as described previously [34]. The
AOM/DSS and TB groups were intraperitoneally injected with AOM (10 mg/kg bw);the
control group was injected with PBS only. At week 2, the AOM/DSS group and the TB
group were given DSS (2.5%) in their drinking water for one week, followed by one week
of normal drinking water. This cycle was repeated for two more rounds. The control group
received normal drinking water throughout the experimental period. After the last round
of DSS period, the treatment period of five weeks began. TB (225 mg/kg bw) or PBS was
given by oral gavage (200 µL) to mice every alternative day until week 12. The dosage of
TB was chosen based on previous studies [29]. After sacrifice, the colon was measured and
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cut open longitudinally for tumor count. Part of the colon was cut for histopathological
analysis and fixed in 10% formalin, while the rest of the sample was stored at −80 ◦C for
further biochemical analysis. The small intestine, liver, spleen, and fecal samples were
weighed and stored at −80 ◦C.

2.3. Histopathological Analysis

The colon specimens were embedded in paraffin and sectioned (5 µm thickness). Slides
were deparaffinized and stained with a hematoxylin and eosin (H&E) kit according to the
manufacturer’s instructions (BASO, Wuhan, China). The adenoma counts of each section
were examined as described by Huang et al. [35,36]. Briefly, the count of adenomas was
divided into microadenomas, low-grade macroadenomas, and high-grade macroadenomas.
Sirius red staining (Abcam, Cambridge, UK) was performed according to the manufac-
turer’s protocol in order to evaluate the degree of colon collagen deposition and fibrosis.
The degree of colon fibrosis was quantified by calculating the percentage of positive red
staining area over the total colon area measured. Sirius red staining (Abcam, Cambridge,
UK) was performed according to manufacturer’s protocol to evaluate the degree of colon
collagen deposition and fibrosis.

2.4. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from colon and tumor tissues with RNeasy® Plus Mini Kit
(Qiagen, Germany) according to the manufacturers’ instructions. Reverse transcription
was performed with HiScipt II Q-RT SuperMix for qPCR (Vazyme, Nanjing, China) and
C1000 thermal cycler (Biorad, Hercules, CA, USA). The mRNA expression level of gene
was determined with the use of AceQ qPCR SYBR Green Master Mix (Vazyme) and run
on the StepOnePlus Real Time PCR system (Applied Biosystems, Foster City, CA, USA).
The primer sequence is provided in Table 1. Relative gene expression was normalized to
β-actin and calculated by the 2−∆∆T method.

Table 1. Primer sequences for RT-qPCR.

Genes NCBI Accession Code Primer Sequences

Cyclin D1 NM_007631.3 F: TCAAGTGTGACCCGGACTG
R: ATGTCCACATCTCGCACGTC

PIK3CA NM_008839.3 F: CCTCAGCTCTCACCCTCCT
R: TTGGTCTCTCTTTCCGCTCAC

AKT1 NM_001165894.1 F: TGAGAAGAAGCTGAGCCCAC
R: TAGGAGAACTTGATCAGGCGG

mTOR NM_020009.2 F: CCGCTACTGTGTCTTGGCAT
R: CAGCTCGCGGATCTCAAAGA

Cdk6 NM_009873.3 F: AACCTCTCCTTCGTGAAGACTG
R: AGCGATTACATAGTCTGCCCA

β-actin NM_007393.5 F: AGCCATGTACGTAGCCATCC
R: CTCTCAGCTGTGGTGGTGAA

2.5. Immunohistochemistry (IHC) Staining Analysis

Sectioned slides were deparaffinized, then proceeded to heat induced antigen retrieval
with sodium citrate (pH 6). Endogenous peroxidase activity was then quenched with 3%
H2O2. Sections were further blocked with CAS-block reagent (Invitrogen, Waltham, MA,
USA) for an hour to prevent nonspecific binding, and exposed with primary antibody
including Ki67 (Abcam, 1:100) and c-casp3 (Abcam, 1:100) at 4 ◦C overnight, and with
the secondary antibody at room temperature for 1 h. Chromogen reaction with DAB
(Abcam, Cambridge, UK) was then performed to visualize the presence of HRP/peroxidase,
and the slides were counterstained with hematoxylin. Live images were taken under
the light microscope, and the presence of Ki67 and c-casp3 within colorectal tumor was
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quantified with the ImageJ software (NIH, USA). The histoscore system was adopted based
on Fedchenko et al. [2]. The histoscore of IHC was given by multiplying the percentage of
positively stained area with the intensity graded from 0, non-stained; 1, weakly stained; 2,
moderately stained; and 3, strongly stained.

2.6. Western Blot Analysis

Protein was extracted from colon and tumor tissues using a RIPA buffer with pro-
tease and phosphatase inhibitor (Sigma-Aldrich, St. Louis, MO, USA) and centrifuged at
13,000× g, 15 min at 4 ◦C to extract protein. The total protein content was determined
with DC protein assay (Bio-Rad, Hercules, CA, USA). An equal amount of extracted pro-
tein was electrophorized in 10% SDS-PAGE and transferred to polyvinylidene fluoride
(PVDF) membrane. Five percent non-fat milk or BSA were used to block the membrane.
The membrane was then incubated with primary antibodies overnight at 4 ◦C, including
anti-PI3K (1:1000), anti-p-PI3K (1:1000), anti-Akt1/2/3 (1:1000), anti-p-AKT1/2/3 (1:1000),
anti-mTOR (1:10,000), and anti-cyclin D1 (1:10,000) (Abcam, Cambridge, UK). Secondary
antibodies with goat anti-rabbit IgG (H+L) HRP conjugate or goat anti-mouse IgG (H+L)
HRP conjugate (Biorad, CA, USA) were used to incubate the membrane afterwards. Imag-
ing of protein bands was visualized with enhanced chemiluminescence reagents (Biorad,
CA, USA) under the ChemiDox XRS+ imaging system (Biorad, CA, USA). The intensity
levels of the bands are measured with ImageJ software (NIH, Bethesda, MD, USA) and
normalization was conducted with reference to the intensity of β-actin.

2.7. 16s rRNA Sequencing of Fecal Microbiome

Fecal samples obtained on sacrifice day were used for studying the fecal microbiome.
Microbial DNA was extracted using QIAamp® PowerFecal® Pro DNA kit (Qiagen, Hilden,
Germany) according to manufacturer instructions. The establishment of sequencing library
and Illumina MiSeq sequencing was performed by Novogene Co. Ltd. (Beijing, China). The
V3-V4 region of bacterial 16s rRNA gene was amplified with primers, 341F (CCTAYGGGR-
BGCASCAG) and 806R (GGACTACNNGGGTATCTAAT). In brief, the sequencing libraries
were constructed with NEBNext® DNA Library Prep Kit. The constructed library was then
sequenced with Illumina platforms. The obtained raw data was analyzed with FLASH
(V1.2.7) and filtered by QIIME (V1.7.0) for high quality clean tags. Filtered tags were
compared with the reference database, using the UCHIME algorithm to remove chimeras
in order to obtain effective tags. Sequences were obtained from Uparse software (V7.0.1090)
analysis of these effective tags. Sequences with similarity higher than 97% were clustered
into the same operational taxonomic units (OTUs). Representative sequences of OTUs were
identified from the 16s SSUrRNA database of SILVA Database to compute the taxonomical
annotation. Alpha diversity indices, Chao1, Shannon, Simpson index were calculated using
the QIIME software (V1.7.0) and R software (V2.15.3) (Core Team, Vienna, Austria). Beta
diversity analysis including Principal Coordinate Analysis (PCoA), Analysis of Similarity
(Anosim), and linear discriminant analysis (LDA) of Effect Size (LEfSe) were analyzed by
the QIIME software (V1.7.0) (Boulder, CO, USA) and R software (V2.15.3).

2.8. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 8.0 (GraphPad software,
San Diego, CA, USA). All data are presented as mean ± standard error of mean (SEM).
Comparisons of differences between two groups were analyzed with Student’s t-tests or
Mann–Whitney U tests. Comparisons of differences in more than two groups were analyzed
with one way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons
test or the Kruskal–Wallis test followed by Dunn’s multiple comparisons test. The Pearson
correlation coefficient was employed to compute the correlation between two variables. A
p-value < 0.05 was recognized as statistical significance.
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3. Results
3.1. TB Suppressed Tumorigenesis in AOM/DSS

In this study, AOM/DSS model were established to explore the effect of TB on colon
cancer (Figure 1A). AOM/DSS group has a lower bodyweight gain and higher DAI score
compared to the healthy group in week12 (p < 0.05) (Figure S1A,B). Although no significant
changes were found in colon length (Figure 1B), TB significantly recovered the elevated
colonic crypt depth in AOM/DSS mice (p < 0.05) (Figure 2A,E). The spleen weight of the TB
group was significantly lower than AOM/DSS group (p < 0.05) (Figure 1D). Interestingly,
the TB group had a lower liver weight when compared to both the healthy and AOM/DSS
groups (p < 0.05) (Figure 1E).
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Figure 1. TB suppresses the development of colon tumors in AOM/DSS model. (A) Diagram
illustrating the AOM/DSS model employed in this study. (B). Length of colon in cm. (C) Tumor
count from colon and its size distribution. (D). Spleen weight. (E). Liver weight. (F). Representative
pictures of colon illustrating the presence and location of colorectal tumors, black arrows indicate
polyps. n = 7–8 per group. * p < 0.05, ** p < 0.01.
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Figure 2. TB suppresses colon cancer progression. Representative photos of H&E staining of
(A) colon tissue, 40×, tumor areas, 100× and Colon crypt, 200×. (B) Representative photos of
Sirius red staining of colon tissues. IHC detection of (C) Ki67 and (D) C-casp3 in tumor areas.
(E) Colon crypt depth (µm). (F) Quantification of Sirius red-positive areas. (G) Total adenoma count.
(H) Total adenoma count per mouse. Positive cell ratio of (I) Ki67 and (J) c-casp3. n = 7–8 per group
* p < 0.05, ** p < 0.01; *** p < 0.001, **** p < 0.0001.

The tumor incidence rate induced by AOM/DSS in this study was 100%. The total
tumor count was significantly lowered with TB treatment (p < 0.05) (Figure 1C,F). TB
significantly reduced the total adenoma and microadenoma count in the colon (p < 0.05)
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(Figure 2B,F,G). Both low-grade and high-grade macroadenoma counts were lower in the
TB group than in the AOM/DSS group. (Figure S2). Furthermore, Sirius red staining
showed a significant increase in percentage of positive area in the AOM/DSS group when
compared to control. This indicates the deposition of collagen and the presence of more
severe colon fibrosis. TB treatment significantly decreased the Sirius red stained area when
compared to AOM/DSS alone (p < 0.05), which suggests it has an anti-fibrotic effect. IHC
was then performed to understand if TB suppresses tumorigenesis through regulating
proliferation and inducing apoptosis. The histoscore of the proliferative marker, Ki67, was
higher in the TB group than in the AOM/DSS group (p < 0.01) (Figure 2C,I), whereas the
histoscore of the apoptotic marker, cleaved-caspase 3 (c-casp3), was significantly improved
(p < 0.05) (Figure 2D,J), indicating the ability of TB to promote the shift from proliferation
to apoptosis in colorectal tumor tissue.

3.2. TB Exerts Antitumor Properties via Inhibiting PI3K/Akt Pathway

To investigate the mechanism by which TB promotes apoptosis, Western blotting was
conducted in order to study its impact on the PI3K/Akt pathway, a signaling pathway
which regulates apoptosis. Western blot expression showed that TB reduced the phos-
phorylation of PI3K (p < 0.05) and Akt1/2/3 (p < 0.05) when compared to AOM/DSS
group (Figure 3A). Furthermore, TB significantly suppressed the mRNA levels of Akt,
PI3k, Cyclin D1, cyclin dependent kinase (CDK6), mTOR (p < 0.05) when compared to
AOM/DSS (Figure 3B). The proliferation promoting activator, mTOR and its effector cyclin
D1, protein levels were also significantly reduced in the TB group (p < 0.05). Taken together,
this suggests that the anticancer effects of TB were induced by limiting colorectal tumor
proliferation and promoting apoptosis from the suppression of PI3K/Akt pathway.
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Figure 3. TB inhibits tumor growth through suppressing PI3K/Akt signaling pathway. (A) Protein
expressions were quantified and normalized against β-actin. (B) mRNA expression of Akt, PI3k,
Cyclin D1, CDK6, and mTOR was quantified by RT-PCR. n = 7–8 per group * p < 0.05, *** p < 0.001,
compared to AOM/DSS.
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3.3. TB Modified Colon Microbial Composition in AOM/DSS Mice

The 16s rRNA sequencing was performed to unravel the impact of TB on the microbial
composition of AOM/DSS treated mice, with or without TB. Alpha diversity shown by
chao1 index was reduced in the TB group (p < 0.05) (Figure 4B), while no difference was
found in the Shannon index (Figure 4A). In terms of beta diversity, no clear separation
was found in the weighted Principal Coordinates Analysis (PCoA) between TB group and
AOM/DSS group (Figure 4C). However, the Analysis of Similarity (Anosim) showed that
the TB group significantly differed from either the AOM/DSS group or the healthy control
group (Figure 4D,E).
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Figure 4. TB regulated gut microbiota diversity. Alpha diversity indices: (A) chao1 index,
(B) Shannon index, (C) Weighted Unifac Principal Coordinates Analysis (PcoA). ANOSIM anal-
ysis between (D) AOM/DSS and TB, (E) CON and Tb. n = 7–8 per group. * p < 0.05.

At the phylum level, Firmicutes and Bacteroidota were the predominant phyla in all
groups (Figure 5A), accounting for over 90% of the total abundance. However, no dif-
ference was found among groups at the phylum level (p > 0.05). At the genus level, the
fecal microbiota was dominated by Muribaculaceae, Lactobacillus, Lachnospiraeceae NK4A136
group and Alistipes (Figure 5B). The abundance of Candidatus Saccharimonas, Romboutsia,
Anaeroplasma, Ruminococcus, Ruminoccaceae, Rinococcaceae Incertae Sedis, Parabacteroides,
Rikenellaceae RC9 gut group, and Parvibacter genera were significantly elevated by TB com-
pared to the AOM/DSS group (p < 0.05) (Figure 5C). Meanwhile, TB significantly reversed
the Bacteroides abundance increased by AOM/DSS exposure (p < 0.05). The linear dis-
criminant analysis (LDA) of Effect Size (LEfSe) analysis was conducted to understand the
microbial features and to identify possible biomarkers in the microbial community. TB
enriched the SCFA, producing Prevotellaceae family and Alloprevotella genus (p < 0.05), while
reducing the CRC-related Bacteroidceae family and Bacteroides genus (p < 0.05) (Figure 5D).

In order to identify the gut microbiota candidate that is associated with TB inhibitory
effect on CRC tumorigenesis, the correlation between total tumor count and bacteria
abundance was computed among bacteria with significant changes. Anaeroplasma genus
(r = −0.4982, p < 0.05), and Rikenellaceae_RC9_gut_group (r = −0.5280, p < 0.05) genus were
negatively correlated to the total tumor count. On the other hand, the downregulated
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Bacteroides genus (r = 0.5066, p < 0.05) was found to be positively correlated to the total
tumor count (Figure 5E–G).
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Figure 5. TB altered fecal microbiota abundance. Taxonomical composition at (A) phylum and
(B) genus level. (C) Relative abundance in different genus. (D) Linear discriminant analysis (LDA) of
Effect Size (LEfSe) analysis. Correlation analysis of tumor count and abundance of (E) Bacteroides,
(F) Rikenellaceae_RC9_gut_group, and (G) Anaeroplasma. Data are presented as mean ± SEM. * p < 0.05,
** p < 0.01; *** p < 0.001, **** p < 0.0001.

4. Discussion

In current study, TB has significantly suppressed the colorectal tumorigenesis of
AOM/DSS mice by inhibiting proliferation and enhancing apoptosis and gut microbiota
modulation. The treatment of TB has significantly reduced the colorectal tumor count,
improved microscopic histopathology, and reversed elevated colon crypt depth and colon
fibrosis. Our findings are in agreement with Chen et al., which revealed that TB would
inhibit the growth of HT-29 human colon cancer cell line [15]. However, because their
study focused only on the regulatory effect of TB on the redox system, the effect of TB in
regulating colorectal cancer related oncogenic signaling pathways is still unelucidated. In
the present study, we found that that the suppression of oncogenic PI3K/Akt/mTOR/cyclin
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D1 pathway has contributed to the overall anti-CRC effect. Our results assemble with
the findings of Wang et al. in which TB alleviates non-small cells lung cancer through
the inhibition of the PI3K/Akt pathway and reduction of mTOR and cyclin D1 to achieve
apoptosis, autophagy, and cell cycle arrest [17]. The overactivation of the dysregulated
PI3K/Akt/mTOR pathway contributes to the progression and proliferation of colorectal
cancer cells. The frequency of PI3K/Akt pathway malfunctioning has been observed
in over 90% and 80% of human CRC and AOM/DSS model, respectively, indicating it
to be an important therapeutic target [37,38]. Mutation-induced overexpression of the
PIK3CA and Akt genes in colorectal cancer promotes the activation of PI3K/Akt pathways,
and enhances the proliferation and survival of cancer cells while withstanding apoptosis.
Several PI3K, Akt, and mTOR inhibitors have entered preclinical and clinical stages in
treating colorectal cancer by achieving cell cycle arrest, cell apoptosis and elimination of
cell survival signals [39–41]. The downstream transcription factor cyclin D1 is positively
regulated by Akt and mTOR, in which the degradation of cyclin D1 would accelerate the
G1-phase cell cycle arrest in colorectal cancer cells [42–44]. In consistency with previous
studies, TB was found to be promotive of apoptosis in colorectal cancer with elevated active
caspase 3 and reduced proliferative Ki67 quantification in IHC analysis. These data indicate
that the suppression of PI3K/Akt/mTOR/cyclin D1 pathway is significant in colorectal
tumorigenesis regulation of TB.

In terms of organ weight, TB administration reduced AOM/DSS induced spleen
enlargement. Spleen enlargement was commonly observed in AOM/DSS studies as a
sign of severity in CRC which was triggered by elevated inflammation and immune
functions [45,46]. A similar finding was reported in a study using tea polysaccharides,
which reduced AOM/DSS induced spleen enlargement [47]. Intriguingly, the liver weight
of the TB group was significantly reduced when compared to both control group and
AOM/DSS group. A similar result was observed in the study of Kuang et al. in which
TB lowered the liver weight of mice fed with high fat diet suggesting the ameliorative
properties of TB in limiting excessive hepatic lipid storage contributed by gut microbiota
remodeling [29].

Although TB presented strong antitumorigenesis effect in the current study, colitis
related symptoms were, unfortunately, not improved. Given that the study design was
set as a treatment model, TB was provided only after the establishment of the AOM/DSS
model, which might be too late in reversing the shortening in colon length and increase in
DAI. The effect of TB with earlier administration on colitis related symptoms is yet to be
explored in future studies, given its anti-inflammatory and antioxidative effects observed
in previous studies [28,30,48].

Our data have shown that TB differentially impacted the gut microbiota composition.
TB reversed the elevated Bacteroidceae family and Bacteroides genus abundance, which
are strongly correlated with the tumor count in the current study. Previous studies re-
ported that Bacteroidceae family and Bacteroides genus are associated with colorectal cancer
and worsened tumor multiplicity and burden in AOM/DSS tumor bearing mice [49,50].
Bacteroides fragilis is identified as one of the major pathogens which promotes CRC [51]. In
a DSS induced colitis study, elevated abundance of Bacteroides by DSS was significantly de-
creased by Pu-erh tea extracts treatment, and the reversal of gut dysbiosis was achieved [52].
Our finding suggests that TB might be the contributing component in Pu-erh tea which
brings the beneficial gut microbiota modulatory effect. From previous studies, Prevotellaceae
family abundance was reduced upon AOM/DSS treatment [49]. Meanwhile, TB elevated
the Prevotellaceae family and Alloprevotella genus level in rats which consumed a high-fat
and high-sugar diet [31,53]. Our data aligns with previous studies that the administra-
tion of TB enriched SCFA producing Prevotellaceae family and Alloprevotella genus in the
AOM/DSS model [54]. Short chain fatty acids (SCFA) in the gut, mainly consisting of
acetate, propionate, and butyrate, have shown regulatory effects on CRC by alleviating
colon inflammation, strengthening the intestinal barrier and regulating the survival of both
normal and cancerous colon cells [55–57]. Moreover, TB treatment increased the abun-



Antioxidants 2022, 11, 1716 11 of 14

dance of the beneficial Romboutsia genus, which is associated with improved immunity
strengthening and anti-inflammatory effects [58,59]. Our study agrees with a previous
study that the abundance of Romboutsia was significantly increased with ripened Pu-erh
tea treatment against DSS induced colitis [40]. Noteworthily, the Anaeroplasma genus was
strongly correlated to the total tumor count inversely in this study. While the functional
effect of the bacteria in CRC is still not well known, the Anaeroplasma genus was suggested
to be a potential probiotic in treating intestinal inflammation and strengthening mucosal
immune response by elevating IgA and TGF-β levels [60,61]. However, to what extent the
bacteria contribute to the tumorigenesis regulatory effect remains to be studied further.

5. Conclusions

In summary, we found that TB could effectively reduce tumor incidents in AOM/DSS
mice. Although TB could not reverse the shortened colon length from AOM/DSS treatment,
it reduced the spleen weight, microadenoma and total adenoma count. TB was found to
suppress tumor cell proliferation while promoting apoptosis, through its suppression on
the PI3K/Akt/mTOR pathway. In addition, TB was found to modify gut microbiota compo-
sition. SCFA-producing Prevotellaceae family and Alloprevotella genus, as well as immunity
strengthening and anti-inflammatory Romboutsia genus, were significantly upregulated,
while pathogenic Bacteroides genus were reduced in TB group. Our results confirm the
efficacy of TB against CRC development.
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