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Abstract: Neurodegenerative diseases are associated with neuronal cell death through apoptosis.
Apoptosis is tightly associated with the overproduction of reactive oxygen species (ROS), and high
glucose levels contribute to higher oxidative stress in diabetic patients. Hesperidin, a natural ac-
tive compound, has been reported to scavenge free radicals. Only a few studies have explored
the protective effects of hesperidin against high glucose−induced apoptosis in SH−SY5Y neuronal
cells. Glucose stimulated neuronal cells to generate excessive ROS and caused DNA damage. In
addition, glucose triggered endoplasmic reticulum stress and upregulated cytoplasmic as well as
mitochondrial calcium levels. Hesperidin inhibited glucose−induced ROS production and mitigated
the associated DNA damage and endoplasmic reticulum stress. The downregulation of antiapoptotic
protein Bcl−2 following glucose treatment was reversed by a hesperidin treatment. Furthermore,
hesperidin repressed the glucose−induced Bcl−2−associated X protein, cleaved caspase−9, and
cleaved caspase−3. Hesperidin also suppressed the glucose−induced phosphorylation of extra-
cellular signal−regulated kinase and c−Jun N−terminal kinase. The current results confirmed
that hesperidin could protect neuronal cells against glucose−induced ROS. Mechanistically, hes-
peridin was shown to promote cell viability via attenuation of the mitogen−activated protein kinase
signaling pathway.

Keywords: hesperidin; glucose; SH−SY5Y neuronal cell; oxidative stress; apoptosis

1. Introduction

The prevalence of diabetes mellitus (DM) and its complications are increasing world-
wide, which imposes great pressure on patients and medical systems [1]. While neurons
have a constant high demand for glucose, diabetic hyperglycemia is known to induce
neuronal damage via intracellular glucose metabolism [2]. Diabetic neuropathy is the most
frequent complication of DM and the most important reason for foot ulcers as well as
nontraumatic amputations [3]. Patients with diabetic neuropathy have a compromised
quality of life due to pain, disability, and hospitalization [4]. Further, the cost of treatment
for diabetic neuropathy increases annually, in parallel to DM incidence and prevalence [1].
In recent years, many researchers have worked to elucidate the pathogenesis of diabetic
neuropathy and develop novel treatments based on the pathogenic mechanism.

Hyperglycemia is an established factor that induces oxidative stress and endoplas-
mic reticulum (ER) stress, leading to extensive injury in the peripheral nervous system
with various types of cells (such as Schwann cells, sensory neurons, and myelinated ax-
ons) [5,6]. Among these, oxidative stress−induced damage within the mitochondria−rich
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axons drives their degeneration or neuronal apoptosis [7]. Oxidative stress−induced apop-
tosis plays a central role in several neurodegenerative diseases, such as Huntington’s,
Alzheimer’s, and Parkinson’s diseases [8]. Similarly, calcium homeostasis and associated
mitochondrial dysfunction play an important role in the pathogenesis of diabetes [9]. One
study has suggested that increasing the level of antioxidant enzymes in mitochondria, such
as glutathione, may be a therapeutic strategy for neurodegenerative disorders caused by
oxidative stress, and can be assessed by mitochondrial membrane potential and cytochrome
c release, among other techniques [10].

Flavonoids are a group of natural hydroxylated phenolic compounds found in citrus
fruits, vegetables, and tea [11]. Their free radical scavenging capacity makes flavonoids
potential therapeutic compounds against oxidative stress−driven disease [12,13]. Further,
the antioxidant effect of flavonoids in diabetes has been reported in many studies [14,15].
Recently, hesperidin, a flavanone glycoside, has been identified as a neuroprotective com-
pound against Parkinson’s disease or Alzheimer’s disease [16,17]. Clinical and in vivo
studies have shown that hesperidin protects against neurodegeneration via the upregu-
lation of intracellular antioxidant defenses [18]. The SH−SY5Y neuroblastoma cell line is
most widely used for in vitro studies of Parkinson’s disease [19]. As the protective mecha-
nism of hesperidin against high glucose−induced neuronal cell damage remains unclear,
we examined its antioxidant and cytoprotective effects against hyperglycemia−induced
apoptosis in SH−SY5Y cells as well as the underlying mechanism of action.

2. Materials and Methods
2.1. Reagents and Chemicals

Hesperidin (Figure 1a), glucose, N−acetylcysteine (NAC), 2′,7′−dichlorodihy-
drofluorescein diacetate (H2DCFDA), avidin−tetramethyl−rhodamine isothiocyanate
(TRITC) conjugate, and actin were obtained from Sigma−Aldrich (St. Louis, MO, USA).
5,5−Dimethyl−1−pyrroline−N−oxide (DMPO) was purchased from Cayman Chemi-
cal (Ann Arbor, MI, USA). Fluo−4 acetoxymethyl ester (Fluo−4 AM) and Rhod−2 AM
were purchased from Molecular Probes (Eugene, OR, USA). Hoechst 33342 was provided
by Biomol GmbH (Hamburg, Germany). Inhibitors of U0126 and SP600125 were pro-
vided from Merck KGaA (Darmstadt, Germany) and Tocris (Ellisville, MO, USA), respec-
tively. Primary antibodies against phospho−H2A.X (Ser139), C/EBP homologous protein
(CHOP), caspase−9, caspase−3, phospho−extracellular signal−regulated kinase (ERK),
phospho−c−Jun N−terminal kinase (JNK), and JNK were purchased from Cell Signaling
Technology (Beverly, MA, USA). Primary antibodies against Bcl−2, Bcl−2−associated X
protein (Bax), phospho−protein kinase R−like ER kinase (PERK), phospho−eukaryotic
initiation factor 2 alpha (eIF2α), and ERK2 were purchased from Santa Cruz Biotechnol-
ogy (Dallas, TX, USA). Anti−IgG secondary antibodies were purchased from Invitrogen
(Rockford, IL, USA). All other chemicals and reagents used were of analytical grade.
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Figure 1. Hesperidin protected SH−SY5Y neuronal cells against high glucose−induced oxidative 
stress. (a) Chemical structure of hesperidin. (b) Cell viability was assessed using the MTT assay. * p 
< 0.05 compared to control cells. (c) The superoxide radical was examined via ESR. * p < 0.05, # p < 
0.05 compared to control and xanthine + xanthine oxidase, respectively. (d) The hydroxyl radical 
was examined via ESR. * p < 0.05, # p < 0.05 compared to control and FeSO4 + H2O2, respectively. (e) 

Figure 1. Hesperidin protected SH−SY5Y neuronal cells against high glucose−induced oxidative
stress. (a) Chemical structure of hesperidin. (b) Cell viability was assessed using the MTT assay.
* p < 0.05 compared to control cells. (c) The superoxide radical was examined via ESR. * p < 0.05,
# p < 0.05 compared to control and xanthine + xanthine oxidase, respectively. (d) The hydroxyl radical
was examined via ESR. * p < 0.05, # p < 0.05 compared to control and FeSO4 + H2O2, respectively.
(e) The ROS were determined using spectrometry after H2DCFDA staining. * p < 0.05, # p < 0.05
compared to glucose− and H2O2−exposed cells, respectively. (f,g) The ROS were analyzed using
confocal microscopy and flow cytometry after H2DCFDA staining. * p < 0.05, # p < 0.05 compared to
control cells and glucose−exposed cells, respectively.
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2.2. Cell Culture

SH−SY5Y neuronal cells were seeded in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum and 1% antibiotic−antimycotic (Life Technologies
Co., Grand Island, NY, USA). Cells were cultured at 37 ◦C in a humidified atmosphere
containing 5% CO2. For assaying the effects of high glucose on SH−SY5Y cells, cells were
cultured in the above medium containing 50 mM glucose with or without hesperidin.

2.3. Cell Viability

The 3−(4,5−dimethylthiazol−2−yl)−2,5−diphenyltetrazolium bromide (MTT;
Sigma−Aldrich) assay was performed to test the cytotoxic effect of hesperidin on cells,
which was determined by detecting the mitochondrial dehydrogenase−mediated cleavage
of the tetrazolium salt in viable cells [20]. Cells were cultured in a 24−well plate at a
concentration of 1× 105 cells/mL for 16 h. The cells in the medium with or without glucose
at 50 mM were treated with hesperidin at different concentrations, U0126, or SP600125 for
3 days. MTT stock solution was added for 4 h to yield formazan crystals and dissolved
in dimethyl sulfoxide. Finally, the absorbance was measured at 540 nm using a scanning
multi−well spectrophotometer (Sunrise, Tecan, Maennedorf, Switzerland).

2.4. Analysis of Superoxide and Hydroxyl Radicals

Superoxide radicals were generated by xanthine and xanthine oxidase, and hydroxyl
radicals were generated via the Fenton reaction (FeSO4 + H2O2). The DMPO signals of O2

−

and OH· were detected using a JES−FA200 electron spin resonance (ESR) spectrometer
(JEOL Ltd., Tokyo, Japan), with the parameters set as previously described [21].

2.5. Intracellular Reactive Oxygen Species (ROS) Measurement

The ability of hesperidin to inhibit high glucose−induced intracellular ROS production
was investigated using H2DCFDA. Cells were seeded in a 96−well plate at 1× 105 cells/mL
and treated with hesperidin (10, 20, 40, 60, 80, or 100 µM) or NAC (1 mM) for 16 h after
seeding. After 30 min, 50 mM glucose was added to each well. The cells were cultured for an
additional 30 min and the fluorescence of H2DCFDA was detected using a GloMax®−Multi
Base Instrument (Promega, Madison, WI, USA). Similarly, cells stained with H2DCFDA
were detected via FV1200 confocal microscopy (Olympus, Tokyo, Japan) and flow cytometry
(Becton Dickinson, Mountain View, CA, USA) [22].

2.6. 8−Oxoguanine (8−oxoG) Detection

Cells were cultured under high glucose in a chamber slide at 1.5 × 105 cells/mL. The
8−oxoG modification was observed under a confocal microscope using the avidin−TRITC
conjugate [23].

2.7. Western Blot Analysis

Cells were exposed to 50 mM glucose on different days or 20 µM hesperidin and 50 mM
glucose simultaneously for three days. Total protein was obtained from the harvested cells
and separated via SDS−PAGE, where proteins were transferred to the membrane. The mem-
branes were incubated with primary antibodies against phospho−H2A.X, phospho−PERK,
phospho−eIF2α, CHOP, Bcl−2, Bax, caspase−9, caspase−3, phospho−ERK, ERK2,
phospho−JNK, JNK, and actin, followed by incubation with secondary antibodies for
another 1 h. Bands were visualized using an Amersham ECL western blotting detection
reagent (Cytiva, Buckinghamshire, UK).
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2.8. Cellular and Mitochondrial Calcium Level Detection

As previously described, we used Fluo−4 AM and Rhod−2 AM to detect total calcium
and mitochondrial calcium levels in neuronal cells, respectively [24]. Cells were seeded into
6−well plates and incubated with Fluo−4 AM or Rhod−2 AM for 30 min. The fluorescence
of intracellular and mitochondrial Ca2+ was measured using flow cytometry [25].

2.9. Hoechst 33342 Staining

Hoechst 33342, a nuclear−specific dye, was used to evaluate apoptotic bodies to stain
SH−SY5Y cell nuclei. Cells were cotreated with hesperidin and glucose for 3 days. Hoechst
33342 was then added to each group, which was further maintained for 10 min in the dark.
To observe the nuclear condensation, apoptotic nuclei were observed under an Olympus
100W Mercury Power Supply (Olympus, Tokyo, Japan) [26].

2.10. Statistical Analysis

All experiments were performed in triplicates. Data are presented as the mean ± standard
error. Means were compared using an analysis of variance (ANOVA), followed by Tukey’s
test. p < 0.05 was considered significant.

3. Results
3.1. Hesperidin Protects Neuronal Cells from High Glucose−Induced Oxidative Stress

In the MTT assay, hesperidin showed no cytotoxicity at doses below 40 µM (Figure 1b).
During glucose metabolism within mitochondria, ROS induced by high glucose was as-
sessed via superoxide and hydroxyl radicals [27]. The superoxide radical scavenging ability
of hesperidin was detected at 20 µM, with significant suppression of superoxide radical
levels (Figure 1c). Similarly, 20 µM hesperidin significantly reduced hydroxyl radicals
(Figure 1d). We then confirmed the intracellular ROS scavenging ability of hesperidin in
SH−SY5Y neuronal cells, as high glucose levels, like H2O2, induced high levels of ROS,
which were inhibited by hesperidin in a dose−dependent manner (Figure 1e). Based on
results from the cell viability, ESR, and ROS scavenging tests, 20 µM hesperidin was found
to be the optimal concentration in this study. According to a previous study on high
glucose−induced cytotoxicity and apoptosis, glucose at 50 mM significantly inhibited the
cell viability of SH−SY5Y and induced apoptosis after 2 days [28]. Thus, 50 mM was set
as the high glucose concentration in our assays. To confirm the ROS scavenging ability of
hesperidin, we subjected cells to confocal microscopy and flow cytometry analyses. Both
results indicated that the high levels of ROS induced by glucose in SH−SY5Y cells were
inhibited under hesperidin treatment (Figure 1f,g). Taken together, hesperidin protected
neuronal cells from high glucose−induced ROS, and we selected 20 µM as the optimal
concentration for subsequent cellular experiments.

3.2. Hesperidin Ameliorated Glucose−Induced DNA Damage

Oxidative stress promotes neurodegenerative disease via the disruption of the DNA
structure [29]. Glucose metabolism is associated with increased levels of 8−oxoG in
cells, which hesperidin alleviated (Figure 2a). The phosphorylation of histone H2A.X, a
specific DNA damage marker, was induced by glucose treatment in a time−dependent
manner (Figure 2b). However, hesperidin reversed the glucose−induced upregulation of
phospho−H2A.X (Figure 2c). Thus, hesperidin protected neuronal cells from glucose−induced
DNA damage.
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Figure 2. Hesperidin relieved high glucose−induced DNA damage in SH−SY5Y cells. (a) 8−OxoG
was assessed using confocal microscopy after staining of avidin−TRITC. (b,c) Phospho−H2A.X
was measured via western blotting. Actin was regarded as a loading control. The ‘d’ stands for
‘day’ after cells were treated with glucose. * p < 0.05 and # p < 0.05 compared to control cells and
glucose−exposed cells, respectively.

3.3. Hesperidin Suppressed Glucose−Induced ER Stress Response

ROS can also promote neuronal injury via ER stress [30]. Glucose upregulated the pro-
tein levels of phospho−PERK, phospho−eIF2α, and CHOP over time, which belong to the
ER stress (Figure 3a). Hesperidin suppressed these ER stress-associated factors (Figure 3b).
Cytoplasmic calcium levels were upregulated under treatment with glucose, which was
once again reversed through hesperidin pretreatment (Figure 3c). Furthermore, hesperidin
restored mitochondrial calcium homeostasis (Figure 3d). Taken together, hesperidin sup-
pressed high glucose−induced ER stress and maintained cellular calcium levels.
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Figure 3. Hesperidin mitigated high glucose−induced ER stress in SH−SY5Y neuronal cells.
(a,b) Phospho−PERK, phospho−eIF2α, and CHOP were detected via western blot. (c) ER cal-
cium levels were analyzed by Fluo−4 AM dye. (d) Mitochondrial calcium levels were measured
by Rhod−2 AM dye. * p < 0.05 and # p < 0.05 compared to control cells and glucose−exposed
cells, respectively.

3.4. Hesperidin Protected Neuronal Cells against Glucose−Induced Apoptosis

The Bcl−2 was suppressed, while Bax was upregulated by glucose in a time−dependent
manner, which represented antiapoptotic proteins and proapoptotic proteins, respectively
(Figure 4a). However, hesperidin treatment reversed these expression changes (Figure 4b).
Apoptosis effectors caspase−9 and caspase−3 were activated by glucose over time (Fig-
ure 4c), which was suppressed by the treatment with hesperidin (Figure 4d). The inhibition
apoptotic effect of hesperidin was confirmed through the observation of glucose−induced
apoptotic bodies via Hoechst 33342 staining, which was reversed by hesperidin (Figure 4e).
Finally, glucose suppressed cell viability, once again reversed by hesperidin treatment
(Figure 4f). Taken together, hesperidin suppressed glucose−induced neuronal apoptosis.
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pho−ERK and phospho−JNK, which were stimulated by glucose (Figure 5a). Cells cul-
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(MEK, the upstream of ERK) [31] and JNK inhibitors (U0126 and SP600125, respectively) 
exhibited a lower index of apoptotic bodies than those in the glucose alone group, but 

Figure 4. Hesperidin protected SH−SY5Y neuronal cells against high glucose−induced apoptosis.
(a,b) Bcl−2 and Bax were detected via western blot. (c,d) Cleaved caspase−9 and cleaved caspase−3
were detected via western blot. (e) Hoechst 33342 dye was used for the observation of apoptotic
bodies. (f) Cell viability was detected via MTT assays. * p < 0.05 and # p < 0.05 compared to control
cells and glucose−exposed cells, respectively.

3.5. Hesperidin Protected Neuronal Cells via Attenuation of ERK/JNK Signaling Pathway

A recent study reported the activation of mitogen−activated protein kinases (MAPKs)
in SH−SY5Y cells undergoing H2O2−induced apoptosis [31]. Hesperidin suppressed
phospho−ERK and phospho−JNK, which were stimulated by glucose (Figure 5a). Cells
cultured in the presence of glucose as well as mitogen−activated protein kinase/ERK kinase
(MEK, the upstream of ERK) [31] and JNK inhibitors (U0126 and SP600125, respectively)
exhibited a lower index of apoptotic bodies than those in the glucose alone group, but
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similar to that in the hesperidin and glucose group (Figure 5b). After treatment with MEK
and JNK inhibitors (U0126 and SP600125, respectively), the glucose−induced reduction in
cell viability was enhanced, yet treatment with hesperidin reversed it (Figure 5c). Taken
together, hesperidin protected against apoptosis and promoted cell viability via inhibition
of the ERK and JNK MAPK signaling pathways.
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Figure 5. Hesperidin protected SH−SY5Y neuronal cells against high glucose−induced cell death
via the ERK and JNK signaling pathways. (a) Phospho−ERK, ERK2, phospho−JNK, and JNK were
measured via western blot. (b) Apoptotic bodies were detected using Hoechst 33342. Arrow indicates
apoptotic body. (c) Cell viability was detected via MTT assay. * p < 0.05 and # p < 0.05 compared to
control cells and glucose−exposed cells, respectively.

4. Discussion

Hyperglycemia−induced oxidative stress is a critical mechanism in the pathogenesis
of diabetic neuropathy. A previous study revealed that high glucose inhibited neural cell
differentiation via oxidative stress and ER stress, causing neural tube defects in maternal
diabetic patients [32]. Increased oxidative stress has an adverse effect on the metabolism
of the peripheral nervous system [33], promoting axon degeneration in the early stage of
diabetes [34]. Interestingly, increasing doses of free radical accumulation stimulate the
hermetic response (a low dose stimulation and a high dose inhibition) of the intrinsic
cellular redox homeostasis system (including free radical damage and decreased energy
production), resulting in neurodegeneration during the aging process, and notably, this
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dose−response relationship may modulate the neuroprotective effects [35,36]. Hormesis
provides a novel insight into assessing the therapeutic potentiality of pharmaceutical drug
candidates based on their neuroprotective abilities. Herein, to explore new treatment
strategies for neurodegenerative diseases, we assessed hesperidin known for its antiox-
idative effects. Hesperidin has diverse biological activities, including antioxidative and
anti−inflammatory effects, mediated via radical scavenging and the promotion of antioxi-
dant defense [37]. Hesperidin was shown to alleviate retinal and plasma abnormalities in
diabetic rats via inhibition of ROS [38]. In the present study, SH−SY5Y cells were cultured
under high glucose to mimic nerve cells’ response to high glucose. High glucose upreg-
ulated intracellular ROS, which were significantly reduced by hesperidin treatment. In
addition, ROS can trigger the cellular DNA damage response, which is intimately linked to
the manifestation of neurodegenerative disorders [39]. Hesperidin was shown to modulate
the high glucose−induced DNA damage response. These properties of hesperidin are
expected to be beneficial against diabetic neuropathy.

Increased ROS and compromised endogenous antioxidant defense can disturb protein
folding, leading to the accumulation of unfolded proteins [40]. These in turn activate
PERK localized on the ER membrane by triggering its homodimerization and autophos-
phorylation. PERK activation leads to eIF2α phosphorylation, which in turn promotes
CHOP expression. CHOP then activates the action of cytochrome c release and expression
of proapoptotic proteins, such as Bax, while inhibiting antiapoptotic proteins, such as
Bcl−2 [41]. Herein, we confirmed that a high glucose level upregulated the phosphory-
lation of PERK and eIF2α as well as its downstream signaling protein CHOP. However,
hesperidin treatment significantly reduced the activation of the PERK/eIF2α/CHOP axis.
Cellular calcium overload together with ROS contributes to high levels of mitochondrial
calcium, which leads to cell death via mitochondrial dysfunction, observed in several
neural diseases [42]. The upregulation of mitochondrial glutathione can prevent neurons
from free radicals (such as nitric oxide) induced damage and has important implications
for liver diseases and neurodegenerative disorders [10,43]. Moreover, the mitochondrial
membrane potential is a determinant of cell apoptosis and calcium homeostasis [44]. Our
results showed that hesperidin could restore calcium homeostasis, which may be beneficial
for inhibiting ER stress−induced diabetic neuropathy.

High glucose−induced ROS can activate Bax and inhibit Bcl−2, triggering cell apop-
tosis [45]. The apoptosome complex can cleave caspase−3, one of the effector caspases,
leading to the degradation of cellular proteins and subsequent apoptosis [46]. Moreover,
increased cleavage of caspase−9 and caspase−3 has been detected in neurons and Schwann
cells from 12−month diabetic rats under high glucose [47]. In addition, hesperidin inhibited
high glucose−induced apoptosis by regulating mitochondria−related proteins, including
the reduction of Bcl−2 expression, induction of Bax expression, as well as the cleavage
of caspase−9 and −3 in SH−SY5Y neuronal cells. Thus, hesperidin has the potential to
suppress neuronal cell death.

The MAPK pathway has been reported to participate in cell proliferation, senescence,
and apoptosis [48]. The other two studies also showed that a high glucose level triggered
DNA damage response and dysregulated MAPK via excessive ROS in hyperglycemia,
and an unfolded protein response in ER stress could regulate phosphorylation of JNK
causing apoptosis [5,49]. In this study, a high glucose level significantly increased the levels
of phospho−ERK and phospho−JNK, indicating that the ERK and JNK pathways were
activated. However, hesperidin treatment significantly reduced both levels. Furthermore,
hesperidin, an ERK inhibitor, and a JNK inhibitor increased cell viability by suppressing
apoptosis, indicating that hesperidin protects neural cells from glucose−induced cytotoxic-
ity via attenuation of the MAPK signaling pathway.

5. Conclusions

In conclusion, hesperidin markedly inhibited high glucose−induced ROS production
through its antioxidant effect in SH−SY5Y neuronal cells (Figure 6). By scavenging ROS,



Antioxidants 2022, 11, 1707 11 of 13

hesperidin effectively protected SH−SY5Y neuronal cells against oxidative injury, ER stress,
and apoptosis. And hesperidin inhibited the activation of ERK and JNK, which induced by
oxidative stress, and recovered MAPK signaling-reduced cell viability. Our study suggests
that hesperidin is a promising biomolecular for diabetic neuropathy treatment.
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