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Abstract: Cerebrovascular ischemia is a common clinical disease encompassing a series of com-
plex pathophysiological processes in which oxidative stress plays a major role. The present study
aimed to evaluate the effects of Dexmedetomidine, Clonidine, and Propofol in a model of hy-
poxia/reoxygenation injury. Microglial cells were exposed to 1%hypoxia for 3 h and reoxygenated
for 3 h, and oxidative stress was measured by ROS formation and the expression of inflammatory
process genes. Mitochondrial dysfunction was assessed by membrane potential maintenance and the
levels of various metabolites involved in energetic metabolism. The results showed that Propofol and
α2-agonists attenuate the formation of ROS during hypoxia and after reoxygenation. Furthermore,
the α2-agonists treatment restored membrane potential to values comparable to the normoxic control
and were both more effective than Propofol. At the same time, Propofol, but not α2-agonists, reduces
proliferation (Untreated Hypoxia = 1.16 ± 0.2, Untreated 3 h Reoxygenation = 1.28 ± 0.01 vs. Propo-
fol hypoxia = 1.01 ± 0.01 vs. Propofol 3 h Reoxygenation = 1.12 ± 0.03) and microglial migration.
Interestingly, all of the treatments reduced inflammatory gene and protein expressions and re-
stored energy metabolism following hypoxia/reoxygenation (ATP content in hypoxia/reoxygenation
3 h: Untreated = 3.11 ± 0.8 vs. Propofol = 7.03 ± 0.4 vs. Dexmedetomidine = 5.44 ± 0.8 vs.
Clonidine = 7.70 ± 0.1), showing that the drugs resulted in a different neuroprotective profile. In
conclusion, our results may provide clinically relevant insights for neuroprotective strategies in
intensive care units.

Keywords: microglia; inflammation: mitochondria; hypoxia; propofol and α2-agonists

1. Introduction

Cerebrovascular ischemia is a notably common clinical cerebrovascular disease en-
compassing a series of complex pathophysiological processes. Oxidative/nitrosative stress
and inflammation are considered the key players of such injury, activating the crosstalk
among different cell populations of the brain, such as microglia and neurons [1]. In recent
decades, various pharmacological agents targeting neuroinflammation, apoptosis, and
oxidative/nitrosative stress have been proposed as neuroprotectants in various clinical pro-
tocols [2]. The inhibition of the aforementioned molecular processes is essential to decrease
neuronal injury and to obtain a concomitant improvement in the outcome and recovery of
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the patients admitted to the intensive care units (ICU). Clinically, an inadequate sedative
technique may adversely affect morbidity and even mortality in the ICU since the sedative
protocol modulates the neuroendocrine stress and the inflammatory response to surgery,
thus significantly affecting the recovery period. In this regard, Dexmedetomidine is largely
used in neuroanaesthesiology for the maintenance of haemodynamic stability, preserving
intracranial homeostasis, reducing cerebral blood flow, and inducting neuroprotective
effects [3–5]. Such a pharmacological profile allows a better evaluation of the neurological
status of the patients in mechanical ventilation, especially when compared with other
sedatives used in ICUs. Interestingly, Dexmedetomidine’s neuroprotective effects seem
related both to its α2 adrenergic receptor agonism and to its binding at imidazoline 1 and
2 receptors [6]. In particular, Dexmedetomidine decreased lactate dehydrogenase release
from mouse cortical neuronal cultures exposed to oxygen–glucose deprivation and reduced
the infarct area and neurologic deficits in rats subjected to focal ischemia [6]. Previous
studies focused on the biochemical mechanisms underlying Dexmedetomidine’s neuropro-
tection showed that Dexmedetomidine decreased the pro-apoptotic Bcl2-associated protein
expression and increased the anti-apoptotic Bcl2 protein expression in the hippocampus
of rats undergoing incomplete cerebral ischemia [7,8]. On the other hand, the use of other
α2 adrenergic receptor agonists (i.e., Clonidine) failed to demonstrate neuroprotection in
focal cerebral ischemia in WT, (2A)(-/-), α(2B)(-/-), and α(2C)(-/-) mice. By contrast, in a
severe hypoxic preterm fetal sheep model, Clonidine administration shortly after perinatal
hypoxia-ischemia promoted neural recovery but highlighted the complex dose–response of
exogenous therapy.

Sedative agents other than α(2)-adrenoceptors agonists have widely been used and
exploited for their neuroprotective profile. In this regard, Propofol has been adminis-
tered in pediatric anesthesia for many years due to its attractive pharmacokinetic profile,
rapid onset of pharmacological effects, and the short recovery period in post-anesthetized
patients [9–11]. As for many anesthetics, the exact mechanism of action of Propofol has
never been fully elucidated. Several reports indicate that the anesthetic effects of Propofol
are mediated by potentiation of the GABAA receptor [12]. Contrary to Dexmedetomidine,
data relevant to the neuroprotective effects of Propofol are contradictory. Similarly to
Dexmedetomidine, Propofol increased Bcl2 and decreased Bcl2-associated protein three
days after cerebral ischemia and reperfusion in the hippocampus [13].

Based on the aforementioned findings, the present study aimed to evaluate and
compare the effects of Dexmedetomidine, Clonidine (two α(2)-adrenoceptor agonists),
and Propofol on oxidative/nitrosative stress, inflammation, and energy metabolism in
hypoxia-activated microglia.

2. Materials and Methods
2.1. Cell Culture, Induction of Hypoxia/Reoxygenation and Pharmacological Treatments

The BV2 cells (mouse microglial cells) were purchased from ATCC Company (Milan,
Italy). The cells were suspended in DMEM (Dulbecco’s Modified Eagle Medium containing
10% fetal bovine serum (FBS), 100 U/mL of penicillin, and 100 U/mL of streptomycin)
culture medium. At 80% confluency, the cells were treated with trypsin-EDTA solution
(0.05% trypsin and 0.02% EDTA), and the resulting cell suspension was adjusted to a cell
density of 5 × 104 cells/mL. The cell suspensions were washed with PBS (Phosphate-
Buffered Saline), resuspended in serum-free DMEM medium, and placed in an incubator
at 37 ◦C, without and with the addition of Propofol, Dexmedetomidine, or Clonidine
(Sigma–Aldrich, Milan, Italy). The drugs were tested at final concentrations of 25 and
50 µM. Hypoxia was then induced by challenging the cell cultures with a gas mixture
containing 1.0% O2, 5% CO2, and 37 ◦C for 3 h to initiate hypoxia, followed by 3 h of
reoxygenation at 37 ◦C using a gas mixture containing 5% CO2 and 18.0% O2. We used
gas-controlled incubators to control the O2 levels of the cell cultures. In hypoxia, the O2
levels were 1%, and the CO2 levels were 5%. Under the reoxygenation conditions, the O2
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levels were 18%, and the CO2 levels were 5%. Nitrogen was added to the incubator in order
until the set O2% was achieved.

2.2. Confocal Microscopy for the Evaluation of Mitochondrial Membrane Potential (∆ψ)

Mitochondrial ∆ψwas assessed in living cells using the fluorescent intensity of the JC-1
probe (10 µg/mL) [14] at emission wavelengths of 585 nm (red fluorescence = high value of
∆ψ) and 527 nm (green fluorescence = low value of ∆ψ). JC-1 permeates the mitochondria
as a function of ∆ψ, giving a red fluorescence when the mitochondrial membrane potential
is high and shifting into green fluorescence when the mitochondrial membrane potential
is decreased.

Briefly, the cells were seeded in a 96-well multiplate (Cell carrier ultra) at a density
of 5× 103 cells. After 24 h, the cells were exposed to hypoxia (3 h) and reoxygenation and
incubated with media containing dye for 1 h. Then, the cells were washed and read in
confocal conditions using the 20× long WD objective by the High Content Screening (HCS)
analysis system (PerkinElmer Operetta High-Content Imaging System) for 24 h.

2.3. RNA Extraction and RT-qPCR

cDNA was synthesized with a High-Capacity cDNA Reverse Transcription kit (cate-
gory no. 4368814, Applied Biosystems, Foster City, CA, USA) and the quality was checked,
taking into consideration the housekeeping gene Ct values. Quantitative real-time PCR was
performed in a QuantStudio™ 3 Real-Time PCR system, Applied Biosystems, using the
SYBR Green PCR MasterMix (category no. 4309155, Life Technologies, Monza, Italy). The
primers were designed using BLAST® (Basic Local Alignment Search Tool, NBCI, NIH).
The primers’ sequences are shown in Table 1, and β-actin was used as the housekeeping
gene. The relative mRNA expression level was calculated by the threshold cycle (Ct) using
a comparative 2−∆∆Ct method.

Table 1. Primer sequences of gene of interest.

Gene Forward Primer (5′→ 3′) Reverse Primer (5′→ 3′) Access Number

nlrp3 TGCTCTTCACTGCTATCAAGCCCT ACAAGCCTTTGCTCCAGACCCTAT NM_145827.4
cox2 GATGACTGCCCAACTCCC AACCCAGGTCCTCGCTTA NM_011198.4
arg1 GCATATCTGCCAAAGACATCG CCATCACCTTGCCAATCCC NM_007482.3
tnf CCCTTCCTCCGATGGCTAC CGCCTCCTTCTTGTTCTGG NM_001177759.1

nos2 GAGCGAGTTGTGGATTGTC GGCAGCCTCTTGTCTTTG NM_001313922.1
il-4 CAACCCCCAGCTAGTTGTCA TGTCGCATCCGTGGATATGG NM_021283.2

β-actin CCTTCTGACCCATTCCCACC GCTTCTTTGCAGCTCCTTCG NM_007393.5

2.4. Real-Time Monitoring of Cell Proliferation

xCELLigence experiments were performed using the RTCA (Real-Time Cell Analyzer)
DP (Dual Plate) instrument according to the manufacturers’ instructions (Roche Applied
Science, Mannheim, Germany, and ACEA Biosciences, San Diego, CA). E-plate16 is a
single-use 16-well cell culture plate with bottom surfaces covered with microelectrode
sensors (0.2 cm2 well surface area; 243 ± 5 µL maximum volume). Real-time changes were
expressed as a cell index defined as (Rn-Rb)/15, where Rb is the background impedance,
and Rn is the impedance of the well with cells. The negative control groups were tested
in every experiment. Before seeding the cells, the background impedance was measured
after the 30 min incubation period at room temperature. After seeding 5000 cells into each
well, the plate was incubated at room temperature for 30 min, and cell proliferation was
monitored every 20 min for 24 h.

2.5. Intracellular ROS Measurement

To determine intracellular ROS generation, we stained the cells with 5 mM dihy-
droethidium (DHE, Sigma-Aldrich, Milan, Italy) in PBS for 30 min at 37 ◦C. Fluorescence



Antioxidants 2022, 11, 1682 4 of 17

intensity (excitation at 488 nm, emission at 620 nm) was measured by fluorescence-activated
cell sorting (FACS, FC500, Beckman Coulter, Milan, Italy) [15].

2.6. Effects of Pharmacological Treatments on Cell Migration

Cell migration was performed using a wound healing assay. Briefly, the cells were
seeded in 24-well dishes, and the cells were then scraped with a 200 µL micropipette tip.
After the different drug treatments, the cells were monitored at 0 h, 4 h, 8 h, 12, 18 h, and
24 h and placed in Operetta (Perkin Elmer) at 37 ◦C and 5% CO2. The wound area was
measured and quantified at different intervals using Harmony high-content imaging and
analysis software (PerkinElmer, MA, USA) following cell segmentation.

2.7. Cytokine Antibody Arrays

To determine the cytokine concentrations of a total of 40 inflammatory factors, we
used a Mouse Inflammation Q1 kit (Raybiotech Inc., Georgia, USA, www.raybiotech.com,
1 April 2021) according to the manufacturer’s instructions. Multiple cytokine-specific
capture antibodies were first bound to glass surfaces, and following incubation with the
samples, the target cytokines concentration was by InnoScan 700/710 Microarray Scanner
(Innopsys) for quantitative analysis.

2.8. HPLC Analysis of Metabolites

The packed cells were deproteinized to measure acid labile and easily oxidizable
compounds [16]. The simultaneous separation of high-energy phosphates (ATP, ADP, AMP,
GTP, GDP, GMP, IMP, UTP, UDP, UMP, CTP, CDP, CMP), Coenzyme A and its derivatives
(Acetyl-CoA, Malonyl-CoA), nicotinic coenzymes (NAD+, NADH, NADP+, NADPH),
reduced glutathione (GSH), malondialdehyde (MDA), nitrite, and nitrate in the protein-free
cell extracts, was carried out using the established HPLC methods [16–18].

2.9. Statistical Analysis

The results are expressed as the means ± standard deviation (SD) of at least three
independent experiments. Statistical analysis was carried out by one-way analysis of
variance using the GraphPad Prism 8.01 software (GraphPad Software, San Diego, CA,
USA). Differences were considered significant at p < 0.05.

3. Results
3.1. Propofol and α2-Agonists Attenuate Reactive Oxygen Species Formation during Hypoxia and
Following Reoxygenation

We firstly aimed to study the effect of hypoxia and reoxygenation on ROS formation.
Our results showed that the hypoxia (3 h)-treated cells resulted in a significant increase
in ROS formation when compared to the normoxic cells (Figure 1A). Furthermore, the
hypoxia/reoxygenation (3 h)-treated cells resulted in a further significant increase in ROS
formation (Figure 1A) when compared to normoxia and hypoxia. Under hypoxic condi-
tions, the cells exposed to Propofol and α2-agonists (Dexmedetomidine and Clonidine)
showed a significant decrease in ROS formation when compared to the untreated hypoxic
cell cultures (Figure 1B). In this condition, there are no significant differences between the
cells treated with Propofol and Dexmedetomidine (both concentrations of 25 and 50 µM),
while their effect on ROS production is more significantly reduced compared to the treat-
ment with Clonidine at the final concentration of 25 µM (Figure 1B). Likewise, all of the
drug treatments produced a significant decrease in ROS formation during reoxygenation
compared to the hypoxia/reoxygenation-treated cells (Figure 1C). Interestingly, the de-
crease in ROS production determined by Propofol 25 µM was significantly higher compared
to both Propofol 50 µM and Dexmedetomidine 25 µM, although Clonidine 25 µM had the
most relevant effects on ROS production compared to both Propofol and Dexmedetomidine
(Figure 1C).

www.raybiotech.com
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Figure 1. Effect of hypoxia and reoxygenation (A) on ROS production in microglia cells. Effect of
Propofol, Dexmedetomidine, and Clonidine on ROS production after 3 h of Hypoxia (B) and 3 h
of Reoxygenation (C), analyzed by flow cytometric assay. Data are expressed as mean ± SD of at
least four independent experiments. * vs. Untreated Normoxia; (* p < 0.05; ** p < 0.005; *** p < 0.001;
**** p < 0.0001); # vs. Untreated Hypoxia; (## p < 0.005; ### p < 0.001; #### p < 0.0001) § vs. Untreated
Reoxygenation (§§§§ p < 0.0001) ◦ vs. the different drugs (propofol vs. dexmedetomidine; propofol
vs. clonidine; dexmedetomidine vs. clonidine) (◦ p < 0.05; ◦◦ p < 0.005; ◦◦◦ p < 0.001; ◦◦◦◦ p < 0.0001).
Effect of Hypoxia and Reoxygenation on NLRP3 mRNA expression in (D) Untreated cells, and
Propofol, Dexmedetomidine, and Clonidine treated cells (E,F), analyzed by real-time PCR. The
calculated value of 2−∆∆Ct in untreated controls is 1. Data are expressed as mean ± SD of at least
four independent experiments. * vs. Untreated Normoxia ( ** p < 0.005; *** p < 0.001; **** p < 0.0001);
# vs. Untreated Hypoxia (## p < 0.005; ### p < 0.001; #### p < 0.0001); § vs. Untreated Reoxygenation
(§§§§ p < 0.0001); ◦ vs. the different drugs (propofol vs. dexmedetomidine; propofol vs. clonidine;
dexmedetomidine vs. clonidine) (◦ p < 0.05; ◦◦◦ p < 0.001).

Consistently, our results showed that, in untreated cells, hypoxia and consequent re-
oxygenation induced a significant increase in NLRP3 mRNA expression levels (Figure 1D),
and that, under hypoxia, all three treatments induced a significant decrease in NLRP3
mRNA expression levels, compared to untreated cells (Figure 1E). In this case, the high-
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est effect on NLRP3 mRNA expression was produced by Propofol 25 µM compared to
Dexmedetomidine and Clonidine 25 µM (it is worthy of note that none of the drugs had
a significant effect on NLRP3 expression under normoxia, Figure S1). The effect of the
three drugs in reducing NLRP3 mRNA expression levels was even more evident in cells
exposed to hypoxia/reoxygenation (compared to both the control cells and the untreated
hypoxia/reoxygenation cells), even though no significant differences between the three
pharmacological treatments were observed (Figure 1F).

3.2. Propofol and α2-Agonists Restore Mitochondrial Membrane Potential (∆ψ)

Figure 2A–C shows that the untreated normoxic cells had a large number of green,
fluorescent mitochondria, representing J aggregates that accumulate at normally hyperpo-
larized membrane potential. Hypoxic cells showed fewer red J aggregates, indicating a
gradual dissipation of ∆ψm (for a better understanding of the ∆ψm trend, we show our
data in % control, assigning 100% polarized cells to normoxic cells at each time point ana-
lyzed). Following hypoxia/reoxygenation, a rapid and significant reduction of % polarized
cells compared to normoxic control cells took place (Figure 2A–C).
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Figure 2. Real-time analysis of ∆Ψm modification. JC-1 accumulates in mitochondria as a function
of ∆ψ is excited at 490 nm, and emits at 527 nm when in monomeric form. At high ∆ψ, JC-1 is
concentrated within mitochondria and forms J aggregates, resulting in a shift in emission to 585 nm.
Real-time analysis of ∆Ψm modification monitoring by Operetta Hugh Content Screening following
treatment with (A) Propofol, (B) Dexmedetomidine, and (C) Clonidine. Results are presented as the
mean ± SD of four independent experiments.

Significant recovery of ∆ψm were obtained by the treatment with any of the selected
drugs at both doses tested (interestingly, none of the drugs had a significant reduction
effect on the % of polarized cell in normoxia, Figure S2). However, the treatments with
Dexmedetomidine and Clonidine restored ∆ψm to values comparable to those of the
normoxic control and were both more effective than Propofol.

3.3. Propofol but Not α2-Agonists Reduces Microglia Cell Proliferation and Migration Following
Hypoxia and Reoxygenation

Our results showed a significant increase in cell proliferation during hypoxia and
reoxygenation as a result of microglia activation, as measured by an increased cell index
normalized to normoxic control (Figure 3A–C and Table 2). Interestingly, Propofol (50 µM)
resulted in a significant decrease in cell proliferation during hypoxia and 3 h of reoxy-
genation (Figure 3A and Table 2) when compared to the untreated hypoxic cell cultures,
whilst the two other treatments were ineffective at both doses tested (Figure 3B,C and
Table 2). Our results also showed that Propofol and Clonidine 25 µM and 50 µM signifi-
cantly inhibited cell migration compared to the control cells (Figure 3D,F). In comparison,
Dexmedetomidine was only effective when the 25 µM concentration was used (Figure 3E).
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Figure 3. Real-time cell proliferation monitoring by xCELLigence system following treatments with
(A) Propofol, (B) Demedetomidine, and (C) Clonidine, after Hypoxia (3 h) and Reoxygenation. Cell
index values were normalized at the time of onset of hypoxia in order to obtain a normalized cell
index. The value of normalized cell index of each treatment was normalized in % of normoxic
control. Each line is expressing the average of four different experiments. (D) Cell migration analysis
following treatments with (E) Propofol, (F) Dexmedetomidinel and (G) Clonidine, analyzed by
Operetta High Content Screening. Values are presented as percentage of the open wound following
Hypoxia (3 h) and 4, 8, 12, 18, and 24 h of Reoxygenation (wound at time 0 was assumed as 100%
and used as control). Values are expressed as the mean ± SD of four different experiments. * vs.
Untreated. (* p < 0.05; *** p < 0.001; **** p < 0.0001).
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Table 2. Normalized cell Index raw data values. Normalized Cell Index raw data values during Hy-
poxia and different time of reoxygenation following various pharmacological treatments. * p < 0.0001
vs. Untreated Normoxia, ** p < 0.005 vs. Untreated Hypoxia.

HYPOXIA REOXYGENATION

0 h 3 h 24 h

Untreated Normoxia 0.87 0.87 1.31

Untreated Hypoxia 1.16 1.28 * 1.31

Propofol 25 µM 1.07 1.18 1.28

Propofol 50 µM 1.01 ** 1.12 ** 1.27

Dexmedetomidine 25 µM 1.20 1.32 1.47

Dexmedetomidine 50 µM 1.12 1.20 1.32

Clonidine 25 µM 1.17 1.32 1.43

Clonidine 50 µM 1.15 1.30 1.39

3.4. Propofol and α2-Agonists Reduce Inflammatory Gene and Protein Expressions during Hypoxia
and Following Reoxygenation

Since in the majority of the experiments described up to now, the lower dose of each
drug tested was that producing the most significant beneficial effects, we chose the use
of the 25 µM concentration only in the experiments described hereinafter. As shown in
Figure 4A,D,G, hypoxia and the consequent reoxygenation in untreated cells caused a
significant increase in the mRNA levels of COX2 (Figure 4A), TNF (Figure 4D), and IL4
(Figure 4G) compared to the values measured in the normoxic untreated cells. The treatment
with either Propofol, Dexmedetomidine, or Clonidine induced a significant decrease in
the mRNA expressions of COX2 (Figure 4B), TNF (Figure 4E), and IL4 (Figure 4H) under
hypoxic conditions compared to the hypoxic untreated cells. Similar effects were obtained
under hypoxia/reoxygenation conditions (Figure 4C,F,I). In both experimental conditions
(hypoxia and hypoxia/reoxygenation), Propofol and Clonidine had the most relevant
effects in decreasing the mRNA expression levels of COX2 (Figure 4B,C), and Propofol
also significantly decreased TNF expression (Figure 4F). No differences among the three
pharmacological treatments were observed when considering the gene expression of IL4
(Figure 4H,I).

In order to confirm the RT-PCR data, we performed a protein array for cytokine and
chemokine detection and quantification. In Figure 5A, we reported a heatmap representing
all the changes in the levels of cytokines and chemokines, showing that 3 h of 1% of
hypoxia followed by 3 h of reoxygenation significantly increased a plethora of cytokines
and chemokines compared to the normoxic control; in particular, Figure 5B,C, respectively,
confirmed the RT-PCR data only in the case of TNF protein expression (increase in the
expression level), since the protein expression of IL4 did not undergo significant changes
compared to the normoxic control. The three drugs under evaluation significantly decreased
TNF production (Figure 5B) under both normoxia and hypoxia/reoxygenation conditions,
with Propofol and Clonidine provoking a significant decrease in TNF production compared
to Dexmedetomidine (Figure 5A,B). Interestingly, IL4 protein levels were found significantly
lower than those measured in normoxic controls and untreated hypoxia/reoxygenation
cells, as well as in hypoxia/reoxygenation cells challenged with Dexmedetomidine and
Clonidine, only by Propofol treatment (Figure 5C).
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of COX2 (A–C), TNF (D–F), IL4 (G–I), performed by Real-time PCR. The calculated value of 2−∆∆Ct

in untreated controls is 1. Data are expressed as mean ± SD of at least four independent experiments.
* vs. CTRL Normoxia (* p < 0.05; **** p < 0.0001); # vs. CTRL Hypoxia (## p < 0.005; #### p < 0.0001); §
vs. CTRL Hypoxya/reoxygenation (§§§§ p < 0.0001); ◦ vs. the different drugs (propofol vs. dexmedeto-
midine; propofol vs. clonidine; dexmedetomidine vs. clonidine) (◦ p < 0.05; ◦◦◦◦ p < 0.0001).
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We also assessed NOS2 and Arg1 gene expressions to evaluate the effect of hy-
poxia/reoxygenation and treatments on microglial activation. Significant increases in
NOS2 and Arg1 expressions in hypoxia untreated cells were determined compared to
the levels measured in the normoxic untreated cells (Figure 6A,B). Reoxygenation (3 h)
resulted in a slight decrease (compared to hypoxic control cells) in Arg1 gene expressions
(Figure 6A) and a further dramatic increase in NOS2 gene expressions (Figure 6B).

Among the three drugs under study, only Propofol effectively counteracted the in-
crease in NOS2 expressions both after hypoxia (Figure 6E) and hypoxia/reoxygenation
(Figure 6F), whilst Dexmedetomidine was modestly effective only in hypoxic cells and
Clonidine modestly effective only in hypoxic hypoxia/reoxygenation cells (Figure 6E,F).
By contrast, when measuring Arg1 mRNA levels under hypoxic conditions, each drug
variably decreased this gene expression compared to untreated hypoxic control cells
and variably increased mRNA levels compared to the hypoxia/reoxygenation control
cells (Figure 6C). These data suggest that both hypoxia and hypoxia/reoxygenation pro-
mote the inflammatory phenotype of microglia, and that was variously influenced by
pharmacological treatments.

These results were confirmed by measuring GSH levels by HPLC. In particular, the
data show that under hypoxia and hypoxia/reoxygenation conditions, there is a significant
reduction in GSH levels in the untreated cells (Figure 6G) and that these levels are restored
by pharmacological treatments both in conditions of hypoxia (Figure 6H) and in conditions
of hypoxia/reoxygenation (Figure 6I); however, there are no significant differences between
the three treatments.

3.5. Propofol and α2-Agonists Restore Energy Metabolism of Microglia Cells

To assess the impact of hypoxia and reoxygenation on cellular energy metabolism, we
further analyzed the endogenous metabolic profiles of the control, hypoxia/reoxygenation,
and treated cells (under both normoxia and hypoxia/reoxygenation). In Figure 7A, we
reported a heatmap representing changes in the metabolites representative of energy
metabolism and mitochondrial function. The results showed that hypoxia/reoxygenation
(3 h) significantly decreased ATP content (Figure 7B) compared to the normoxic cells; each of
the three treatments induced a significant increase in ATP content (Figure 7A,B) compared
to both normoxia and hypoxia untreated cells, suggesting that Propofol and α2–agonist are
able to restore ATP levels during hypoxia/reoxygenation. At the same time, the ATP/ADP
ratio showed a tendency to be lower in untreated cells (Hypoxia/reoxygenation), and this
effect was counteracted only by Dexmedetomidine treatment (Figure 7C). Consistent with
this, the NAD+/NADH ratio (Figure 7D) decreased in hypoxia/reoxygenation cells com-
pared to the normoxic cells and differentially increased when Propofol, Dexmedetomidine,
or Clonidine were added to the cell medium (Figure 7D).
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in untreated controls is 1. GSH levels detected by HPLC (G–I). Data are expressed as mean ±
SD of at least four independent experiments. * vs. CTRL Normoxia; (* p < 0.05; ** p < 0.005;
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4. Discussion

The α2-Adrenoceptor agonists Dexmedetomidine and Clonidine and/or Propofol
are routinely used in ICUs as sedative agents exerting significant clinical neuroprotective
effects [12,19,20]. Cerebral I/R leads to increased oxidative stress, triggering a series of
molecular events (i.e., inflammation and mitochondrial dysfunction) and leading to brain
injury. In particular, microglia respond to damage-associated molecular patterns (DAMPs)
by increasing the production of ROS responsible for oxidative injury [21]. Consistently,
our results showed that hypoxia/reoxygenation resulted in a significant increase in ROS
generation compared to normoxic cells. Such evidence is of great clinical relevance since
ROS production, oxidative stress, and subsequent mitochondrial dysfunction are determi-
nants during reperfusion, in causing I/R injury but may be impacted by different anesthetic
agents [22]. Notably, Propofol, an intravenous anesthetic agent, chemically similar to free
radical scavengers such as alpha tocopherol, has been associated with reduced damage
and apoptosis in I/R injury [23,24]. Similarly, Holownia et al. [25] showed that in vitro,
Propofol restored glutamine synthase activity, decreased intracellular ROS, and protected
rat astrocytes from t-BOOH-induced apoptosis. In an in vitro model of oxidative stress [26],
6 h of oxygen and glucose deprivation (OGD) followed by 24 h of reoxygenation caused the
widespread cell death of rat astrocytes which was prevented by treatment with Propofol
before OGD/reoxygenation [26,27]. Consistent with these observations, our data, in an
in vitro model of microglial cells, showed that Propofol was able to reverse ROS production
both under hypoxic conditions and the following reoxygenation. The same results were
obtained by treatment with α2-agonists Dexmedetomidine and Clonidine. Consistently,
Syamimi et. Al showed that Clonidine treatment elevated total antioxidant status and
decreased the level of lipid peroxidation and protein oxidation products in heart [28].

Several studies reported that the ROS generated during mitochondrial dysfunction,
as measured by a decrease in mitochondrial membrane potential (∆ψm), promote NLRP3
inflammasome activation [29]. Interestingly, the Propofol and Dexmedetomidine treatment
showed significant restoration of ∆ψm following 3 and 24h of reoxygenation compared
to untreated cells; whilst Clonidine was ineffective. In addition, ROS generation and sub-
sequent mitochondrial damage trigger the formation and activation of microglial NLRP3
inflammasome [29–32], leading to the abundant secretion of IL-1β [33]. In prior stud-
ies, Dexmedetomidine treatments have been shown to alleviate hyperoxia-induced acute
lung injury and liver injury through the inhibition of the activation of NLRP3 inflam-
masomes [34,35]. Similarly, Propofol has been shown to provide liver protection against
D-GalN/LPS-induced liver damage in mice by inhibiting oxidative stress, inflammation,
and hepatocyte apoptosis by regulating the TLR4/NF-κB/NLRP3 pathway [36]. NLRP3
inflammasome activation is known to be an indicator of the development of neurodegener-
ative diseases [37–41] and is also a pre-requisite for neuroinflammation initiation [42,43].
Thus, we hypothesized that the protective effects of the tested compounds might be related
to the inhibition of NLRP3 inflammasome activation. Interestingly, during the hypoxic
phase, we observed a significant increase in NLRP3 mRNA expression levels and that both
Propofol and both alpha 2 agonists significantly prevented NLRP3 expression during the
reoxygenation phases. In particular, both concentrations of Propofol, Dexmedetomidine,
and Clonidine tested were able to restore NLRP3 expression to control levels during the
reoxygenation phase at 3 and 24 h.

Our results showed that hypoxia induced a significant increase in microglia prolifera-
tion peaking at 3 h of oxygen decrease, which was resolved following 24 h of reoxygenation.
Interestingly, α2-agonists did not modify the proliferative profile of microglia, whereas
the highest dose of Propofol resulted in a significant reduction in the proliferative peak.
Furthermore, microglia can modify their migratory capacity when stimulated by a hypoxic
insult, moving towards the site of the lesion [44], releasing not only inflammatory cytokines
but also chemokines.

In response to various brain injuries, microglia are activated and polarized into the
proinflammatory (M1-like phenotype) or the anti-inflammatory (M2-like phenotype) [45].



Antioxidants 2022, 11, 1682 15 of 17

Thus, we hypothesized that the tested drugs were able to promote M2 activation of mi-
croglia. Our results demonstrated that hypoxia and reoxygenation, in the absence of drug
treatment, induced a significant increase in mRNA levels of M1 and M2 markers. On the
contrary, both Propofol and α2-agonists induce the switch towards the anti-inflammatory
M2 phenotype, thus facilitating recovery following the hypoxic insult.

Different microglia phenotypes are also related to differences in metabolic processes
suggesting a role of mitochondrial activity in phenotypic outcomes [46]. Therefore, we
studied the metabolites representative of energy metabolism and mitochondrial functions
of cells, such as the levels of ATP, ADP, NAD+, and NADH. Our results demonstrated
a reduction in ATP levels in hypoxic cells in relation to normoxic controls and also a
significant decrease in the NAD+/NADH ratio [47]. Since mitochondria in hypoxia are dys-
functional, the lower formation of NAD+ and consequent increase in NADH are indicative
of increased glycolytic rates to compensate for the decreased oxidative phosphorylation-
produced ATP [48,49]. Interestingly, during reoxygenation, pharmacological Propofol and
α2-agonists treatments restored ATP levels and NAD+/NADH ratio, confirming their
protective role against hypoxic damage by ameliorating mitochondrial functions.

5. Conclusions

In conclusion, our results suggested that treatment with Propofol, Dexmedetomidine,
and Clonidine exhibits different neuroprotective profiles and possible therapeutic window
and play an important role in neuroprotection following hypoxic injury, representing valid
pharmacological strategies for neuroprotection in critically ill patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11091682/s1, Supplementary Materials and methods:
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treatments in the expression of genes under normoxic conditions; Figure S2: Real-time analysis
of ∆Ψm modification following Propofol, Dexmedetomidine, and Clonidine treatments under nor-
moxic conditions.
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