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Abstract: This study explored the in vivo wound healing potential of Vitis vinifera seed extract
using an excision wound model with focus on wound healing molecular targets including TGFBR1,
VEGF, TNF-α, and IL-1β. The wound healing results revealed that V. vinifera seed extract enhanced
wound closure rates (p < 0.001), elevated TGF-β and VEGF levels, and significantly downregulated
TNF-α and IL-1β levels in comparison to the Mebo®-treated group. The phenotypical results were
supported by biochemical and histopathological findings. Phytochemical investigation yielded a total
of 36 compounds including twenty-seven compounds (1–27) identified from seed oil using GC-MS
analysis, along with nine isolated compounds. Among the isolated compounds, one new benzofuran
dimer (28) along with eight known ones (29–36) were identified. The structure of new compound
was elucidated utilizing 1D/2D NMR, with HRESIMS analyses. Moreover, molecular docking
experiments were performed to elucidate the molecular targets (TNF-α, TGFBR1, and IL-1β) of the
observed wound healing activity. Additionally, the in vitro antioxidant activity of V. vinifera seed
extract along with two isolated compounds (ursolic acid 34, and β-sitosterol-3-O-glucopyranoside
36) were explored. Our study highlights the potential of V. vinifera seed extract in wound repair
uncovering the most probable mechanisms of action using in silico analysis.
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1. Introduction

Wounds are a significant global health issue that has serious commercial and social
impacts on health institutes, patients, and caregivers [1]. Wounds are divided into physical,
thermal, or chemical injuries that create an opening or crack in the skin’s integrity or
modify the anatomical integrity of living tissues [2]. Wound healing is graded into the
following phases: Inflammation, proliferation, extracellular matrix formation, and finally
remodeling [3]. To develop new tissue, fibroblasts spread during the proliferative phase
and secrete many growth factors, such as vascular endothelial growth factor (VEGF) and
type I collagen [4]. Ethnomedicinal investigations have searched arduously for natural
remedies for wound healing [4,5].

Vitis vinifera Linn. (F. Vitaceae) is a climber which is woody in nature and containing
coiled climbing tendrils. It bears small, pale, tender flowers, which are modified to berry
fruits that vary from green to various degrees of purple black [6–8]. V. vinifera fruits,
commonly known as grape, were utilized in traditional medication since ancient times [8].
In Malatya, the fruit is helpful in forming blood [9]. While in Elazığ, it is used for treatment
of anemia [10]. In Pakistan, it is commonly employed as carminatives [11]. The Tuscany
area uses alcoholic drinks derived from grapes for the digestive system [12]. While Cyprus
uses alcohol marinade as a liniment, poultice, and mouthwash [13].

Grape skin is a valuable source of unsaturated fatty acids, crude fibers, polyphenols
proanthocyanidins (flavan-3-ol oligomers units including catechin/epicatechin), minerals,
flavan-3-ols (catechins and proanthocyanidins), and resveratrol (3,5,4′-trihydroxy-trans-
stilbene), which are valuable by-product for antioxidant and hygienic formation [14]. It
has been reported that incorporation of its flour into wheat flour improved the nutritional
properties of the bakery products [14]. Topical application of grape skin was reported to
speed wound healing in mice, where it showed to increase the rate of wound shrinkage
and hydroxyproline composition, and lower the epithelialization stage in the considered
animals [15].

V. vinifera’s fruits are considered a major source of phenolic antioxidant compounds,
including resveratrol, quercetin, catechins, epigallocatechin, epigallocatechin-3-gallate,
procyanidins, and anthocyanins [16]. Researchers reported that applying a high-resveratrol
V. vinifera fruit extract to the wounds of mice accelerated wound healing, which might be
due to the manipulation of redox-sensitive processes that promote dermal tissue repair [17].
V. vinifera’s seeds consist of polyphenolic compounds, such as (+)-catechin, (−)-epicatechin,
flavanols, resveratrol, and proanthocyanidins [18], that have been established to exhibit
powerful anti-inflammatory, and antioxidant, anti-diabetic, anti-platelet, anti-cholesterol,
anti-aging, anti-microbial, and anti-tumour properties [18]. Researchers reported that the
surface application of oil of grape seed has proved to stimulate wound healing in animals,
especially mice, through enhancing the time of wound shrinkage, hydroxyproline matter,
and reducing the epithelialization lifetime [19].

Despite the existence of studies describing the wound healing potential of V. vinifera
seeds, and other related organs, very little is known regarding its mode of action in wound
healing potential. Consequently, our study explores the in vivo wound healing efficacy of
V. vinifera seed extract by excision wound model, focusing on important wound healing
molecular targets including tumor necrosis factor-α (TNF-α), transforming growth factor-
beta receptor type 1 kinase (TGFBR1), interleukin -1β (IL-1β), collagen type I, and VEGF.
Additionally, a phytochemical investigation of seed extract and molecular docking of
isolated compounds using TNF-α, TGFBR1 and IL-1β was performed to pinpoint the
chemical molecules that contribute to the wound healing activity.
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2. Materials and Methods
2.1. Plant Material, Reagents, Chemicals, Spectral Analyses, Extraction, and Fractionation of V.
vinifera Seeds

Plant material, chemicals, reagents, spectral analyses, extraction, and fractionation
of V. vinifera seeds are discussed in detail in the Supplementary Materials (Materials and
Methods section, pages S2).

2.2. In Vitro Antioxidant Activity

H2O2 scavenging and SOD scavenging activity of V. vinifera seed crude extract were
discussed in the Supplementary Materials in detail.

2.3. In Vivo Wound Healing Activity

Twenty-four albino rabbits (adult male New Zealand Dutch) were used. The wound
healing potency of V. vinifera seed crude extract was assessed utilizing the excision wound
model, which is discussed in detail in the Supplementary Materials with a histological
study, gene expression analysis, and western blotting.

2.4. Preparation of the Fatty Acid Methyl Esters with GC-MS Analysis, Isolation, and Purification
of Compounds

Methylation was done using concentrated sulfuric acid to obtain FAMEs. The analysis
was carried out using GC-MS. While isolation and purification of compounds were carried
out using different chromatographic techniques. The details are discussed in the section of
Supplementary Materials.

2.5. Molecular Docking Studies

The details are discussed in the Supplementary Materials for the structures of all test
compound drawings and the crystal structures of TNF-α, TGFBR1, and 1L-β1.

3. Results
3.1. In Vitro Antioxidant Potential of V. vinifera Seed Extract
3.1.1. Hydrogen Peroxide Scavenging Power

The antioxidant power of V. vinifera seed extract as a scavenger potential against hy-
drogen peroxide (H2O2) was reported in this study. The maximal H2O2 radical scavenging
activity of the seed extract of V. vinifera was 48.1% at 1000 µg/mL concentration, accord-
ing to the data. V. vinifera seed extract suppressed the formation of hydrogen peroxide
radicals in a dose-dependent mode, demonstrating a consistent antioxidant potential with
IC50 of 175.8 µg/mL concentration (Figure 1), in comparison with standard (ascorbic acid,
IC50 = 178.1 µg/mL).
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Figure 1. H2O2 radical scavenging activity of V. vinifera seed extract at variant concentrations
(1000 µg/mL, 500 µg/mL, 250 µg/mL, and 125 µg/mL). Bars illustrate mean ± standard deviation
(SD). Significant difference among groups is analyzed by a two-way ANOVA test.



Antioxidants 2022, 11, 881 4 of 20

3.1.2. Superoxide Radical Scavenging Power

The (SOD) potential of V. vinifera seed extract was evaluated. The results revealed
that the scavenging impact of the standard and extract rises with concentration (Figure 2),
with V. vinifera seed extract exhibiting the maximum SOD scavenging activity. V. vinifera
seed extract has 49% superoxide scavenging efficacy at 1000 µg/mL concentration. IC50
(The concentration of V. vinifera seed extract required for 50% inhibition) was detected to be
151.2 µg/mL, whereas 155.8 µg/mL was needed for ascorbic acid.
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3.2. Wound Healing Activity
3.2.1. Estimation of Wound Closure Rate

The results show that the wound closure rate in all experimental groups amplified
in a time-dependent mode. The wound closure percentages were about 10 to 13% in
each group on day 3 after injury, with the smallest being in the untreated group and the
highest in the treated ones, with no significant difference (p > 0.001) between groups.
However, the wound closure in the V. vinifera seed-treated group reached 40% on day 7
after treatment, which was significantly higher (p < 0.001) than the corresponding untreated
group (Figures 3 and 4).
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Figure 3. Wound closure percentages in tested groups; group 1: Untreated group (the positive
control); group 2: V. vinifera seed-treated group; group 3: Mebo®-treated group, over time post-injury
(0, 3, 7, 10, and 14 days). Significant difference between groups is analyzed by a two-way ANOVA test.
Data were expressed as mean ± SD. * p < 0.001 compared with the data of the untreated group on the
respective day and # p < 0.001 in comparison with those of the Mebo® group on the respective day.
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were expressed as mean ± SD. p < 0.001 compared to those of the control group on the respective day
and p < 0.001 compared with those of the Mebo® group on the relevant day.

Additionally, the group that was treated with V. vinifera seed extract also produced
high wound closure percentages compared to those of the MEBO® (Moist Exposed Burn
Ointment)-treated group (p < 0.001).

The percentage of wound closing of the V. vinifera seed-treated group (70%) were sig-
nificantly greater (p < 0.001) than that of untreated group (40%) on the tenth day after injury.

On day 14, the wounds in the treated groups were perfectly cured and the wound
closure scored 95% in rabbits that were treated with V. vinifera seed extract and 90% in the
MEBO®-treated group (Figures 3 and 4).

3.2.2. Effect of Seed Extract of V. vinifera on Expression of TGF-β, TNF-α, IL-1β, Collagen
Type I and VEGF

Figure 5 depicts the mRNA expression of TGF-β following excisional wound therapy
with V. vinifera seed extract and MEBO®. TGF-β relative mRNA expression in skin tissues
was substantially higher in V. vinifera seed-treated wounds for 7 or 14 days in comparison
to the positive control group (p < 0.001). As illustrated in Figure 6, the gene expression of
TNF-α and IL-1β was explained. Analysis of the gene expression of full-density wound
specimens on day 7 post-injury showed that the action of the inflammatory markers’ TNF-α
and IL-1β was remarkably downregulated in wounds treated with V. vinifera seed extract
or Mebo® compared to the untreated wounds. However, wounded rabbits treated with
V. vinifera seed extract displayed a much apparent reduction in the inflammatory markers
(TNF-α, and IL-1β) when in comparison to the Mebo®-treated group. Moreover, V. vinifera
seed extract treatment or MEBO® treatment for 14 days showed a significantly dramatic
decrease in TNF-α and IL-1β mRNA expression in comparison to the untreated group at
(p < 0.001). Again, the expressions of TNF-α as well as IL-1β in V. vinifera seed-treated
wounds were markedly lower than in the Mebo®-treated group.
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Figure 5. Relative gene expression of TGF-β in wound layers of various groups. After making
normalization to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the data indicate a fold
difference in expression relative to the normal control group. The bars reflect the mean ± SD and
are based on the results of three independent investigations. A one-way ANOVA test is utilized to
measure whether there is a significant variation between groups, where: * p < 0.001 when compared
to the untreated group on a specified day, and p < 0.001 when compared to the Mebo® group on the
same day.
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Figure 6. Relative gene expression of both IL-1β and TNF-α in wound tissues of various groups. After
making normalization to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the data indicate a
fold difference in expression relative to the natural control group. The bars indicate the mean ± SD
and are based on the results of three independent investigations. A one-way ANOVA test is employed
to measure whether there is a significant change between groups, where: * p < 0.001 when compared
to the untreated group on a specified day, and p < 0.001 when compared to the Mebo® group on the
same day.

As illustrated in Figure 7, the relative protein expression of VEGF and type I collagen
was illustrated. Analysis of the relative expression of VEGF as well as type I collagen
in full thickness wound samples on day 7 post-injury showed significantly upregulated
levels in wounds treated with V. vinifera seed extract or MEBO® compared to the untreated
wounds. However, wounded rabbits treated with V. vinifera seeds displayed a much more
significant elevation in the relative protein expression compared to Mebo®-treated rabbits.
Moreover, V. vinifera seed extract treatment or MEBO® treatment for 14 days revealed
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a more significant elevation in relative protein expression when compared to untreated
wounds at (p < 0.001). Again, the relative expression of VEGF and type I collagen genes in
V. vinifera seed-treated wounds was markedly higher than Mebo®-treated wounds.
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Figure 7. Effect of V. vinifera seed extract on the expression of VEGF and collagen type I proteins.
(A) Representative immunoblotting of VEGF, collagen type I proteins, and β-actin proteins for all
groups. (B) Densitometric expression of VEGF and collagen type I proteins was expressed as fold
difference relative to normal control rabbits applying bands in (A) seeking normalization to the
comparable internal control β-actin. The bars show the mean ± SD and are based on the results of
three independent investigations. A one-way ANOVA test is applied to measure whether there is
a significant difference between groups, where: * p < 0.001 when compared to the positive control
group on a specified day, and p < 0.001 when compared on the same day to the Mebo® group.

3.2.3. Histopathological Investigation

On day 7 after treatment, group 1 (the control group) demonstrated normal wound
dominance with its normal architecture, including epidermis, dermal collagen bundles, hair
follicles as well as oil glands. The wound showed sloughed granulation tissue, in addition
to collagen fibers compactly packed in an irregular form, inflammatory cellular infiltration,
blood clots, and extravasated red blood cells. In the deepest area of the lesion, the striated
muscle exposed necrotic myofiber (Figure 8A). Group 2 (V. vinifera seed extract-treated
group), the blood clot knotted over the wound was still visible, partial reepithelization and
granulation tissue occupying the injury from below was mainly cellular. Confused dense
collagen with fibers developed compactly formed in an uncommon arrangement resulting
in specific scarring by relation to alternative treated groups (Figure 8B). Scare tissues closing
the wound and crawling of epidermal cells at wound borders were announced with limited
re-epithelization in Group 3 (Mebo®-treated group). A significant inflammation-derived
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cellular infiltration (predominantly of macrophages) and collagen fibers developed, packing
the defect in a reticular type with distances in between approximately nearing those of
the neighbor’s natural dermis. The reticular dermis involves the typical active, enlarged,
spindle-shaped fibroblasts containing the basophilic cytoplasm and oval nuclei (open face)
(Figure 8C).
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Figure 8. Skin wounds seven days post-incision. (A) Group 1 shows ordinary wounded edges
with the ordinary epidermis (yellow star). The wound is packed with sloughed granulation tissue
(represented by red asterisk) and blood clots. (B) Group 2 shows dermal collagen fibers compactly
organized (black arrow). (C) Group 3 shows scar tissue blocking the wound (yellow star), collagen
fibers (blue arrowhead) mirroring that of the neighboring normal dermis, as well as inflammatory
cellular infiltration of macrophages (black arrows). (Hematoxylin and eosin stain 200 and 400).

At the post-treatment day 14, group 1 (untreated group) produced an extensive wound
area and was packed with a heavy coat of granulation material, which was composed
of numerous layers of connective tissue cells with inflammatory cellular infiltration in-
cluded in an acidophilic matrix. The dermis is composed of confused, weak collagen
with noticeable neovascularization (Figure 9A). In group 2 (V. vinifera seed-treated group)
showed contracted scar tissue blocked the wound and the epidermis appeared formed of
only 1–3 rows of epithelial cells. The granulation tissue from below was mainly cellular
and populated with fibroblasts, while the reticular layer contained disorganized dense
compactly arranged collagen fibers (Figure 9B). In group 3 (Mebo®-treated groups), the
skin tissue presented more or less normal with ordinary stratified keratinized epithelium.
Soft scar tissue may be found extended into the dermis. The dermal matrix offered some
hair follicles, many blood capillaries, and a lack of inflammatory cells penetration. The
collagen bundles in the papillary dermis are displayed as fine connecting bundles, and
the reticular dermis is produced as coarse wavy bundles that appeared in diverse paths
(Figure 9C).

3.3. Phytochemical Investigation of Vitis vinifera Crude Seed Extract
3.3.1. GC/MS Analysis for Oil Content in Vitis vinifera Crude Extract

V. vinifera seeds yielded 1.20% v/w oil dry weight, marked by having no odor, being
lighter than water, and yellow colored with white faint turbidity at chamber warmth. A
total of 27 compounds were identified using GC/MS analysis, representing 71.16% (Table 1)
of the total, and consisting of fatty acids (FA), lipids, and hydrocarbons, where fatty acids
were the major item and represented about 50.33% of the oil while the hydrocarbons
represented about 19.04%. Twenty-one FA were identified including fourteen saturated
fatty acid (27.54%), four monounsaturated fatty acid (8.32%), and three polyunsaturated
fatty acid (14.47%). The sixteen major FAs found in V. vinifera seeds oil were C9:0, C9:0,
C14:0, C15:0, C16:1 (9), C16:0, C17:0, C18:2 (9,12), C18:2 (12,15), C18:1 (9), C18:1 (9), C18:0,
C18:3 (6,9,11), C20:1 (11), C20:, and C22:1 (13) (Table 1). It was observed that palmitic,
azelaic, and stearic acids were the pre-dominant SFA in V. vinifera seed oil, accounting for
about 8.90%, 3.85%, and 3.84% of all the saturated FA, respectively. Moreover, the total
UFA content was around 22.79%. Among the UFA, 9-hexadecenoic, 9-octadecenoic, and
cis-11-eicosenoic acids were the pre-dominant MUFA, accounting for almost 2.57%, 2.42%,
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and 2.00% of the total MUFA, respectively. Combined n-2, and n-3 PUFA (18:2, C18:2, and
C18:3) accounted for 14.47% of total FA, which contained 6.91, 5.72, and 1.84% of 9,12-
octadecadienoic acid, 12,15-octadecadienoic acid, and 6-cis,9-cis,11-trans-octadecatrienoic
acid, as major ones, respectively. Lipids represented 1.79%, which accounted mainly for
9,12,15-octadecatrienoic acid,2,3 dihydroxy propyl ester, and 9,12,15-octadecatrienoic acid,2-
(acetyloxy)-1-[(acetyloxy)methyl] ethyl ester (Table 1). While hydrocarbons represented
about 19.04% and included tetradecane, 1-hexadecanol, 1-docosene, and nonacos-1-ene
(Table 1, Figure S1).
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Figure 9. Wounded skin 14 days after incision. (A) Group 1 presents a large wound area with necrosis
and discontinuation of the skin (red star) excessive inflammatory cells penetration included in an aci-
dophilic matrix (yellow asterisks), and the ordinary skin (black arrow). (B) Group 2 shows epidermis
composed of 1–3 rows of epithelial cells (yellow arrow), collagen fibers compactly established with
great fibroblasts (yellow asterisk), as well as freshly developed hair follicles (blue arrows). (C) Group
3 illustrates normal epithelium, fine scar tissue developing into the dermis (thick black arrows),
reticular dermis bears coarse collagen bundles (appearing wavy) established in various ways (yellow
asterisk), as well as the freshly created hair follicles (blue arrows). (H and E stain 200 and 400).

Table 1. Vitis vinifera seed oil composition using GC/MS analysis.

No. Compound C:D Type Area % RT RI

1 Tetradecane C14:0 SHC 1.06 5.94 920
2 Nonanoic acid, 9-oxo- C9:0 SFA 2.31 10.60 887
3 Octanedioic acid (Suberic acid) C8:0 SFA 0.55 10.81 904
4 Octanoic acid, 6,6-dimethoxy- C10:0 SFA 0.80 11.81 827
5 Undecanoic acid, 10-methyl- C12:0 SFA 0.34 12.30 864
6 Nonanedioic acid (Azelaic acid) C9:0 SFA 3.85 12.87 912
7 1-Hexadecanol C16:0 SFO 2.43 13.64 943
8 Decanedioic acid (Sebacic acid) C10:0 SFA 0.99 14.71 902
9 Tetradecanoic acid (Myristic acid) C14:0 SFA 1.54 16.09 923

10 Undecanedioic acid C11:0 SFA 0.34 16.54 863
11 Pentadecanoic acid C15:0 SFA 1.30 17.87 784
12 9-Hexadecenoic acid C16:1 (9) MUFA 2.57 19.21 915
13 Hexadecanoic acid (Palmitic acid) C16:0 SFA 8.90 * 19.61 939
14 1-Docosene C22:1 (1) MUHC 11.55 * 20.76 962
15 Heptadecanoic acid (Margaric acid) C17:0 SFA 1.04 21.21 893
16 9,12-Octadecadienoic acid C18:2 (9,12) PUFA 6.91 * 22.31 923
17 12,15-Octadecadienoic acid C18:2 (12,15) PUFA 5.72 * 23.10 885
18 9-Octadecenoic acid C18:1 (9) MUFA 2.42 23.16 921
19 Octadecanoic acid (Stearic acid) C18:0 SFA 3.84 23.33 911
20 6-Cis,9-cis,11-trans-octadecatrienoic acid C18:3 (6,9,11) PUFA 1.84 24.72 849
21 Cis-11-eicosenoic acid C20:1 (11) MUFA 2.00 25.37 848
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Table 1. Cont.

No. Compound C:D Type Area % RT RI

22 Eicosanoic acid C20:0 SFA 1.48 25.72 882
23 9,12,15-Octadecatrienoic acid,2,3 dihydroxy propyl ester C21:3 (9,12,15) Lipid 0.30 26.27 808

24 9,12,15-Octadecatrienoic
acid,2-(acetyloxy)-1-[(acetyloxy)methyl] ethyl ester C25:3 (9,12,15) Lipid 1.49 26.50 817

25 Nonacos-1-ene C29:1 (1) MUHC 4.00 26.61 920
26 13-Docosenoic acid C22:1 (13) MUFA 1.33 28.04 894
27 Docosanoic acid C22:0 SFA 0.26 28.37 852

SFA 27.54
MUFA 8.32
PUFA 14.47
SHC 1.06

MUHC 15.55
SFO 2.43

Lipid 1.79

Total 71.16

RI: retention index, RT: the retention time/minute, C:D: carbon number per double bond number-covering
their position, *: main compound, SFA: saturated fatty acid, MUFA: mono unsaturated fatty acid, PUFA: poly
unsaturated fatty acid, SHC: saturated hydrocarbon, MUHC: mono unsaturated hydrocarbon, SFO: saturated
fatty alcohol.

3.3.2. Phytochemical Investigation of V. vinifera Seed Extract

Based on physicochemical as well as chromatographic characters, the spectra obtained
from UV, proton (1H), with DEPT-Q NMR, along with the relation to the biography and
some authoritative references, the crude extract of V. vinifera seeds provided the new
benzofuran dimer (28) along with eight known compounds (Figure 10).
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Figure 10. Structures of compounds isolated from Vitis vinifera seed extract. 2-(Benzofuran-5-yloxy) 
benzofuran-5-ol 28, benzofuran 29 [20], 4-(4-hydroxyphenoxy)-3,5-dihydroxybenzaldehyde 30 [21]. 
(-)-Epi-catechin 31 [14], catechin 32 [14], procyanidin B2 33 [14], ursolic acid 34 [22], β-sitosterol 35 
[23], β-sitosterol-3-O-glucopyranoside 36 [24]. 
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ESI-MS), 1D, and 2D NMR analysis data of compound 28 advocated a possible dimeric 
benzofuran derivative core scaffold [25]. The HR-ESI-MS data presented an adduct 
pseudo-molecular ion peak at m/z 267.0659 [M + H]+ (calc. for C16H11O4, 267.0657), suggest-
ing 12 degrees of unsaturation. The 1H and DEPT-Q 13C NMR data (Table 2, Figures S2 
and S3), as well as HSQC (heteronuclear single quantum correlation experiment) data 
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157.3, 157.3, and 160.8, indicating the characteristic core structure for dimeric benzofuran 
derivatives [25], where HMBC (heteronuclear multiple bond correlation) experiment of 
28 (Figures 11 and S5) confirmed that. The downfield shift for resonating peaks for C5, 
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benzofuran unit. 

Table 2. DEPT-Q (400 MHz) and 1H-NMR (100 MHz) data of compound 28 in CDCL3; carbon mul-
tiplicities were figured out by the DEPT-Q experiments. 

Position δC δH (J in Hz) 
2 145.9, CH 7.68, d (7.0) 
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4 108.8, CH 7.40, d (2.5) 
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7 123.8, CH 7.30, d (8.0) 
8 116.8, qC  
9 157.3, qC  
2′ 148.4, qC  

3′ 144.5, CH 7.79, d (3.0) 
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Figure 10. Structures of compounds isolated from Vitis vinifera seed extract. 2-(Benzofuran-5-yloxy)
benzofuran-5-ol 28, benzofuran 29 [20], 4-(4-hydroxyphenoxy)-3,5-dihydroxybenzaldehyde 30 [21].
(-)-Epi-catechin 31 [14], catechin 32 [14], procyanidin B2 33 [14], ursolic acid 34 [22], β-sitosterol 35 [23],
β-sitosterol-3-O-glucopyranoside 36 [24].

Analysis of the [High Resolution Electrospray Ionization Mass Spectrometry], (HR-
ESI-MS), 1D, and 2D NMR analysis data of compound 28 advocated a possible dimeric
benzofuran derivative core scaffold [25]. The HR-ESI-MS data presented an adduct pseudo-
molecular ion peak at m/z 267.0659 [M + H]+ (calc. for C16H11O4, 267.0657), suggesting
12 degrees of unsaturation. The 1H and DEPT-Q 13C NMR data (Table 2, Figures S2 and S3),
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as well as HSQC (heteronuclear single quantum correlation experiment) data (Figure S4),
predicted nine methine resonance peaks appeared at δH 7.68, d (7.0) δC 145.9, δH 7.09, dd
(3.0, 7.0) δC 104.0, δH 7.40, d (2.5) δC 108.8, δH 6.37, dd (2.5,8.0) δC 114.0, and δH 7.30, d (8.0)
δC 123.8, δH 7.79, d (3.0) δC 144.5, δH 7.40, d (2.5) δC 108.8, δH 6.37, dd (2.5,8.0) δC 114.0,
δH 7.30, d (8.0) δC 123.8, and seven quaternary carbons at δC 113.5, 116.8, 148.4, 148.4,
157.3, 157.3, and 160.8, indicating the characteristic core structure for dimeric benzofuran
derivatives [25], where HMBC (heteronuclear multiple bond correlation) experiment of
28 (Figures 11 and S5) confirmed that. The downfield shift for resonating peaks for C5,
C5‘ at 148.4, and 160.8, suggested the presence of hydroxyl groups at C5 and C5‘ in each
benzofuran unit.

Table 2. DEPT-Q (400 MHz) and 1H-NMR (100 MHz) data of compound 28 in CDCL3; carbon
multiplicities were figured out by the DEPT-Q experiments.

Position δC δH (J in Hz)

2 145.9, CH 7.68, d (7.0)
3 104.0, CH 7.09, dd (3.0, 7.0)
4 108.8, CH 7.40, d (2.5)
5 148.4, qC
6 114.0, CH 6.37, dd (2.5,8.0)
7 123.8, CH 7.30, d (8.0)
8 116.8, qC
9 157.3, qC
2′ 148.4, qC
3′ 144.5, CH 7.79, d (3.0)
4′ 108.8, CH 7.40, d (2.5)
5′ 160.8, qC
6′ 114.0, CH 6.37, dd (2.5,8.0)
7′ 123.8, CH 7.30, d (8.0)
8′ 113.5, qC
9′ 157.3, qC

qC, quaternary, CH, methine.
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Comparing the 1H and DEPT-Q 13C NMR data (Table 2, Figure 10), along with HSQC
data (Figure S4), for C28 (δC 148.4, qC), and C38 ( δH 7.79, d (3.5) δC 144.5, CH) with C2 (7.68,
d (7.0) δC 145.9, CH), and C3 (δH 7.09, dd (3.5,7.0) δC 104.0, CH) suggested the attachment of
one of the benzofuran units at C28 by converting the methine of C28 to quaternary carbon
(Table 2). The DEPT-Q 13C NMR data (Table 2, Figure S3) showed downfield shift for
resonance peaks of C28 (δC 148.4) and C38 (δC 144.5) compared with C2 (δC 145.9) and C3
(δC 104.0), suggesting O attachment at C28. Accordingly, compound 28 was identified as
2-(benzofuran-5-yloxy) benzofuran-5-ol.

3.4. Molecular (In Silico) Docking Studies

In silico docking studies have been done on the crystal structures of the three main
targets that might contribute to the wound healing potential of V. vinifera seed extract,
TNF-α, PDB ID: 2AZ5, TGFBR1, PDB ID: 6B8Y, and IL-1β, PDB ID: 6Y8M, which were
downloaded from the protein data bank (PDB). The binding free energy represented by
(Kcal/mol) and the Root Mean Square Deviation (RMSD, Å) in the Molecular Operating
Environment (MOE) program were utilized in ranking different isolated compounds in
comparison to the co-crystallized ligand. Besides, the different interactions within the
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active sites of amino acid residues along with their energies were listed. Firstly, the
docking studies within the TNF-α active site showed that all the test compounds attained
binding energies of −3.7887 to −6.3236 kcal/mol), close to that of the co-crystallized ligand
(−5.5254 kcal/mol), with an accuracy of less than 2 Å RMSD. Interestingly, the binding
accuracy of these test compounds was better than the co-crystallized ligand and one of
them has higher binding energy than the co-crystallized ligand (Table 3).

Table 3. Interaction binding energies (S; kcal/mol) and binding accuracy (RMSD; Å) of isolated
compounds from V. vinifera seeds and co-crystallized ligand within TNF-α active site (PDB ID: 2AZ5).

Compounds Energy Score (S; kcal/mol) RMSD (Å)

29 −3.7887 0.9620
31 −4.4254 1.2060
33 −6.3236 1.2519
34 −5.2661 1.1197

2AZ5 co−crystallized ligand −5.5254 1.3787
28 −4.8903 1.5440
30 −4.5148 1.5722
32 −4.5435 1.8509
35 −5.3554 1.6566
36 −5.5049 1.8187

Virtual screening studies on TGFBR1 kinase showed interesting and promising find-
ings. Almost all the isolated compounds (except ursolic acid 34 and β-sitosterol-3-O-
glucopyranoside 36) showed higher affinity to the active site over the co-crystallized ligand,
this was presented by their better binding energy value (−4.847: −7.3066 kcal/mol) com-
pared to the co-crystallized ligand (−5.102 kcal/mol) with an accuracy of less than 2 Å
RMSD (Table 4).

Table 4. Interaction binding energy (S; kcal/mol) as well as (RMSD; A) binding accuracy of isolated
compounds from V. vinifera seeds and co-crystallized ligand within TGFBR1 kinase (PDB ID: 6B8Y).

Compounds Energy Score (S; kcal/mol) RMSD (Å)

28 −5.7708 0.9288
29 −4.847 0.5381
30 −6.777 0.9806
31 −5.5238 1.0294
32 −7.019 0.9637
34 6.5779 1.0290

6B8Y co-crystallized ligand −5.102 1.1231
33 −7.3066 1.6720
35 −5.4909 1.2527
36 2.7322 2.2620

All the isolated compounds showed binding free energy comparable to that of the
co-crystallized ligand within the interleukin 1 beta active site with accuracy in the same
way below 2 Å RMSD (Table 5). Interestingly, β-sitosterol-3-O-glucopyranoside 36 showed
higher binding energy (S = −5.2574 kcal/mol) than co-crystallized ligand but its accuracy
was as not high as its test congeners (>2 Å RMSD).

Moreover, the 2D-interaction diagram Figure 12 showed a good fitting of compound 28
with various amino acid residues of three active sites comparable to the co-crystallized ligands.
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Table 5. Interaction binding energy (S; kcal/mol) and binding accuracy (RMSD; A) of isolated com-
pounds from V. vinifera seeds and co-crystallized ligand within the IL-1β active site (PDB ID: 6Y8M).

Compounds Energy Score (S; kcal/mol) RMSD (Å)

29 −3.1641 1.0862
30 –3.6842 1.0402
32 −3.7588 1.0871
34 −4.3905 1.0397
35 −4.6213 0.8752

6Y8M co-crystallized ligand −4.2536 1.0950
28 −3.9952 1.3281
31 −4.2309 1.1256
33 −4.2061 1.8351
36 −5.2578 2.1526Antioxidants 2022, 11, x FOR PEER REVIEW 14 of 20 
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Table 6. Binding free energy score (S; kcal/mol) with binding interactions for different co-crystallized
ligands and compound 28 within TNF-α (PDB ID: 2AZ5); TGFBR1 kinase (PDB ID: 6B8Y); and IL-1β

(PDB ID: 6Y8M) binding sites.

Active Site Ligand
Binding

Energy Score
(S; kcal/mol)

Ligand—Active Site Interactions

a. a. Residue Bond Type Bond Length (Å)

TNF-α
(PDB ID: 2AZ5)

Co-crystallized ligand −5.5254
GLN 61 H-donor 2.97

TYR 119 H-pi 4.08

Compound 28 −4.8903 GLY 121 H-donor 3.11

TGFBR1 kinase
(PDB ID: 6B8Y)

Co-crystallized ligand −5.102

ASP 351 H-donor 2.72

HIS 283 H-acceptor 2.89

LYS 232 pi-H 3.94

Compound 28 −5.7708
VAL 219 pi-H 4.27

VAL 219 pi-H 4.15

IL-1β (PDB ID:
6Y8M)

Co-crystallized ligand −4.2536

MET 148 H-donor 2.73

MET 148 H-acceptor 2.94

THR 147 H-acceptor 2.62

GLN 149 H-acceptor 2.46

Compound 28 −3.9952
MET 148 pi-H 4.51

MET 148 pi-H 4.15

3.5. In Vitro Antioxidant Potential of the Two Compounds Isolated from V. vinifera Seed Extract

3.5.1. Hydrogen Peroxide Scavenging Activity of Ursolic Acid and β-Sitosterol-3-O-glucopyranoside

The antioxidant activities of ursolic acid 34 and β-sitosterol-3-O-glucopyranoside 36 as
a scavenger potential against H2O2 were investigated in this study. The maximal H2O2 rad-
ical scavenging activities of compounds 34 and 36 were 44.44% and 46.42% at 1000 µg/mL
concentration, respectively, according to the data. Compounds 34 and 36 suppressed the
formation of H2O2 radicals in a dose-dependent manner, demonstrating a consistent antiox-
idant potential with IC50 of 197.1 and 222 µg/mL concentration, respectively (Figure 14), in
comparison with ascorbic acid (IC50 = 181.2 µg/mL).
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3.5.2. Superoxide Radical Scavenging Activity of Ursolic Acid, and β-Sitosterol-3-O-glucopyranoside

SOD activities of ursolic acid 34, and β-sitosterol-3-O-glucopyranoside 36 was evalu-
ated. The results showed that both compounds had 55.66%, and 63.63% SOD at 1000 µg/mL
concentration, respectively. The concentration of compounds 34, and 36 needed for
50% inhibition (IC50) was 221.4, and 205 µg/mL, respectively, whereas 156.6 µg/mL was
demanded for ascorbic acid (Figure 15).
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4. Discussion

Wound healing include several steps with improving tissue formation in degenerated
tissue as near as possible to its real nature [26]. Studies reported that wound healing is
classified into three phases: Inflammation process involving suppression of immune sys-
tem and secretion of pro-inflammatory mediators, a proliferative phase through collagen
growth, proliferation of fibroblasts, and development of new blood vessels, beside a remod-
eling phase involving regeneration and replacement of injured tissue [27,28]. Therefore,
drugs that could speed wound repair with a potential contribution in all phases of the
wound healing process will be good targets, specifically those with small costs and fewer
side effects.

Topical application of V. vinifera seed extract on wounded excisions in the animals
exhibited a significant (p < 0.001) diminishing in wound area compared to the untreated
wounds (Figure 4) and that was in addition to the accelerated wound closure rate in
V. vinifera seed extract-treated wounds. Wound closure can be characterized as the cen-
tripetal flow of the boundaries of a full-thickness wound to encourage the closure of the
wound tissue [29–31]. Wound closure is thus a signal of re-epithelialization, angiogenesis,
granulation, keratinocyte differentiation, fibroblast proliferation, and proliferation [31].

Wound-healing processes require complex interactions between cells and different
growth factors [32], where the TGF-β affects the most important part throughout all stages
of wound healing. During the inflammatory as well as hemostasis phase, the TGF-β
recruits and stimulates inflammatory cells, macrophages, and coating neutrophils, whereas,
in the proliferative-phase, it produces numerous cellular replies comprising angiogenesis,
granulation tissue improvement, re-epithelialization and extracellular matrix removal [32].
It encourages fibroblasts to do proliferation and vary into myofibroblasts which cooperate
in wound closure in the remodeling phase [33]. Pastar et al., 2014, and Haroon et al.,
2002 [34,35], noted that chronic and non-healing wounds generally produce a failure of
TGF-β1 warning, while Feinberg et al., 2000 [36], declared that TGF-β1 delivers an inhibitory
effect on the interpretation of collagenases, which impair collagen and extracellular matrix.
These notes are coherent with the above measurements, which established that V. vinifera
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seed extract enhanced TGF-β1 expression and hence recovered wound healing. When
compared to untreated wound tissues, gene expression investigation of wound tissues
revealed an increase in TGF-β1 levels in V. vinifera-treated wound tissues. This could
indicate that V. vinifera seed extract increased TGF-β1 expression in injured tissues.

Expression of IL-1β, and TNF-α (pro-inflammatory cytokines) is required to improve
neutrophils, and remove bacteria and pollution from the wound section and identifies
dynamic inducer MMPs (metalloproteinase) regeneration in inflammatory and fibroblast
cells. In the wound healing process, the MMP diminishes and excludes broken extracel-
lular matrixes (ECM) to aid wound reconstruction [37]. However, a long period of the
inflammatory phase draws to a complication in the healing process and these cytokines
and proteinase damage the tissue and lead to the outcome of chronic wounds. TNF-α is
one of the growth factors excreted from macrophages, which incorporates IL-1β to enhance
and overcome respective collagen manufacture and fibroblast proliferation [38]. The TNF-α
prompts NF-κB, which in time encourages gene interpretation of an overabundance of pro-
inflammatory cytokines including TNF-α as well as proteases, as MMP, to clear dispersed
TNF-α and potentiate the effects of such inflammatory cytokines [39]. So, suppressing
inflammatory cytokines (TNF-α; and IL-1β) by V. vinifera seed extract can inhibit continued
inflammation and hence avoid impaired wound repair.

Additionally, healing the wounds is resolved by various growth factors which are
excreted in feedback to injury, such as VEGF, which exerts a significant role in the regen-
erationof new blood vessels [40]. VEGF stimulates wound healing via various processes,
consisting of collagen deposition, angiogenesis, and epithelialization, and attaches to the
two VEGF receptors (VEGF-1, and VEGF-2), which are revealed on vascular endothelial
cells [41]. These data are coherent with the early findings that V. vinifera seed extract
enhanced VEGF expression and hence improved wound healing. The relative protein
expression of VEGF was developed in V. vinifera seed extract-treated wound tissues related
to untreated wound tissues, which might indicate that V. vinifera seed extract increased
VEGF expression in wound tissues.

Moreover, wound improvement is interfered in by type I collagen, which is the primary
protein inside skin tissue [42] and exerts an essential role in improving connective tissue
by holding tissue health and an extracellular matrix outline for cellular adhesion and
migration [4]. The task of collagen in wound healing is to bring fibroblasts and facilitate the
removal of modern collagen to the wound bed [43]. Chronic wounds generate enormous
MMPs that obstruct the ordinary wound improvement process [43]. Collagen pickles and
arrests extreme MMPs located within the extracellular matrix (ECM) [43]. So, upregulation
of relative expression of Type I collagen by V. vinifera seed extract can thus prevent extended
inflammation and hence promote wound healing.

Antioxidants are thought to help manage wound oxidative stress and hence speed
up the healing process. They usually play a critical role in controlling the damage that
biological components such as DNA, protein, lipids, and body tissue may sustain in the
presence of reactive species. The maximal H2O2 radical scavenging activity of V. vinifera
seed extract was 48.1% at 1000 µg/mL concentration. According to the data. V. vinifera
seed extract suppressed the formation of H2O2 radicals in a dose-dependent manner,
demonstrating a consistent antioxidant activity with IC50 of 175.8 µg/mL concentration
(Figure 1) compared with standard ascorbic acid (IC50 = 178.1 µg/mL) [44]. High levels
of ROS in a wound site can stimulate collagen disintegration and hence loss of ECM.
When the ECM is broken, handles such as re-epithelization, and angiogenesis, which
are necessary for wounds to improve, are diminished [45,46]. Moreover, elevated ROS
can induce inflammation and increases pro-inflammatory cytokines and hence prolong
inflammation [47].

Besides, redox signaling and enhanced oxidative stress play a vital role in normal
wound healing via encouraging hemostasis, inflammation, angiogenesis, granulation
tissue creation, wound closure, and extracellular matrix development and maturation [48].
As a result, the superoxide scavenging activity of V. vinifera seed extract was evaluated.
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The results showed that the scavenging impact of the standard and extract rises with
concentration (Figure 2), with V. vinifera seed extract exhibiting the maximum superoxide
radical scavenging activity. V. vinifera seed extract has 49% SOD efficacy at 1000 µg/mL
concentration, with IC50 of 151.2 µg/mL, whereas 155.8 µg/mL was needed for ascorbic
acid [49]. The antioxidant activity of V. vinifera seed extract that is attributed by its H2O2
and SOD scavenging activity can eliminate ROS and hence enhance its wound-healing
activity. This antioxidant potential may be endorsed to the phenolic content of the extract.

A phytochemical investigation of the seed extract was performed to explore the
chemical molecules that might contribute to the wound healing activity. Phytochemical
investigation of Vitis vinifera extract yielded a total of 36 compounds including twenty-
seven compounds (1–27) identified from seed oil using GC/MS analysis, along with nine
isolated compounds, including one new benzofuran dimer (28), and eight known ones
(29–36). The structure of the new compound was elucidated using 1D and 2D NMR and
HRESIMS analyses (see Section 2.2).

Molecular docking was carried out to explore the molecular targets that might con-
tribute to the wound healing potential. The three examined targets (TGFBR1, TNF-α, and
IL-1β) play a vital role in the wound healing process. The high scores and extremely
comparable interaction patterns of multiple ligands in V. vinifera seed extract with the
stated wound healing targets provided some molecular explanation for the extract’s wound
healing effect. Additionally, the binding modes and free energies obtained for the isolated
compounds during the molecular docking studies within active sites of TGFBR1, TNF-α,
and IL-1β (Tables 3–6) confirm in vivo animal study results, is which manifested by the
significant change in the mRNA expression of TGF-β (increased) and the inflammatory
markers, TNF-α and IL-1β (decreased). Our data suggested that V. vinifera seed extract
could accelerate the switching process from inflammatory to anti-inflammatory responses,
which afterwards promotes healing.

5. Conclusions

In this study, Vitis vinifera seed extract displayed remarkable wound healing activity
via accelerated wound closure rate, enhancing TGF-β1, VEGF, as well as Type I collagen
expression, and suppressing inflammatory markers (TNF-α and IL-1β). Nine compounds
were isolated and identified from V. vinifera seeds. Molecular docking analysis on three
molecular targets predicted the possible mode of action in the wound healing activity.
Additionally, the potent in vitro antioxidant activity of Vitis vinifera seed extract, and two
isolated compounds (ursolic acid 34, and β-sitosterol-3-O-glucopyranoside 36) that are
attributed by its SOD, and H2O2 scavenging activity can eliminate ROS and hence enhance
its wound-healing activity. This antioxidant potential may be endorsed to the phenolic
content of the extract. Finally, this study recommended the application of V. vinifera seed
extract in wound care as a promising therapy to accelerate the wound healing process;
however, future detailed mechanistic studies are still required to confirm those results.
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