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Abstract: Thioredoxin (Trx) is a key protein of the redox regulation system in chloroplasts, where
it modulates various enzyme activities. Upon light irradiation, Trx reduces the disulfide bonds of
Trx target proteins (thereby turning on their activities) using reducing equivalents obtained from
the photosynthetic electron transport chain. This reduction process involves a differential response,
i.e., some Trx target proteins in the stroma respond slowly to the change in redox condition caused by
light/dark changes, while the ATP synthase γ subunit (CF1-γ) located on the surface of thylakoid
membrane responds with high sensitivity. The factors that determine this difference in redox kinetics
are not yet known, although here, we hypothesize that it is due to each protein’s localization in
the chloroplast, i.e., the reducing equivalents generated under light conditions can be transferred
more efficiently to the proteins on thylakoid membrane than to stromal proteins. To explore this
possibility, we anchored SBPase, one of the stromal Trx target proteins, to the thylakoid membrane
in Arabidopsis thaliana. Analyses of the redox behaviors of the anchored and unanchored proteins
showed no significant difference in their reduction kinetics, implying that protein sensitivity to redox
regulation is determined by other factors.

Keywords: redox regulation; thioredoxin; chloroplast; thioredoxin target protein

1. Introduction

The redox regulation system in chloroplasts is responsible for the light-responsive
control of various chloroplast proteins. Thioredoxin (Trx) is a small and ubiquitous protein
containing two reactive cysteines, which, in this system, reduces the disulfide bonds of
Trx target proteins via a dithiol–disulfide exchange reaction. When the photosynthetic
electron transport chain is driven by light, part of the reducing equivalents is transferred to
ferredoxin (Fd) and then to Trx via ferredoxin-thioredoxin reductase (FTR) [1,2]. Trx then
transfers the reducing equivalents to the target proteins, a reaction that generally turns
on their activities. Whole-genome analysis of Arabidopsis thaliana has identified five Trx
subtypes (Trx-f, Trx-m, Trx-x, Trx-y, and Trx-z) in chloroplasts, each of which has different
target selectivity and expression levels [3–7]. Moreover, Trx regulates a variety of chloro-
plast proteins involved in the regulation of diverse chloroplast functions [8]. For example,
several Calvin–Benson cycle enzymes such as fructose-1, 6-bisphosphatase (FBPase) and
sedoheptulose-1, 7-bisphosphatase (SBPase), and the chloroplast-localized ATP synthase
γ subunit (CF1-γ) are well-known for their redox-responsive properties [9–14]. Thus, Trx
plays a key role in the modulation of chloroplast function through the redox regulation of
various targets in response to changes in the light environment.
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In general, chloroplast proteins undergo light-dependent redox regulation to coor-
dinately control photosynthetic and metabolic reactions under light conditions. While
stroma-localized Trx target proteins, such as FBPase and SBPase, are gradually reduced
with changes in light intensity and light exposure time in vivo, CF1-γ is reduced immedi-
ately just after light exposure [11–13]. In addition, the response of rubisco activase (RCA),
localized mainly to stroma and partly to the thylakoid membrane, is in-between those
of stromal Trx target proteins and CF1-γ [13,15]. Currently, the factors that determine
the differential redox responses of Trx target proteins are unknown. Furthermore, the
mechanism underlying the rapid redox kinetics of CF1-γ and its physiological significance
have not yet been elucidated.

We hypothesized that the differences in redox responses of Trx target proteins are
due to differences in protein localization in the chloroplast. The localization of CF1-γ on
the thylakoid membrane as a subunit of chloroplast ATP synthase may lead to its rapid
redox behavior, because the reducing equivalents from the photosynthetic machinery in
thylakoid membrane are transferred more efficiently to thylakoid membrane-bound CF1-γ
than to stromal Trx target proteins.

Our aim was to gain insight into the mechanism underlying highly sensitive redox reg-
ulations by verifying the relationship between the subchloroplast localization of Trx target
proteins and their reduction kinetics. To accomplish this task, we generated an A. thaliana
mutant that expresses a membrane-bound SBPase consisting of a thylakoid transmembrane
domain (TM domain) fused to SBPase, a stromal Trx target protein. We then analyzed
the reduction profiles of this membrane-bound protein. The wild-type SBPase is a dimer
protein with the slowest redox behavior among previously analyzed Trx target proteins [13].
Therefore, it is an ideal protein to analyze the effect of thylakoid membrane localization
on protein reduction kinetics. The TM domain of thylakoid membrane-localized ascorbate
peroxidase (APX) [16] was fused to SBPase because APX is located near photosystem I and
its C-terminus TM domain is not involved in its enzymatic activity [17–19]. Our results
show that changing the localization of SBPase within the chloroplast does not change its
redox profile, suggesting that the sensitivity of CF1-γ to redox regulation is not dictated by
its localization but by other factors.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Wild-type A. thaliana (Col-0) was used as a control and designated as the “WT” strain.
The WT strain served as background for generating plants overexpressing SBPase fused
to the TM domain (SBPase-TMAPX), and these were designated “OE-SBPase-TMAPX”. By
targeting the SalI–SacI fragments, we amplified the sequence encoding the TM domain
region (Glu369–Phe426) from cDNA encoding the APX gene (At1g77490). The amplified
PCR fragments were then cloned into the pBlueScript vector (Agilent) and then the TMAPX
fragments were amplified as SalI–SacI fragments by PCR. We used SBPase gene cDNA
(At3g55800) to amplify the sequence encoding the chloroplast transit signal peptide of
SBPase (Met1–Lys59). The amplified genes were fused by over-lap PCR [20] with another
DNA fragment encoding the mature region of SBPase (Ala60–Glu396) and the Hexa-His-
tag was added to its C-terminus. This fragment was amplified from previously modified
pET-23c SBPase constructs [21]. The full-length SBPase included a chloroplast transit
signal sequence and Hexa-His-tag fused fragments cloned into the pRI 201-AN vector
(Takara) with the aforementioned TMAPX fragments. The sequences of the primers used for
these experiments are shown in Table S1. To construct an SBPase-TMAPX overexpressing
plant, OE-SBPase-TMAPX, plants were transformed with the aforementioned pRI 201-
AN construct with SBPase-TMAPX encoding region by the agrobacterium-mediated floral
dip method [22]. Plants were grown in soil under a 16 h light (50–60 µmol photons
m−2 s−1)/8 h dark cycle at 22 ◦C for 4 weeks.
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2.2. Protein Extraction from Plant Leaves

Plant leaves were frozen in liquid nitrogen and homogenized with leaf protein ex-
traction solution (2% (w/v) SDS, 62.5 mM Tris-HCl (pH 6.8), and 7.5% (v/v) glycerol) and
the homogenate was heat-treated at 95 ◦C for 5 min and then centrifuged at 20,400× g for
15 min. The concentration of leaf proteins in the supernatant was determined using the
BCA protein assay kit (Pierce). To the supernatant, 1/3 of the supernatant volume of SDS
sample buffer (8% (w/v) SDS, 250 mM Tris-HCl (pH 6.8), 30% (v/v) glycerol, and 0.04%
(w/v) bromophenol blue) containing 20% (v/v) 2-mercaptoethanol was added and then the
mixture was subjected to SDS-polyacrylamide gel electrophoresis (PAGE). Proteins were
transferred to a PVDF membrane by Western blotting.

2.3. Measurements of Plant Growth and Chlorophyll Content

The aboveground fresh weight (FW) of plants was measured. The chlorophyll content
in rosette leaves was calculated as the sum of the contents of chlorophyll a and b after
extraction of the chlorophyll with 80% (v/v) acetone according to previously published
methods [23].

2.4. Isolation and Sub-Fractionation of Chloroplasts

Chloroplast stroma and thylakoid membrane fractions were obtained by collecting
intact chloroplasts from plant leaves and disrupting them by osmotic stress as previously
described [24].

2.5. Determination of Light-Dependent Protein Redox State In Vivo

Plants were dark-adapted for 8 h and then irradiated at 650–750 µmol photons m−2 s−1.
The plant leaves were then harvested at the indicated times and frozen in liquid nitrogen.
The redox states of the proteins in plant leaves were determined according to previously de-
scribed methods [12]. To distinguish between the reduced band of endogenous SBPase and
the oxidized band of SBPase-TMAPX in OE-SBPase-TMAPX plants, we used the Penta·His
antibody (BSA-free, Qiagen) to detect SBPase-TMAPX. The antibodies against SBPase and
CF1-γ were prepared as described previously [12,21].

3. Results and Discussion
3.1. Generation of Plants Expressing Thylakoid Membrane-Anchored SBPase

To evaluate the effect of subchloroplast localization on the reduction kinetics of Trx
target proteins, we generated two membrane-bound, SBPase-overexpressing mutant lines
of A. thaliana. In both mutant plants (designated OE-SBPase-TMAPX), the TM domain
of the membrane-bound APX was fused to SBPase. Because the thylakoid-bound APX,
like CFoCF1, localizes mainly to stroma thylakoids [17,25], we expected that the redox
behavior of SBPase-TMAPX would be similar to that of CF1-γ. Then we confirmed that the
protein (designated SBPase-TMAPX) was definitely anchored to the thylakoid membrane
(Figure 1A). The expression of SBPase-TMAPX in the mutant plants was confirmed by
Western blotting using antibodies against SBPase (Figure 1B). The expression levels of
SBPase-TMAPX in both OE-SBPase-TMAPX plant lines were about 150–200% of endogenous
SBPase (Figure 1C). We used Line 1 of the OE-SBPase-TMAPX plants for subsequent analyses.
Figure 2 shows the growth phenotype, FW and chlorophyll content of this OE-SBPase-
TMAPX plants. Compared to WT, the growth of OE-SBPase-TMAPX plants was stunted and
its FW was lower; however, its chlorophyll content and major Trx content (data not shown)
did not differ significantly from WT plants.



Antioxidants 2022, 11, 773 4 of 8

Figure 1. Generation of A. thaliana mutants expressing membrane-anchored SBPase. (A) Construction
of SBPase-TMAPX. The blue ovals represent SBPase and the magenta cylinder represents TMAPX.
The gray chain represents the Hexa-His-tag linker connecting SBPase to TMAPX. (B) SBPase-TMAPX

expression in two independent lines was confirmed by Western blotting. (C) The relative expression
level of SBPase-TMAPX in OE-SBPase-TMAPX plant was calculated from the signal intensities shown
in (B). The expression level of endogenous SBPase in an OE-SBPase-TMAPX plant was defined to
100%. Each value represents the mean ± SD (n = 3).

Figure 2. Phenotypes of mutant plants expressing membrane-anchored SBPase. (A) Four-week-old
OE-SBPase-TMAPX plants. (B) Fresh weight (FW) and chlorophyll content of OE-SBPase-TMAPX

plant. Each value represents the mean ± SD (n = 4). Different letters indicate significant differences
among plant lines (p < 0.05; one-way ANOVA and Tukey’s honestly significant difference).

To determine whether SBPase-TMAPX is anchored to the chloroplast thylakoid mem-
brane in mutant plants, we isolated the intact chloroplasts from leaves and then obtained
stroma and thylakoid membrane fractions. Immunoblot analyses using antibodies against
SBPase showed that SBPase-TMAPX is mainly localized to the thylakoid membrane in OE-
SBPase-TMAPX plants (Figure 3). To anchor SBPase to thylakoid membrane, we used the
TM domain of APX as described above. Thus, since we have confirmed that SBPase-TMAPX
localized to the thylakoid membrane (Figure 1A), we expect the localization of this enzyme
on the thylakoid membrane to be similar to that of CF1-γ.

3.2. In Vivo Redox Responses of Thylakoid Membrane-Anchored SBPase

To evaluate the effect of subchloroplast localization on the reduction kinetics of Trx
target proteins, we analyzed the reduction kinetics of SBPase-TMAPX in vivo. As a reference,
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we also analyzed the reduction kinetics of thylakoid membrane-bound CF1-γ. The reduc-
tion rate was measured by irradiating plant leaves at high-intensity light (650–750 µmol
photons m−2 s−1) after dark adaptation and then observing the changes in the redox state
of proteins by thiol modification as described previously [12].

Figure 3. Localization of the membrane-anchored SBPase in chloroplasts. Proteins from stroma and
thylakoid membrane fractions of leaves in OE-SBPase-TMAPX plants were prepared for immunoblot
analysis. The same amounts of proteins were loaded into each lane as shown in an SDS-PAGE gel in
the right panel (silver-stained). Antibodies against SBPase was used to detect the endogenous SBPase
and SBPase-TMAPX. FBPase and light-harvesting complex protein LHCA1 were detected as markers
of stroma and thylakoid membrane fractions, respectively, using their specific antibodies.

The reduction profiles in Figure 4 show a gradual reduction of both SBPase-TMAPX in
OE-SBPase-TMAPX plants and endogenous SBPase in WT plants through light exposure
time. In contrast, CF1-γ rapidly reached the maximum reduction level (about 90%) at
approximately 120 s after light irradiation of OE-SBPase-TMAPX and WT plants. Thus,
thylakoid membrane-bound and stroma-localized endogenous SBPases shared the same
reduction kinetics, which was distinct from the rapid reduction response of CF1-γ.

CF1-γ is an abundant protein in the chloroplast, nevertheless, it is reduced rapidly
even under low light conditions [13,21]. In contrast, the expression level of SBPase-TMAPX
was about 150–200% of endogenous SBPase (Figure 1C), but the reduction rates of both
proteins were almost equivalent (Figure 4). These results imply that the turnover rate of
Trx (the protein responsible for transferring reducing equivalents to these target proteins)
is sufficiently rapid for it to reduce all target proteins in chloroplast.
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Figure 4. In vivo redox responses of membrane-anchored SBPase. Dark-adapted plants were placed
under light conditions (650–750 µmol photons m−2 s−1) for the specified time period and then
leaves were frozen in liquid nitrogen. The redox states of endogenous SBPase, SBPase-TMAPX and
CF1-γ were determined by the method previously described in [12]. Antibodies against SBPase and
CF1-γ were used to detect the endogenous proteins, while the Penta·His-tag antibody was used to
detect SBPase-TMAPX, thus providing a clear distinction between the reduced band of endogenous
SBPase and the oxidized band of SBPase-TMAPX in OE-SBPase-TMAPX plants. (A) The redox state
of endogenous SBPase and CF1-γ in WT plants. (B) The redox state of SBPase-TMAPX and CF1-γ
in OE-SBPase-TMAPX plants. (C) The reduction level of SBPase and CF1-γ is based on the signal
intensities shown in (A,B). The reduction level was calculated as the ratio of the reduced form to
the total amount of reduced and oxidized forms. Each value represents the mean ± SD (n = 3). Red,
reduced form; Ox, oxidized form.

4. Conclusions

Based on our results, we conclude subchloroplast localization does not affect the
reduction kinetics of SBPase. In chloroplasts, target proteins are continuously oxidized,
even under light irradiation conditions [11], and the balance between the reduction and
oxidation processes should be an important factor in determining the reduction kinetics.
Another possible factor affecting the reduction kinetics is the different affinities between Trx
and each Trx target protein, which are based on differences in surface electrostatic potential.
Studies suggest that changes in surface electrostatic charge around the reactive cysteine
pair of CF1-γ causes changes in Trx-dependent redox properties [26–28].

In addition, NADPH-thioredoxin reductase C (NTRC) has been recently proposed as
another factor responsible for the rapid reduction of CF1-γ in addition to Trx [29,30]. NTRC
reduces the target proteins using NADPH as a source of reducing equivalents [31]. Overall,
these studies indicate that, rather than subchloroplast localization, the sensitivity to redox
regulation of Trx target proteins may involve other complex mechanisms.
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