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Abstract: The interaction of protein carrier and polyphenol is variable due to their environmental
sensitivity. In this study, the interaction between resveratrol and whey protein isolate (WPI), sodium
caseinate (SC) and soy protein isolate (SPI) during storage were systematically investigated from the
aspects of polyphenol loading, antioxidant activity and oxidability. It was revealed that resveratrol
loaded more in the SPI core and existed both in the core of SC micelles and on the particle surface,
while WPI and resveratrol mainly formed in complexes. The loading capacity of the three proteins
ranked in order SC > SPI > WPI. ABTS assay showed that the antioxidant activity of the protein
carriers in the initial state was SC > SPI > WPI. The results of sulfhydryl, carbonyl and amino acid
analysis showed that protein oxidability was SPI > SC > WPI. WPI, with the least oxidation, improved
the storage stability of resveratrol, and the impact of SC on resveratrol stability changed from a
protective to a pro-degradation effect. Co-oxidation occurred between SPI and resveratrol during
storage, which refers to covalent interactions. The data gathered here suggested that the transition
between the antioxidant and pro-oxidative properties of the carrier is the primary factor to investigate
its protective effect on the delivered polyphenol.

Keywords: protein; resveratrol; loading; antioxidant activity; oxidability; stability

1. Introduction

Protein-based assemblies including molecular complexes, nano-/micro-particles, and
their stabilized emulsions and emulsion gels have been expected to protect antioxidants [1,2].
Even though the stabilization mechanism of polyphenols in proteins is not fully clear, there
is a hypothesis that proteins express a protective effect by shielding the environmental
accessibility of polyphenols and scavenging the free radical [3]. However, amphiphilic and
hydrophilic polyphenols cannot be completely encapsulated in a carrier, and a portion of
polyphenols are still in the free form. Meanwhile, it is worth noting that antioxidants can be
converted into pro-oxidants under certain conditions and proteins may generate reactive
oxidative species [4]. The imbalance between pro-oxidation and anti-oxidation in the phys-
iological system eventually leads to the oxidation of biomolecules, the so-called oxidative
stress [5]. The interaction between proteins and polyphenols might also be complicated
and changeable, since they are both environment sensitive.

It has been reported that bioactive components including vitamins, polyunsaturated
fatty acids and polyphenols may also affect the delivery carriers. The photo-decomposition
of folic acid caused the indirect oxidation of the whey protein isolate (WPI), which en-
hanced the protein antioxidant activity, leading to increased protection for the folic acid [6].
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β-Carotene, one of the major carotenoids, produced free radicals that can accelerate the
oxidation of WPI in oil-in-water emulsions [7], while phenolic anthocyanins provided
protection against the oxidation of Trp [8]. The oxidation of fish protein rich in polyunsatu-
rated fatty acids was promoted by lipid oxidation products, especially secondary oxidation
products, and the oxidation of protein and lipids occurred in parallel, showing a good
correlation [9]. Although protein–polyphenol interaction has been investigated for the
modification of protein structure and colloidal stability [10,11], its impact on the stabil-
ity of polyphenols has rarely been reported until now. It is thus necessary to clarify the
mechanism of proteins on the stability of polyphenols in more depth.

Resveratrol (trans-3,5,4′-trihydroxy-stilbene) is known as a polyphenolic compound
with antioxidant activity. However, resveratrol is prone to oxidation, which limits its appli-
cation in commercial products. Various proteins (e.g., zein, gliadin and ovalbumin) have
been reported to stabilize resveratrol [12,13], but bovine serum albumin (BSA) accelerates
the degradation of resveratrol [14]. Proteins in the molecular level and in the form of
micelles might provide a different microenvironment and unique carrying properties for
targeted antioxidants [15]. β-casein in the molecular level improved the storage stability
of both cis- and trans-resveratrol better than β-casein micelles, although β-casein micelles
could inhibit the transformation of resveratrol from trans-isomer to cis-isomer to a certain
extent [16]. The stabilization effect on resveratrol is dependent on the type and concentra-
tion of protein carriers [17], but lacking systematic comparison study. Therefore, there is
a growing demand for clarifying the theoretical basis to select suitable proteins as carrier
materials for resveratrol.

Sodium caseinate (SC) and WPI are major milk proteins, and SC has a disordered
structure and is more hydrophobic properties than WPI, while WPI contains two major
globular proteins β-lactoglobulin and α-lactalbumin [18]. Soy protein isolate (SPI) is mainly
composed of 7S and 11S globulins. WPI, SC and SPI are generally recognized as safe (GRAS),
and their assemblies are commonly used to protect antioxidants against oxidation and
degradation [19,20]. In the present study, WPI, SC, and SPI at various concentrations were
used to investigate their effect on the storage stability of resveratrol and the polyphenol
impact on the composition of proteins. The data gathered here should help guide the shelf
life of the protein–polyphenol system used in commercial products.

2. Materials and Methods
2.1. Materials

WPI (≥92%) was obtained from Davisco International Inc (Le Sueur, MN, USA). SPI
(≥90%) was from Shandong Xiya Chemical Industry Co., Ltd. (Linshu, Shandong, China).
SC, resveratrol (trans-isomer, >99%) and polydatin (HPLC grade, >95%) were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). 2,2′-azino-bis-3- ethylbenzthiazoline-
6-sulphonic acid (ABTS) was purchased from Aladdin Bio-Chem Technology Co., Ltd.
(Shanghai, China). Other agents were of analytical grade and purchased from SinoPharm
CNCM Ltd. (Shanghai, China).

2.2. Sample Preparation

WPI, SPI or SC powder was dissolved in ultrapure water. The solutions were adjusted
to pH 12 with 2 M NaOH and hydrated fully with magnetic stirring for 1 h, and then neu-
tralized the pH to 7 with 2 M HCl under agitation for another 1 h. Stock solutions of proteins
were 0.02%, 0.2% and 2.0% (w/v). Stock solution of resveratrol was prepared at a concentra-
tion of 2 mM by dissolving in 70% (v/v) ethanol. The resveratrol solution was added into
protein solutions and diluted with water at pH 7 under stirring for 30 min. The final con-
centrations were 0.01%, 0.10% and 1.00% for proteins and 25, 50 and 100 µM for resveratrol.
The 0.02% (w/v) sodium azide was added to solutions as an antimicrobial agent.
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2.3. Fluorescence Spectroscopy

Fluorescence of pyrene as a probe was measured on a Cary Eclipse fluorescence
spectrophotometer (Agilent Co., Ltd., New York, NY, USA) equipped with 10 mm quartz
cuvettes. The spectral resolution was 2.5 nm for both excitation and emission. Pyrene in
acetone was added into samples with its final concentration of 1 µM under stirring for at
least 12 h before measurement. Fluorescence emission spectra were scanned from 350 to
600 nm with the excitation wavelength of 335 nm and the ratio of the intensity of the first
and third bands (I1/I3) was calculated [21].

Fluorescence emission spectra of resveratrol in the absence or presence of proteins
were recorded from 330 to 600 nm at an excitation wavelength of 320 nm. Slit widths with
a nominal band-pass of 5 nm were used for both excitation and emission. Background of
proteins was subtracted from raw spectra.

2.4. Particle Size and ζ-Potential

Size distribution by the intensity and ζ-potential were determined by a NanoBrooker
Omni Particle size Analyzer (Brookhaven Instruments Ltd., New York, NY, USA) with
a He/Ne laser (λ = 633 nm) at a scattering angle of 173◦. They were obtained using an
NNLS model and Smoluchowski model through phase analysis light-scattering (PALS)
measurement, respectively.

2.5. Color Evaluation

The color parameters of protein-resveratrol solutions before and after storage at 45 ◦C
for 30 days were measured using a ColorQuest XE colorimeter (ColorQuest XE, Hunter Lab,
Reston, VA, USA) and calculated using the Hunter Lab color scale (L*a*b*). L* represents
the lightness (black = 0 to white = 100), a* varies from red (positive) to green (negative),
and b* varies from yellow (positive) to blue (negative). The total color difference (∆E) was
calculated from the tristimulus color coordinates using the following equation:

∆E =
[
(L∗ − L∗i )

2 + (a∗ − a∗i )
2 + (b∗ − b∗i )

2
]1/2

(1)

where, Li*, ai*, bi* are the initial values of the CIE L*a*b* color coordinates of freshly-
prepared samples, and L*, a*, b* are the color coordinates of samples after 30 days. Ad-
ditionally, the difference in chroma (∆C*) value, which represents the color intensity of
samples, was analyzed by the following equation [22]:

∆C∗ =
[
(a∗ − a∗i )

2 + (b∗ − b∗i )
2
]1/2

(2)

2.6. Resveratrol Quantification

An exactly 0.5 mL sample was mixed with 0.5 mL polydatin (internal standard, 50 µM)
in methanol and then added into 4 mL methanol under vortexing for 60 s. After the mixture
was centrifuged at 15,000× g for 60 min, the supernatant was measured on the Alliance
HPLC system equipped with a 2695 separation module and 2998 PDA detector (Waters,
Milford, MA, USA). The mobile phase was a mixture of methanol and distilled water
(50:50, v/v), the flow rate was 1 mL min−1, and the column temperature was 35 ◦C. Both
trans-resveratrol and polydatin were analyzed at 306 nm [23].

2.7. Loading Efficiency

Loading efficiency of resveratrol was determined by isoelectric precipitation method [24].
The samples with WPI, SPI and SC were adjusted to pH 4.8–4.6 using 0.1 M NaOH or HCl.
Loading efficiency of resveratrol was calculated according to following formulation:

Loading efficiency(%) =

(
1− Cs

C0

)
× 100 (3)
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where, C0 and Cs were resveratrol in samples and in the supernatant, centrifuged at 5000× g
for 20 min, respectively.

2.8. Antioxidant Activity

ABTS assay was analyzed according to previous methods [25]. In brief, 7.4 mM
ABTS and 2.6 mM K2S2O8 were mixed in the dark for 12 h to produce ABTS·+ solution,
which was diluted and mixed with samples or buffer at a volume ratio of 19:1 and kept
in the dark for 6 min. The absorbance was measured at 729 nm using a UV-1800 UV–Vis
spectrophotometer (Shimadzu Co., Tokyo, Japan). The radical-scavenging activity was
calculated as follows:

Scavenging capacity (%) =
Ac −As

Ac
× 100 (4)

where Ac and As are the absorbance of radical plus buffer and sample, respectively.

2.9. Sulfhydryl Analysis

Samples were mixed at a volume ratio of 1:2 with 0.1 M phosphate buffer at pH
8.0 without and with 8 M urea for free and total sulfhydryl determination, respectively.
Then absorbance at 412 nm was measured, after 10 mM DTNB was added under vigorous
stirring and incubated in the dark for 1 h. Both reagent and sample blanks were subtracted.
Content of free and total sulfhydryl was calculated by using a molar extinction coefficient
of 13,600 M−1cm−1 and expressed as nmol per mg protein [26].

2.10. Carbonyl Analysis

Protein solutions in the presence and absence of resveratrol during storage at 45 ◦C
were mixed at a volume ratio of 1:2 with 10 mM DNPH in 2 M HCl. After 10% (w/v)
trichloroacetic acid was added and centrifuged at 10,000× g for 5 min, precipitate was
washed with 50% ethyl acetate and then dissolved in 6 M guanidine HCl in 20 mM
phosphate buffer at pH 2.3. Absorbance at 370 nm was measured and carbonyl content
was calculated using an extinction coefficient of 22,000 M−1cm−1 and expressed as nmol
per mg protein [27].

2.11. Amino Acid Analysis

Amino acids except tryptophan were analyzed through acid hydrolysis of proteins
by mixing 4 mL of samples with the same volume of 12 M HCl under blown nitrogen for
3 min, followed by hydrolysis at 120 ◦C for 22 h. Then a certain amount of NaOH was
added to neutralize, and water was added to give a total volume of 25 mL. Tryptophan
was determined by alkaline hydrolysis of proteins with 10 M NaOH and neutralized with
a certain amount of HCl. The supernatant was centrifuged after filtering with filter paper.
Amino acids were analyzed on the Agilent 1100 HPLC system equipped with an Agilent
Hypersil ODS column (Angelon Co., Ltd., New York, NY, USA). Proline was detected at
262 nm, and the other amino acids were detected at 338 nm [6].

2.12. Statistical Analysis

All experiments were repeated three times. Data are presented as mean ± standard
deviation. An analysis of variance (ANOVA) of the data was carried out and identified
using the Duncan procedure. All statistical analyses were performed using the software
package SPSS 20.0 (SPSS Inc., Chicago, IL, USA). A p value < 0.05 was considered significant.

3. Results
3.1. Particle Characterization

Pyrene is often used to investigate the association of macromolecules and the critical
micelle concentration (CMC). Its intensity ratio I1/I3 decreased as the hydrophobicity of
surrounding microenvironment increased [28]. The I1/I3 ratio of pyrene in water was
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1.75 (±0.01). When the concentration of SC was 0.01%, the I1/I3 ratio was 1.67 (Figure 1),
and its size distribution had three peaks around 1.5, 25 and 215 nm by intensity (Figure 2A).
According to the submicelle model, each casein forms small submicelle units through
hydrophobic interactions, and these subunits use calcium phosphate as the cement and
further aggregates together to form SC micelles [29]. The relatively low concentration of SC
solution is not sufficient to drive the formation of micelles, 0.01% SC mainly dissolved in
the molecular level [30]. As the protein concentrations increased above 0.5%, the I1/I3 of
SC gradually decreased to about 1.10 (Figure 1). The size distribution of SC at 0.1% showed
a major peak around 230 nm and a minor peak around 25 nm, while only a peak at around
380 nm was observed at 1% (Figure 2A). These results indicate that SC aggregates to form
micelles at 1% concentration [31]. As for WPI and SPI, the I1/I3 ratios of 0.01% protein
were respectively 1.35 and 1.40 (Figure 1). Meanwhile, WPI had two peaks around 220 and
520 nm (Figure 2B), and SPI had two peaks around 110 and 380 nm (Figure 2C). The
relatively low I1/I3 and large particle size suggest that WPI and SPI had already aggregated
at 0.01%. The size peaks of WPI were not dependent on its concentrations (Figure 2B), while
SPI became bigger with increasing concentrations, with two major peaks around 180 and
660 nm at 1% (Figure 2C). This is consistent with the results of the I1/I3 of pyrene. From
Figure 1, the I1/I3 ratios of WPI decreased slightly from 1.35 at 0.01% to 1.18 at 0.1%, and
then remained unchanged as the protein concentration further increased. The I1/I3 ratios
decreased as the concentrations of proteins increased, reaching around 0.80 for 2% SPI
(Figure 1). By comparative analysis, these results indicate that SPI particles have the most
hydrophobic core, which is consistent with the highest content of hydrophobic amino acids
(Tables 1 and 2 vs. Table 3). It has been reported that SPI had lower solubility compared
with WPI and SC, while hydrophilic groups and/or water molecules were entrapped in
the core of WPI particles [32,33].
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Figure 1. I1/I3 of whey protein isolate (WPI), sodium caseinate (SC) and soy protein isolate (SPI)
solutions at various concentrations.

Since WPI, SC or SPI have an isoelectric point (pI) around pH 4.5~5, the ζ−potential
values of their particles are negative at pH 7.0 (Figure 3). ζ-Potential absolute values of the
protein particles ranked in order WPI > SC > SPI at the same concentration (Figure 3). This
is consistent with their molar ratio of acidic (Asp and Glu) and basic (His, Lys and Arg)
amino acids being around 2.38 for WPI, 2.03 for SC, and 1.98 for SPI, calculated from the
data in Tables 1–3. Together with the most hydrophobic core of SPI particles in Figure 1,
these results indicate that more negatively-charged groups were masked in SPI particles
than WPI and SC particles. ζ-Potential absolute values of all complex particles decreased as
the protein concentration increased (Figure 3), suggesting that negatively-charged groups
were entrapped in the aggregated particle core.
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Table 1. Amino acid composition of whey protein isolate (WPI) at 1% in the absence and presence of
100 µM resveratrol (RES) before and after storage for 30 days.

Amino Acid
Content of Amino Acid (µg/mL)

WPI (0) WPI-RES (0) WPI (30) WPI-RES (30)

Cys 121 ± 4 a 119 ± 4 a 106 ± 4 b 104 ± 3 b

Trp 198 ± 7 a 195 ± 9 a 172 ± 8 b 179 ± 6 b

Tyr 298 ± 9 a 301 ± 7 a 277 ± 6 b 280 ± 6 b

Thr 433 ± 5 a 430 ± 7 a 417 ± 8 b 410 ± 8 b

Lys 942 ± 17 a 947 ± 12 a 933 ± 11 b 928 ± 9 b

Met 194 ± 5 a 192 ± 7 a 165 ± 5 b 163 ± 8 b

Phe 346 ± 2 a 351 ± 6 a 324 ± 8 b 320 ± 5 b

Asp 1195 ± 16 a 1203 ± 11 a 1196 ± 38 a 1158 ± 43 a

Arg 233 ± 11 a 235 ± 8 a 239 ± 8 a 235 ± 9 a

Glu 1790 ± 17 a 1784 ± 29 a 1777 ± 17 a 1783 ± 26 a

Ser 296 ± 7 a 292 ± 5 a 295 ± 8 a 299 ± 9 a

Gly 161 ± 2 a 158 ± 4 a 160 ± 3 a 158 ± 3 a

His 172 ± 2 a 169 ± 3 a 172 ± 5 a 173 ± 6 a

Val 506 ± 14 a 496 ± 29 a 508 ± 13 a 495 ± 10 a

Ala 474 ± 7 a 474 ± 5 a 475 ± 5 a 472 ± 9 a

Ile 586 ± 18 a 579 ± 16 a 573 ± 10 a 575 ± 15 a

Leu 991 ± 16 a 981 ± 22 a 980 ± 12 a 976 ± 20 a

Pro 399 ± 19 a 393 ± 7 a 398 ± 28 a 406 ± 10 a

Total 9335 ± 74 a 9299 ± 53 a 9167 ± 43 b 9114 ± 64 b

Note: Different lower-case letters in the same row represent significantly different mean values (p < 0.05).

Table 2. Amino acid composition of sodium caseinate (SC) in the absence and presence of resveratrol
(RES) before and after storage for 30 days.

Amino Acid
Content of Amino Acid (µg/mL)

SC (0) SC-RES (0) SC (30) SC-RES (30)

Cys 5 ± 0 a 5 ± 0 a 5 ± 0 a 4 ± 1 a

Trp 571 ± 9 a 566 ± 12 a 119 ± 14 b 74 ± 10 c

Tyr 451 ± 9 a 448 ± 12 a 409 ± 10 b 384 ± 6 c

Thr 344 ± 5 a 350 ± 8 a 330 ± 3 b 318 ± 2 c

Lys 744 ± 7 a 737 ± 11 a 690 ± 9 b 629 ± 7 c

Met 226 ± 8 a 222 ± 2 a 185 ± 2 b 184 ± 2 b

Phe 443 ± 8 a 439 ± 6 a 427 ± 10 a 433 ± 10 a

Asp 548 ± 14 a 556 ± 12 a 493 ± 18 b 460 ± 13 c

Arg 337 ± 10 a 345 ± 9 a 313 ± 12 b 294 ± 3 c

Glu 2053 ± 87 a 2014 ± 79 a 2048 ± 57 a 1998 ± 50 b

Ser 380 ± 7 a 378 ± 5 a 384 ± 8 a 375 ± 8 b

Gly 159 ± 4 a 153 ± 9 a 160 ± 2 a 152 ± 3 b

His 293 ± 3 a 290 ± 9 a 299 ± 7 a 288 ± 7 a

Val 600 ± 10 a 593 ± 19 a 588 ± 15 a 589 ± 11 a

Ala 260 ± 7 a 263 ± 7 a 252 ± 4 a 252 ± 4 a

Ile 487 ± 12 a 479 ± 12 a 473 ± 10 a 467 ± 16 a

Leu 788 ± 14 a 795 ± 22 a 783 ± 20 a 780 ± 17 a

Pro 727 ± 16 a 722 ± 10 a 720 ± 18 a 735 ± 11 a

Total 9416 ± 106 a 9355 ± 99 a 8678 ± 70 b 8416 ± 68 c

Note: Different lower-case letters in the same row represent significantly different mean values (p < 0.05).
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Table 3. Amino acid composition of soy protein isolate (SPI) in the absence and presence of resveratrol
(RES) before and after storage for 30 days.

Amino Acid
Content of Amino Acid (µg/mL)

SPI (0) SPI-RES (0) SPI (30) SPI-RES (30)

Cys 20 ± 2 a 19 ± 4 a 13 ± 2 b 5 ± 2 c

Trp 160 ± 6 a 158 ± 8 a 93 ± 4 b 78 ± 3 c

Tyr 281 ± 8 a 276 ± 6 a 231 ± 4 b 200 ± 1 c

Thr 209 ± 3 a 211 ± 5 a 177 ± 8 b 170 ± 3 c

Lys 481 ± 7 a 476 ± 8 a 403 ± 10 b 382 ± 8 c

Met 84 ± 3 a 89 ± 8 a 79 ± 4 b 63 ± 6 c

Phe 418 ± 6 a 421 ± 9 a 358 ± 10 b 347 ± 7 c

Asp 735 ± 14 a 735 ± 13 a 685 ± 21 b 554 ± 10 c

Arg 585 ± 5 a 591 ± 6 a 584 ± 5 a 591 ± 8 a

Glu 1520 ± 67 a 1479 ± 67 a 1335 ± 79 a 1192 ± 106 b

Ser 371 ± 9 a 365 ± 8 a 325 ± 9 b 300 ± 4 c

Gly 352 ± 8 a 346 ± 9 a 328 ± 8 b 280 ± 9 c

His 213 ± 6 a 215 ± 3 a 195 ± 6 b 167 ± 3 c

Val 431 ± 8 a 442 ± 13 a 399 ± 6 b 352 ± 7 c

Ala 356 ± 4 a 350 ± 9 a 355 ± 11 a 349 ± 6 a

Ile 416 ± 11 a 409 ± 7 a 414 ± 3 a 402 ± 8 a

Leu 623 ± 12 a 627 ± 7 a 614 ± 10 a 606 ± 19 a

Pro 366 ± 6 a 357 ± 11 a 358 ± 8 a 347 ± 10 a

Total 7621 ± 90 a 7566 ± 89 a 6946 ± 98 b 6385 ± 121 c

Note: Different lower-case letters in the same row represent significantly different mean values (p < 0.05).
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ζ−Potential absolute values of the protein particles decreased as the concentration of
resveratrol increased, which was most pronounced at the protein concentration of 0.01%
(Figure 3). The particles of SC, WPI and SPI became more homogeneous upon loading of
resveratrol (Figure 2). These results are consistent with the formation of uniform particles of
WPI with naringenin, a polyhydroxy flavonoid [34]. Meanwhile, the size distribution of all
protein-resveratrol particles increased as the polyphenol concentration increased (Figure 2),
which is consistent with the effect of hesperetin or hesperidin concentration on their
individual particles with β-conglycinin, one of the major fractions of soy proteins, possibly
due to polyphenols acting as bridging agents for protein molecules [35]. SC-resveratrol,
WPI-resveratrol and SPI-resveratrol particles had a size distribution around 200–300 nm,
150–250 nm and 100–200 nm, respectively. At 25 µM resveratrol, the size distribution of
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SC-resveratrol particles was close to the largest size distribution of SC particles (Figure 2A),
while WPI-resveratrol and SPI-resveratrol particles had a size distribution close to the
smallest ones of pure protein (Figure 2B,C). These results suggest that the addition of
resveratrol favors the aggregation of SC but inhibits the formation of large WPI and
SPI aggregates.

3.2. Resveratrol Loading
3.2.1. Microenvironment of Resveratrol

Pure resveratrol showed a crystalline structure, with sharp peaks at 6.58, 13.26, 16.39,
19.27, 22.40, 23.66, 25.28, 28.36 on a 2θ scale (Figure S2). Its characteristic peaks with less
intensity were still observed in its physical mixtures with the proteins but disappeared in its
protein particles (Figure S2), indicating that the polyphenol was amorphous when loaded
in the protein particles [36]. From Figure 4, resveratrol in the absence of protein emits a
relatively weak fluorescence, owing to its proton transfer tautomer fluorescence band [37].
The λmax of resveratrol around 400 nm shifted to 392, 388 and 383 nm in the presence of
0.1% WPI, SC and SPI, respectively. At the same time, the fluorescence intensity at λmax
was 1.75, 3.06 and 4.09 times that of resveratrol alone. Similar changes were previously
observed in the presence of β-lactoglobulin (β-LG) and bovine serum albumin (BSA), with
respective fluorescence intensity at λmax of 393 and 379 nm being 1.21 and 4.92 times that
of resveratrol alone [38]. These results indicate that the microenvironment of resveratrol
was more hydrophobic in protein particles, and the order of hydrophobicity was SPI > SC
> WPI. The hydrophobicity of the resveratrol microenvironment (Figure 4) is consistent
with the aggregation degree of pure protein at 1% but not that at 0.1% (SPI > WPI > SC,
Figure 1). This is possibly attributed to the different impact of resveratrol loading on the
aggregation of the three proteins. As discussed above, the added resveratrol as bridging
agent favors the aggregation of SC (Figure 2).
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3.2.2. Loading Efficiency of Resveratrol

When the concentration of proteins was 0.01%, loading efficiencies of resveratrol were
between 2% and 8% (Figure 5). The polyphenol loading efficiencies at 25 and 50 µM were
greater in WPI and SPI particles than in SC particles. This may be due to WPI and SPI
existing in the aggregate form at 0.01%, while SC exists in the molecular state (Figure 1). The
loading efficiencies of resveratrol at 100 µM were 4% in all the protein particles (Figure 5),
therefore resveratrol mainly exists in the free state in the presence of 0.01% proteins. As
the concentration of WPI increased from 0.1% to 1%, the loading efficiencies of resveratrol
increased by around 10%, of which the highest was 28%. The highest loading efficiencies of
resveratrol in the presence of 0.1% SC and SPI were 31% and 27%, which further increased
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at 1% SC and SPI to around 80% and 76%, respectively. In the case of 0.1% and 1% proteins,
the loading efficiencies of resveratrol ranked in order SC > SPI > WPI. As mentioned
above, resveratrol is conducive to the micellization of SC (Figures 2 and 4). The complex of
resveratrol and protein masked the charged group, and the absolute value of the ζ-potential
of the system decreased in the order of WPI > SC > SPI (Figure 3). It is speculated that the
loading of resveratrol in SC particles not only depends on the transfer of the hydrophobic
environment, but also refers to the bridging of resveratrol to submicelles. These results
supported the hypothesis that the resveratrol was mainly located in the hydrophobic core
of SPI, while both entrapped in the hydrophobic core and partially bound to the surface of
the SC micelles. For WPI, more resveratrol complexed with the protein. Meanwhile, the
loading efficiencies of the remaining resveratrol in protein particles were similar before and
after storage at 45 ◦C for 30 days (Figure 5 and Figure S3).
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3.2.3. Antioxidant Activity

It has been reported that casein contains more powerful antioxidant peptides than
whey protein [39]. The presence of small peptides and C-terminal aromatic tyrosine
residues contribute to the radical scavenging ability of SPI [40]. From Figure 6, the ABTS·+
scavenging capacity of proteins ranked in order SC > SPI > WPI under the same concen-
tration. Resveratrol contains three phenolic hydroxyl groups and possesses antioxidant
activity [41]. When the concentrations of resveratrol were 25, 50 and 100 µM, its ABTS·+
scavenging capacities were 11%, 20% and 44% (Figure 6), respectively. The scavenging
capacities of WPI-resveratrol particles were similar to the sum of the individual capacity at
the polyphenol concentrations of 25 and 50 µM (Figure 6A,B), suggesting an additive effect.
At 100 µM, the scavenging capacities of WPI-resveratrol particles were less than the sum
of the individual capacities (Figure 6C), suggesting partial screening of total antioxidant
activity. As for SPI, resveratrol at 25 and 50 µM showed an additive effect with 0.01%
and 0.1% protein but a masking effect with 1% protein (Figure 6A,B), and the masking
effect was also observed at 100 µM resveratrol with all the investigated concentrations
(Figure 6C). A masking effect was also observed in the case of SC, except for 25 and 50 µM
resveratrol and 0.01% protein, which showed an additive effect (Figure 6). The masking
effect is due to the protein–polyphenol interaction and the encapsulation of polyphenol in
particles masking the phenolic hydroxyl groups [42,43]. It is worth noting that at 1% SPI
and SC systems, the masked antioxidant activity was almost equal to that of resveratrol
alone. This further confirms that resveratrol is mainly embedded in the hydrophobic core
of SPI aggregations and SC micelles.
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3.3. Protein Oxidation
3.3.1. Sulfhydryl Groups

It is well known that the ability of susceptible proteins for scavenging and generating
reactive oxygen radical changes with the environment, which is related to the oxidation of
the protein [44]. Protein oxidation is commonly accompanied by a decrease in the number
of sulfhydryl (SH) groups [45]. The surface and total sulfhydryl contents of WPI were
12 and 17 nmol/mg, respectively, and for SPI, they were 3 nmol/mg and 5 nmol/mg,
respectively. The lower sulfhydryl content of SPI in the initial state compared to WPI
reflects that the initial oxidation state of SPI is greater than WPI, which may be related to
the protein extraction process. As reported in the process of preparing SPI from defatted
soy flour, lipoxygenase (LOX) was inevitably present in the system. The weakly alkaline
extraction conditions caused LOX in the soybean flour to catalyze the oxidation of residual
lipids [27]. The free and total sulfhydryl content of WPI and SPI decreased after storage
(Figure 7), indicating that the accessible cysteine residues located at both surface and
buried in the protein were attacked by free radicals [46]. The decrease in free and total
sulfhydryl contents of SPI was greater in the presence than in the absence of resveratrol,
while their contents of WPI were not affected by resveratrol (Figure 7). The interference of
environmental factors on WPI and SPI sulfhydryl groups has been studied. After ultrasonic
treatment, the disulfide bonds of SPI were destroyed, which significantly increased the
free sulfhydryl content [47]. However, sonication did not change the thiol content of the
whey protein concentrate. As reported, the oxidative susceptibility of free SH groups may
depend on the constituent of mixture proteins. The intramolecular positions of the free
thiol groups in β-lactoglobulin and α-lactalbumin may make WPI less sensitive [48].

3.3.2. Carbonyl Groups

Carbonyl groups (aldehydes and ketones) are produced on the side chains of the
protein when they are oxidized [49]. The carbonyl contents of WPI, SC and SPI were 1.32,
1.63 and 2.26 nmol/mg (Figure 8), respectively. Due to the preparation process of SC, it
contains about 6% of small ions in addition to the pure casein, mainly calcium, phosphate,
magnesium and citric acid [15], leading to the worst oxidation stability. The extraction
of SPI from soy flour may accelerate its carbonylation [50], since soy protein is extremely
vulnerable to the attack of peroxyl radicals, and its degree of oxidation is related to the
residual lipid content and LOX activity during the preparation process [27,51]. The carbonyl
content of WPI increased during storage, reaching 2.7 nmol/mg after 30 days, which was
invariable with the addition of resveratrol (Figure 8). The carbonyl content of SPI and SC
increased as the concentration of resveratrol increased after 10 days. When the resveratrol
concentrations were 0, 25, 50 and 100 µM, the carbonyl content of SPI increased from 3.95 to
5.11 nmol/mg, while the carbonyl content of SC increased from 2.77 to 3.29 nmol/mg after
30 days. The increase in carbonyl content may be related to the formation of peroxides in
the system, which is generated by oxygen molecules attacking free radicals. The formation
of peroxides on the α-carbon or other carbons of protein amino acid residues will result
in an increase in the carbonyl content [27]. From Figure 8, it indicated that the peroxide
content in the three protein solutions was in the order of SPI > SC > WPI, and the addition of
resveratrol to SC and SPI solutions produced more peroxides. Together with the sulfhydryl
contents in Figure 7, these results indicated that the SPI was more labile to oxidation than
SC in the presence of resveratrol.
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Figure 7. Surface (A) and total (B) sulfhydryl content of WPI-resveratrol and SPI-resveratrol complex
particles before (no pattern) and after (sparse pattern) storage at 45 ◦C for 30 days. The concentration
of proteins was 1%.

3.3.3. Amino Acid Composition

The oxidative attack of proteins modifies the side-chain groups of amino acid residues [52].
Tables 1–3 show the amino acid composition of WPI, SC and SPI in the absence and pres-
ence of resveratrol before and after storage for 30 days. The addition of resveratrol had no
significant effect on the amino acid composition of the proteins before storage. The content
of Cys ranked in order WPI > SPI > SC, and the surface and total sulfhydryl contents of SC
were too low to be detected by the method of sulfhydryl analysis with DTNB (Figure 7). In
the case of WPI alone, the content of Trp, Tyr, Thr, Lys, Met and Phe reduced after storage
(Table 1), consistent with the indirect oxidation of WPI caused by the photodecomposition
of folic acid [6]. Resveratrol had no effect on the change in the amino acid contents of WPI
(Table 1). As for SC alone, the content of Trp, Tyr, Thr, Lys, Met, Asp and Arg reduced after
storage and was more pronounced in the presence of resveratrol (Table 2). In addition, the
content of Glu, Ser, Gly also reduced in the presence of resveratrol. The losses of Trp were
about 11% for WPI and 79% and 87% for SC in the absence and presence of resveratrol, re-
spectively. These results are consistent with a previous study that the tryptophan oxidation
product, kynurenine, was higher in casein than β-LG upon photo-oxidation induced by
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riboflavin [4]. In the case of SPI alone, Asp, Ser, His, Gly, Thr, Tyr, Cys, Val, Met, Lys, Trp
reduced after storage and was more pronounced in the presence of resveratrol (Table 3). In
addition, the content of Glu also reduced in the presence of resveratrol. The reduction in the
kinds and contents of total amino acids ranked in the order of SPI > SC > WPI (Tables 1–3).
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3.4. Storage Stability of Resveratrol

By visual observation, all protein-resveratrol solutions were transparent and colorless
except that SPI-resveratrol solutions were turbid at 1% protein (Table S1 and Figure S1). No
significant change was observed for WPI-resveratrol solutions at 45 ◦C after 30 days. How-
ever, SPI-resveratrol and SC-resveratrol solutions changed from colorless to light yellow
after storage. It has been reported that the wine with resveratrol changed from colorless
to light yellow, due to its sensitivity to atmospheric oxidation [53]. After storage at 45 ◦C
for 30 days, the total color difference (∆E) and chroma change (∆C*) of resveratrol alone
increased, respectively, from 1.24 to 3.06 and from 1.17 to 2.94, as its concentration increased
from 25 to 100 µM (Table 4). The ∆E and ∆C* of WPI, SC, SPI, and WPI-resveratrol solu-
tions were less than those of resveratrol alone. However, the ∆E and ∆C* of SC-resveratrol
and SPI-resveratrol solutions increased as the polyphenol concentration increased and
were greater than the sum of correspondingly individual values at each concentration. A
previous study also reported that WPI as emulsifier showed a better effect on inhibiting
color changes of lutein-loaded emulsions relative to SC [54].

Table 4. Total color difference (∆E) and chroma change (∆C*) of WPI-resveratrol, SC-resveratrol and
SPI-resveratrol complex solutions before and after storage at 45 ◦C for 30 days. The concentration of
proteins was 1%.

Protein
Concentration of Resveratrol (µM)

0 25 50 100

∆E

1.24 ± 0.19 Aa 1.85 ± 0.45 Aa 3.06 ± 0.27 Bb

WPI 0.74 ± 0.65 Aa 0.59 ± 0.31 Aa 0.58 ± 0.47 Aa 0.87 ± 0.92 Aa

SPI 1.16 ± 0.70 Aa 3.79 ± 0.83 Bb 6.95 ± 0.96 Cb 9.16 ± 1.54 Dc

SC 0.30 ± 0.20 Aa 2.82 ± 1.19 Bb 6.04 ± 1.49 Cb 8.59 ± 0.71 Dc

∆C*

1.17 ± 0.15 Aa 1.73 ± 0.35 Ba 2.94 ± 0.23 Cb

WPI 0.29 ± 0.22 Aa 0.56 ± 0.31 Aa 0.42 ± 0.25 Aa 0.30 ± 0.12 Aa

SPI 0.58 ± 0.47 Aa 3.30 ± 0.46 Bb 5.94 ± 0.43 Cb 8.31 ± 1.39 Dd

SC 0.14 ± 0.09 Aa 2.63 ± 1.02 Bb 4.44 ± 1.23 Cb 6.19 ± 0.50 Dc

Note: Different lower-case letters in the same column represent significantly different mean values, different
upper-case letters in the same row represent significant different mean values (p < 0.05).

Resveratrol alone degraded during storage at 45 ◦C and its content remained 68–74%
after 30 days (Figure 9). The retention of resveratrol was improved by WPI, and the protec-
tive effect decreased slightly as the protein concentration increased. After 30 days of storage,
the retention of resveratrol at 25 µM was around 88, 84, and 74% at 0.01, 0.1, and 1% WPI
(Figure 9A), respectively, and the polyphenol retention was proportional to its initial con-
centration (Figure 9). In contrast, the loss of resveratrol was accelerated by SPI, the effect
of which was more pronounced when the protein concentrations were 0.1% and 1% than
0.01% (Figure 9). SC also accelerated the degradation of resveratrol, the effect of which was
less than that of SPI and decreased as the polyphenol concentration increased. The retention
of resveratrol was consistent with the color change of its corresponding samples (Table 4).
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particles at various protein concentrations during storage at 45 ◦C. The concentrations of resveratrol
were 25 (A), 50 (B) and 100 (C) µM.

4. Discussion

Resveratrol self-aggregates at a concentration higher than 40 µM, due to the hydropho-
bic stacking of aromatic phenol rings [55]. The aggregation of resveratrol reduces its contact
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with the external environment and affects its antioxidant activity with the highest value
observed at a concentration of 30 µM [56]. Therefore, the retention of resveratrol increased
from 68% to 74% as its concentration increased from 25 to 100 µM (Figure 9). α-Tocopherol
(Log P ~ 8.84, https://go.drugbank.com/drugs/DB00163/ accessed on 8 July 2021), a
hydrophobic vitamin E, was reported both bound in the molecular level and encapsulated
as the aggregate in WPI particles, while naringenin (LogP ~ 2.84, https://go.drugbank.
com/drugs/DB03467/ accessed on 8 July 2021), a polyhydroxy flavonoid, was bound in the
molecular level [34]. Resveratrol (LogP ~ 3.4, https://go.drugbank.com/drugs/DB02709/
accessed on 8 July 2021) is more hydrophobic than naringenin but more hydrophilic than
α-tocopherol. When calculated, based on the loading efficiency of resveratrol in Figure 5,
the encapsulated amount of resveratrol in protein particles increased as the polyphenol
concentration increased (Figure S3). It is thus possible that the aggregated resveratrol in
protein particles increased as its concentration increased, which was supported by the trans-
fer from the additive to the masking effect of total antioxidant activity (Figure 6). Therefore,
the polyphenol retention increased with its concentration in protein particles (Figure 9).

For WPI, the solvent-accessible (bounded in the molecular level and in free state)
resveratrol can scavenge and control the free radicals in the system within a certain range.
Its oxidation was the least and not affected by resveratrol during storage for 30 days
(Figures 7 and 8 and Table 1). At the same time, the stability of resveratrol was improved
by WPI, with a retention of above 74% after 30 days (Figure 9). It is thus speculated
that there is no reciprocal oxidation between WPI and resveratrol during storage. As the
concentration of WPI increased, the loading efficiency of resveratrol increased (Figure 5),
but the polyphenol stability decreased (Figure 9). These results suggest that the loaded
microenvironment is not conducive to the polyphenol stability, compared to the free part
in the WPI solution. The protective effect of WPI on resveratrol stability might not be
attributed to the complex property of the protein.

For SPI, the encapsulated resveratrol located in the hydrophobic core could not exert
its antioxidant capacity. Thus its oxidation was the most at the beginning and accelerated
by resveratrol during storage after 10 days (Figures 7 and 8 and Table 3). At the same
time, the stability of resveratrol decreased upon loading in SPI particles (Figure 9). These
results suggest the occurrence of reciprocal oxidation between SPI and resveratrol. The
co-oxidation has been reported for whey protein and Antarctic krill oil in oil-in-water
emulsion [57]. The initial state of the SPI system contained more peroxides than SC and
WPI (Figures 7 and 8), free radicals and hydroperoxides generated during protein oxidation
may accelerate the degradation of resveratrol [58] (Figure 9). It has also been reported that
ascorbic acid acted as a co-oxidant by generating superoxide anions in the presence of air
and extracting hydrogen from the carrier [59]. Resveratrol is oxidized to generate H2O2 [60].
When the retention of resveratrol was between 59 and 73% after 10 days (Figure 9), the
polyphenol may act as a co-oxidant to accelerate the oxidation of SPI (Figure 8).

However, most of the resveratrol in the SC system was encapsulated in the hydropho-
bic core of the protein, but also partially bounded with submicelles in the molecular level,
which can play their antioxidant effect to a certain extent. The oxidation of SC was more
pronounced than that of WPI but less than that of SPI at the beginning and during storage
in the absence and presence of resveratrol (Figures 7 and 8 and Table 2). At the same
time, the impact of SC on resveratrol stability basically changed from a protective to a
harmful effect during storage (Figure 9). The antioxidant activity of SC was greater than
that of WPI and SPI (Figure 6), and the loading efficiencies of resveratrol in SC particles
were greater than those in SPI and WPI particles at protein concentrations of 0.1% and 1%
(Figure 5). Therefore, the stability of resveratrol was initially improved by SC (Figure 9). A
stable protein carrier can maintain the stability of polyphenols through scavenging free
radicals and isolating the interference of external unfavorable factors [61]. Then, with the
increasing oxidation of SC, the ability to scavenge free radicals was not enough to resist
the auto-oxidation of SC. The system was out of balance and the protein changed from
antioxidant to pro-oxidant to cause the co-oxidation with resveratrol (Figures 8 and 9).

https://go.drugbank.com/drugs/DB00163/
https://go.drugbank.com/drugs/DB03467/
https://go.drugbank.com/drugs/DB03467/
https://go.drugbank.com/drugs/DB02709/
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According to the molecular mechanism of the protein–polyphenol interaction, the
di-phenol part of polyphenol is easily oxidized by molecular oxygen and side-chain amino
groups under certain conditions to form quinine, which can form a dimer in a side reac-
tion and interact with the amino group of polypeptide or the irreversible reaction of the
sulfhydryl side chain leads to the formation of protein cross-links. The closer the distance
between the formed oxidation product and the α-carbon or other carbons of protein amino
acid residues, the more easily the reaction occurs (Figure 4). Meanwhile, quinine can
undergo condensation reactions to form high molecular weight, highly reactive brown
tannins [17], which is verified in Table 4 and Figure S1. The formation of a covalent EGCG-
protein complex involved the reaction of dimer quinone with protein nucleophilic side
chains, such as lysine and cysteine residues, which is consistent with the results of amino
acid composition in SC/SPI-resveratrol complex particles after storage (Tables 1–3). It has
been assumed that the structure of SC and SPI gradually became flexible during storage and
the exposed active groups benefited from the covalent interactions of protein-resveratrol
complexations [62].

5. Conclusions

WPI improved the storage stability of resveratrol, but SPI accelerated the loss of resver-
atrol, while the impact of SC on resveratrol stability basically changed from a protective to
a harmful effect. The stability of polyphenols increased as the polyphenol concentration
increased but decreased as the protein concentration increased. The loading efficiency of
resveratrol in protein particles and the initial antioxidant activity of proteins were not the
dominant factors to affect the storage stability of resveratrol. The effect of proteins on the sta-
bility of resveratrol was mainly dependent on their oxidation sensitivity. The co-oxidation
of resveratrol with SPI and SC occurred during storage. The oxidation degree of WPI was
the least and not affected by resveratrol. The results obtained suggest that WPI might be
a better material to design an effective carrier for the long-term protection of resveratrol
than SPI and SC. To our knowledge, it is the first time that the important role of protein
oxidability on the stability of polyphenols during storage has been reported and provides
useful guidelines for the long-term protection of polyphenols by protein-based carriers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11040647/s1, Figure S1: Appearance of WPI-resveratrol,
SC-resveratrol and SPI-resveratrol complex nanoparticles before (A–C, respectively) and after (a–c,
respectively) storage at 45 ◦C for 30 days. The concentration of proteins from left to right was 0.01%,
0.1% and 1%. The concentrations of resveratrol from left to right was 25, 50 and 100 µM; Figure S2:
XRD patterns of resveratrol (black), proteins (blue), their physical mixtures (red) and resveratrol-
loaded protein particles (green). The concentration of protein was 1%; Figure S3: Loading efficiency
of resveratrol in its complex particles with WPI (black), SC (red) and SPI (blue) at 0.01%, 0.1% and
1% after storage at 45 ◦C; Table S1: Turbidity of WPI-resveratrol, SC-resveratrol and SPI-resveratrol
complex nanoparticles at various concentrations of proteins and resveratrol.
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Abbreviations

WPI whey protein isolate
SC sodium caseinate
SPI soy protein isolate
BSA bovine serum albumin
RES resveratrol
GRAS generally recognized as safe
ABTS 2,2′-azino-bis-3- ethylbenzthiazoline-6-sulphonic acid
CMC critical micelle concentration
β-LG β-lactoglobulin
LOX lipoxygenase
SH sulfhydryl
∆E total color difference
∆C* chroma change
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