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Abstract: Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease (COPD),
and continuous CS exposure causes lung inflammation and deterioration. To investigate the pro-
tective effects of Artemisia gmelinii against lung inflammation in this study, cigarette smoke extract
(CSE)/lipopolysaccharide (LPS)-treated alveolar macrophages (AMs) and mice stimulated with
CSE/porcine pancreas elastase (PPE) were used. Artemisia gmelinii ethanol extract (AGE) was effective
in decreasing the levels of cytokines, chemokine, inducible nitric oxide synthase, and cyclooxygenase-
2 by inhibiting mitogen-activated protein (MAP) kinases/nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) signaling pathway in AMs. Additionally, oral administration of AGE
suppressed inflammatory cells’ infiltration and secretion of inflammatory cytokines, chemokines,
matrix metallopeptidase 9, and neutrophil extracellular traps in bronchoalveolar lavage fluid from the
COPD model. Moreover, the obstruction of small airways, the destruction of the lung parenchyma,
and expression of IL-6, TNF-α, IL-1β, and MIP-2 were suppressed by inhibiting NF-κB activation
in the lung tissues of the AGE group. These effects are associated with scopolin, chlorogenic acid,
hyperoside, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic
acid, which are the main components of AGE. These data demonstrate the mitigation effect of AGE
on lung inflammation via inhibition of MAPK and NF-κB pathways, suggesting that AGE may be
instrumental in improving respiratory and lung health.

Keywords: cigarette smoke; chronic obstructive pulmonary diseases; lung inflammation; alveolar
macrophages; NF-κB pathway

1. Introduction

In recent years, the number of people suffering from respiratory diseases has been
increasing gradually because of increasing air pollution, fine dust, and cigarette smoke
(CS) [1–3]. Among respiratory diseases, chronic obstructive pulmonary disease (COPD) is
the third leading cause of death worldwide [4]. The Burden of Obstructive Lung Disease
(BOLD) report predicted that approximately 4.5 million people will die due to COPD by
2030 [4]. COPD is a group of lung diseases, including chronic bronchitis and emphysema,
which is characterized by irreversible airflow obstruction in small airways, mucus hyper-
secretion, alveolar wall destruction, and proliferation of airway smooth muscle cells [5].
Patients with COPD have symptoms such as chronic cough, wheezing, phlegm, chest
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tightness, and shortness of breath [6]. Smoking is the major causative factor in the devel-
opment of COPD, and >80% of patients with COPD are smokers. CS contains a variety of
chemical substances, such as high concentrations of oxidant molecules and unstable free
radicals, which induce the formation of reactive oxygen species (ROS), such as hydrogen
peroxide, hydroxyl radicals, and superoxide, [7]. Oxidative stress induced by the excessive
production of ROS refers to an imbalance between free radicals and antioxidants. This
induces lung damage and results in lung diseases such as COPD [8]. CS-induced oxidative
stress can cause the secretion of inflammatory mediators, such as chemokine ligand-1
(CXCL-1), CXCL-8, and tumor necrosis factor-α (TNF-α) from alveolar epithelial cells as the
first responders to CS [9]. These chemokines bind to CXC chemokine receptor-2 to recruit
neutrophils to the airway. Neutrophils recruited to the lung secrete proteolytic enzyme,
ROS, matrix metalloproteinase-9 (MMP-9), and MMP-12, leading to mucus hypersecretion
and emphysema [10,11]. Furthermore, CS induces the activation of mitogen-activated
protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell
(NF-κB) signaling pathways in macrophages, resulting in the secretion of pro-inflammatory
cytokines and various inflammatory mediators, leading to lung inflammation and alveolar
wall destruction [12]. Recent studies have shown that CS is associated with the infiltration
of inflammatory cells such as dendritic cells, macrophages and neutrophils [13,14]. Concor-
dant with these reports, a recent study has shown that the infiltration of macrophages and
increased neutrophils in the bronchoalveolar lavage fluid (BALF) and sputum of COPD
patients with a history of smoking [15]. Therefore, suppression of the immoderate im-
mune response by CS-stimulated macrophages and neutrophils may be targeted in COPD
treatment. Among the many treatment methods, most only focus on the improvement
of symptoms and prevention of complications. Additionally, some medications pose a
risk of side effects [16]. To overcome this problem, many scientists have been interested
in the development of natural products with fewer side effects [17,18]. In this study, we
investigated the preventive potential of Artemisia gmelinii (AG), which has been widely
used for medicinal purposes in Korea.

Artemisia gmelinii Weber ex Stechm (AG) belongs to the genus Artemisia. AG is widely
distributed in Korea, Japan, Sakhalin, Siberia, and China. In Korea, the stem and leaf of AG
have been used for medicinal purposes since the Goryeo dynasty, and it has been produced
as a drink, yeot, and pill [19]. In a mast cell-mediated model of allergy, A. iwayomogii
decreased the release of histamine and the production of inflammatory cytokines, such as
those reflected by TNFα and IL6 expression, and inhibited the activation of p38 and NF-κB
signaling pathways [20]. However, the protective or therapeutic effects of AG against lung
inflammation have not yet been demonstrated in COPD models. Therefore, we investi-
gated the attenuating effects of Artemisia gmelinii ethanol extract (AGE) on lung inflamma-
tion by suppressing NF-kB/MAPK activation in a CS extract (CSE)/lipopolysaccharide
(LPS)-stimulated alveolar macrophage cell line (MH-S) and CSE/porcine pancreatic elas-
tase (PPE)-induced mouse model of COPD.

2. Materials and Methods
2.1. Materials

RPMI 1640, fetal bovine serum (FBS), penicillin–streptomycin, and Dulbecco’s phosphate-
buffered saline (DPBS) were purchased from Welgene (Gyeongsan-si, Korea), and LPS,
4′,6-diamidine-2′-phenylindole dihydrochloride (DAPI), dexamethasone, andβ-mercaptoethanol
(2-ME) were purchased from Sigma-Aldrich (Saint Louis, MO, USA). WST-1 solution was ob-
tained from Cellvia (Seoul, Korea). A nitric oxide (NO) assay kit and NE-PER™ Nuclear and
Cytoplasmic Extraction Reagent were obtained from Thermo Fisher Scientific (Waltham, MA,
USA). IL-6 and TNF-α enzyme-linked immunosorbent assay (ELISA) kits were purchased from
BD Biosciences (San Jose, CA, USA) and MIP-2 and IL-1β ELISA kits were purchased from R&D
Systems (Minneapolis, MN, USA). We purchased 10× cell lysis buffer, p-ERK, ERK, p-JNK, JNK,
p-p38, p38, IκBα, NF-κB p65, COX-2, iNOS, lamin B1, HO-1, NFR-2 and anti-mouse or rabbit IgG
antibodies, and anti-rabbit IgG (H + L), F(ab’)2 fragment from Cell Signaling Technology (Dan-
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vers, MA, USA). p-38 inhibitor SB203580 and ammonium pyrrolidine dithiocarbamate (PDTC)
were purchased from Sigma (St. Louis, MO, USA). β-actin antibodies were purchased from
Santa Cruz Biotechnology (Houston, TX, USA). For Western blotting, Mini-PROTEAN® TGX™
Precast Gels, 10× Tris/Glycine/SDS buffer, and a DC™ protein assay kit were obtained from
Bio-Rad (Hercules, CA, USA), and the lung tissue dissociation kit was obtained from Miltenyi
Biotec (Cologne, Germany). For quantitative reverse-transcription polymerase chain reaction
(qRT-PCR), Qiazol and QIAzol® Lysis Reagent were purchased from Qiagen (Valencia, CA, USA).
IL6, TNFA, MIP2, and IL1B primers were purchased from Chancebio (Jeonju-si, Korea). PPE was
obtained from Merck-Millipore (Burlington, MA, USA) and was used to induce lung emphysema
in mice. All the other chemicals used were of the highest commercially available grade.

2.2. Preparation of Artemisia Gmelinii Ethanol Extract (AGE)

AGE used in this study was provided by Natural F&P Co. Ltd. (Cheongju-si, Korea).
Briefly, AG herbs were collected from Jecheon-si (Chungcheong-do, Korea) and Youngcheon
(Gangwon, Korea). Raw AG was dried, powdered, and then extracted with 15-times
volumes of 50% ethanol by heating (±50 ◦C) for 6 h. AGE was subsequently filtered using
a cartridge filter. Using a Rotavapor R-210 (BÜCHI Labortechnik AG, Flawil, Switzerland),
the filtered extract was concentrated under vacuum at 50 ◦C and then dried. AGE was
dissolved in dimethyl sulfoxide prior to use in the experiments.

2.3. Preparation of Cigarette Smoke Extract (CSE)

Research-grade cigarettes 3R4F were obtained from the University of Kentucky
(Lexington, KT, USA) to prepare CSE. For CSE preparation, filter-removed cigarettes were
burned, and the smoke passed through 10 mL of PBS using a vacuum pump for 1 min.
After filtering through a Millex-LCR hydrophilic PTFE 0.45-µm filter (Merck-Millipore,
Burlington, MA, USA), the absorbance of the filtered CSE at 320 nm was measured using
an Epoch microplate reader (BioTek, Winooski, VT, USA) and adjusted to an optical density
value in the range of 0.9–1.0 for standardization of the CSE. CSE was stored at −80 ◦C until
use in the experiment.

2.4. Cell Culture

MH-S mouse alveolar macrophages (AMs) were obtained from ATCC (Manassas, VA,
USA). MH-S macrophages were cultured in RPMI-1640 medium containing 10% (v/v) FBS,
1% (v/v) penicillin streptomycin and 0.05 M 2-ME. Cells were incubated at 37 ◦C in a
humidified atmosphere containing 5% CO2 and 95% air for 24 h.

2.5. Animal Study

Male BALB/c mice (5-weeks-old, 18–20 g) were purchased from Orient Bio (Gyeonggi,
Korea). After a 1-week acclimation period, mice were randomly divided into the following
six groups: the control group (Naïve, n = 10), the CSE/PPE-treated group (COPD, n = 15),
CSE/PPE and 50 mg/kg AGE-treated group (AGE 50, n = 10), CSE/PPE and 100 mg/kg
AGE-treated group (AGE 100, n = 10), CSE/PPE and 200 mg/kg AGE-treated group
(AGE 200, n = 10), and CSE/PPE and 2.5 mg/kg dexamethasone-treated group (DEX,
n = 10), as the positive control. To induce COPD, mice were intranasally treated with 20 µL
of CSE (100%) and PPE (1.8 U/Head) from days 7 to 35, three times a week, and once every
2 weeks, respectively. The COPD group and 50, 100, and 200 AGE groups were orally
administered 200 µL/mouse of PBS and AGE diluted in PBS from days 0 to 35. In the DEX
group, 200 µL/mouse of dexamethasone diluted in PBS was orally administered from days
7 to 35, three times a week, to consider side effects such as body weight loss, insomnia, and
depression [21,22], before treatment with CSE and PPE. The mice were sacrificed on day 36.
Blood, lung tissue, and BALF were collected for further analyses. All animal procedures
were carried out in accordance with the guidelines for animal use and care of the Korea
Food Research Institute (approval number:KFRI-M-20028) Animals were maintained in
the same room under conventional conditions, with a regular 12 h light/dark cycle, and
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temperature and relative humidity maintained at 23 ± 2 ◦C and 50 ± 5%, respectively.
Mice were allowed free access to food and water.

2.6. Cell Viability

A WST-1 assay was performed to evaluate the effects of AGE on cell cytotoxicity. MH-S
macrophages (5× 105 cells/mL) were seeded into 48-well plates and were then treated with
different doses of AGE (25, 50, and 100 µg/mL), with or without CSE (1%)/LPS (10 ng/mL)
at 37 ◦C for 24 h. The next day, the supernatants were collected and used to measure other
factors. WST-1 solution was mixed with the medium at a ratio (1:10). Then, 300 µL of the
mixed solution was added to each well from which the supernatants had been removed,
followed by incubation at 37 ◦C for 30 min. Absorbance at 450 nm was measured using an
Epoch microplate reader (BioTek, Winooski, VT, USA).

2.7. Measurement of Nitric Oxide (NO) Production in MH-S Macrophages

To measure the level of NO production, MH-S macrophages (5 × 105 cells/mL)
in 48-well plates were co-treated with CSE (1%)/LPS (10 ng/mL) and AG (25, 50 and
100 µg/mL) at 37 ◦C for 24 h. The next day, the supernatants were collected and used
to measure the level of NO production by using Nitric Oxide assay kit. Briefly, 50 µL of
standards and supernatants was added into each well. Then, 50 µL of Griess Reagent
I and II were also added and the plate was incubated at room temperature for 10 min.
The absorbance of each well was measured at 540 nm by Epoch microplate reader (BioTek,
Winooski, VT, USA).

2.8. Measurement of Cytokines and Chemokines Production in MH-S Macrophages and BALF

To measure the level of IL-6 and MIP-2, MH-S macrophages (5 × 105 cells/mL) in
48-well plates were co-treated with CSE/LPS and AGE as above. The following day, the
supernatants were collected and used to measure IL-6 and MIP-2 levels using an ELISA kit.
Briefly, each well was coated overnight with the capture antibody. The next day, each
well was washed with washing buffer and blocked by adding blocking solution for 1 h.
Standards and supernatants were diluted with the reagent diluent and were added to the
appropriate wells for 2 h. Detection antibody and horseradish peroxidase (HRP) mixed
with reagent diluent were added to the appropriate wells for 1 h. The substrate solution
was added to the appropriate wells for 30 min. To end the reaction, stopping solution
was added to each well. The absorbance of each well was measured at 450 nm using an
Epoch microplate reader (BioTek). IL-6, MIP-2, and MMP-9 levels in BALF were quantified
by ELISA.

Chemokines, such as eotaxin, keratinocyte chemoattractant, MCP-1, MDC, RANTES,
and TARC, in the BALF were assessed using a Q-plex assay kit (Quansys Biosciences,
Logan, UT, USA). Briefly, BALF samples and standard solutions for the calibration curve
diluted 1:2 with sample diluent were added to a Q-Plex™ Array 96-well plate and were
shaken for 1 h at room temperature. After washing, the detection mixture was added to the
plate for 1 h at room temperature, followed by shaking. Streptavidin-HRP was added to
the plate for 15 min at room temperature, followed by shaking. Substrate solutions were
then added to produce a response. In order to measure the intensity of spot response, the
image of the plate was captured using the Q-View™ Imager Pro (Quansys Biosciences).

2.9. Western Blot Analysis of iNOS&COX-2 and MAPK/NF-kB in MH-S Macrophages

MH-S macrophages were seeded in 6-well cell culture plates and incubated at 37 ◦C
for 24 h. The following day, MH-S macrophages were treated with AGE (25, 50, and
100 µg/mL) for 2 h prior to a stimulation period with CSE (1%)/LPS (10 ng/mL). To extract
the protein, MH-S macrophages were collected in DPBS and lysed in an ice-cold cell lysis
buffer with protease inhibitor. The concentration of extracted proteins in each sample
was measured using the Bradford protein assay. In total, 40 micrograms of the protein
mixture from each sample was loaded into the wells of Mini-PROTEAN® TGX™ Precast
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Gels. After electrophoresis, the proteins in the gels were transferred onto Western blotting
filter membranes for 50 min at 25 V, using a Pierce G2 Fast Blotter (Thermo Fisher Scientific).
After the transfer, the membranes were blocked with 5% skimmed milk in PBS-Tween
20 (PBST) for 30 min at room temperature. Then, the membranes were incubated with
diluted p-ERK, ERK, p-JNK, JNK, p-p38, p38, IκBα, NF-κB p65, COX-2, iNOS, lamin B1,
and β-actin antibodies overnight at 4 ◦C. The next day, the membranes were washed three
times with PBST for 5 min. After washing, the membranes were incubated with anti-mouse
or rabbit IgG antibodies conjugated with HRP for 1 h at room temperature and washed
three times with PBST for 5 min. The protein bands were quantified using a Fusion Solo S
(Vilber, Lamirault, France).

2.10. Immunofluorescence Assay of Nuclear Translocation of NF-κB in MH-S Macrophages

MH-S macrophages (2 × 105 cells/mL) were seeded onto 8-well chamber slides.
After 24 h, MH-S macrophages were treated with AGE (100 µg/mL) for 2 h prior to a
stimulation period with CSE (1%)/LPS (10 ng/mL). Macrophages were fixed with 4%
formaldehyde for 15 min and permeabilized with 0.2% Triton X-100 for 5 min at room
temperature. Macrophages were blocked with 1% bovine serum albumin and incubated
with diluted anti-NF-κB p65 antibody overnight at 4 ◦C. The next day, the macrophages
were washed three times and stained with anti-rabbit IgG (H + L) and F(ab’)2 fragment.
After 30 min, macrophages were washed with DPBS and distilled water. After drying the
wells, DAPI solution was added to the macrophages. Microscopy was performed at 408 nm
(46-diamidino-2-phenylindole) and 488 nm (fluorescein isothiocyanate) using an Eclipse
Ti confocal fluorescence microscope (Nikon, Tokyo, Japan). Fluorescence intensity was
measured using ImageJ software.

2.11. RNA Isolation and Real-Time Quantitative Polymerase Chain Reaction (RT-PCR) in MH-S
Macrophages and Lung Tissues

MH-S macrophages (5 × 105 cells/mL) were seeded in 12-well plates and incubated
at 37 ◦C for 24 h. After 24 h, MH-S macrophages were treated with AGE (25, 50, and
100 µg/mL) for 2 h prior to a stimulation period with CSE (1%)/LPS (10 ng/mL). Total
RNA was extracted from MH-S macrophages using the QIAzol® Lysis Reagent. On the
other hand, to extract mRNA from the lung tissues of mice, the isolated left lungs were
placed into a 2-mL tube, to which QIAzol® Lysis Reagent and beads were added. The tissue
was then homogenized using a TissueLyser II (Qiagen) at 30 Hz for 1 min. The extracted
RNA was quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific).
Extracted RNA was used to synthesize cDNA at 45 ◦C for 1 h, followed by 95 ◦C for
5 min, in a C1000™ Thermal Cycler (Bio-Rad). The solutions for qRT-PCR contained 5.5 µL
RNase free water, 2.5 µL of each primer, 2 µL of cDNA template and 12.5 µL of SYBR
Green PCR mix in a final reaction volume of 25 µL. The qRT-PCR cycling conditions were
95 ◦C for 10 min, and 50 cycles each consisting of 95 ◦C for 30 s, 60 ◦C for 25 s, and
72 ◦C for 25 s using a Rotor-Gene Q (Qiagen). The sequences of primers used in this
study are as follows: TNF-α forward, 5′-TCTTCTCATTCCTGCTTGTGG-3′ and reverse,
5′- GGTCTGGGGCATAGAACTGA-3′; IL-1β forward, 5′-ACCTGGGCTGTCCTGATGAGA
G-3′ and reverse, 5′-GTTGATGTGCTGCTGCGAGAT-3′; IL-6 forward, 5′-TGGGACTGATG
CTGGTGACAAC-3′ and reverse, 5′- AGCCTCCGACTTGTG AAGTGGT-3′; MIP-2 forward,
5′-CGGCAATGAAGCTTCTGTAT-3′ and reverse, 5′-CCTTGAAAC TCTTTGCCTCA-3′;
iNOS forward, 5′- CAGCGGAGTGACGGCAAACAT-3′ and reverse, 5′-GCAAGACCAG
AGGCAGCACATC-3′; COX-2 forward, 5′-CTGGTGCCTGGTCTGAT GATGTATG-3′ and
reverse, 5′-TCTCCTATGAGTATGATCTGCTGGTT-3′; β-actin used as housekeeping gene:
forward, 5′-GCTCAGTAACAGTCCGCCTAGA-3′ and reverse, 5′-TGTCCACCTTCCAGCA
GATGT-3′.
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2.12. Analysis of the Differential Cell Counts in BALF

To measure the total cell count in BALF, the lungs were lavaged with DPBS to collect
BALF. After injecting 1 mL PBS into the lungs through the mouse airway, approximately
700 µL of BALF was obtained. BALF (10 µL) was mixed with an equal volume of Accustain
T solution (NanoEntek, Seoul, Korea). Then, we loaded 12 µL of the mixed solution into the
Accuchip channel and counted the total number of cells using the ADAM-MC™ Automated
Cell Counter (NanoEntek). The BALF samples obtained were centrifuged (300× g, 5 min)
to separate supernatants and cell pellets. The cell pellets were resuspended in 700 µL of
PBS. After centrifugation (1000 rpm, 10 min, 4 ◦C) using a Centrifuge 5403 Cytospin device
(Eppendorf, Hamburg, Germany), 150 µL of resuspended solution was placed onto slides.
Then, the immune cells in the slides were stained following the protocol of the Diff-Quick
staining reagent (38721; SYSMEX, Kobe, Japan), and the number of macrophages and
neutrophils were counted using a microscope.

2.13. Protein Simple Capillary Immunoassay of Nuclear Translocation of NF-κB in Lung Tissues

To extract proteins from the lung tissues of mice, isolated right lungs were homoge-
nized using a lung tissue dissociation kit (130-095-927, Miltenyi Biotec, Bargisch Gladbach,
Germany). After homogenization, the samples were collected in DPBS and were lysed in
ice-cold cell lysis buffer with a protease inhibitor. To separate the cytoplasm and nucleus,
the NE-PER™ Nuclear and Cytoplasmic Extraction Reagent (Thermo Fisher Scientific) was
used. The concentration of extracted proteins in each sample was measured using the
Bradford protein assay. The expression of IκBα and β-actin in the cytoplasmic fraction and
NF-κB p65 and lamin B1 in the nuclear fraction were measured using the ProteinSimple
Wes capillary immunoassay system (Protein Simple, San Jose, CA, USA).

2.14. Histological Analysis of Lung Tissues

After the mice were euthanized, the left lung tissue was collected and excised. The sam-
ples were immediately fixed in 10% neutral buffered formalin solution for 3 days at room
temperature. Then, they were washed for 24 h using tap water and dehydrated in a series
of ethanol solutions. Ethanol was removed using xylene, and the tissue was embedded
in paraffin. The lung tissues were sectioned at 4.5 µm thickness. To estimate the general
structure of the lung tissues, hematoxylin and eosin (H&E) (Sigma-Aldrich, Saint Louis,
MO, USA) staining was performed and sections were observed under a microscope.

2.15. NETosis Assay

Neutrophil extracellular trap (NET) release was quantified using a SYTOX green dye
(Invitrogen, Carlsbad, CA, USA), which is a marker of necrotic cell death that binds nucleic
acids when the cell membrane is broken. To test for NETosis, BALF was seeded into a
96-well black plate. After the SYTOX green dye was diluted 1:500 with Hank’s balanced salt
solution, it was added to the wells and incubated for 10 min. Fluorescence intensities were
measured using SpectraMax i3 (Molecular Devices, San Jose, CA, USA) at 480/530 nm.

2.16. High-Performance Liquid Chromatography (HPLC) Analysis

The bioactive compounds in AGE were analyzed using an Agilent 1260 HPLC sys-
tem (Agilent Technologies, Santa Clara, CA, USA) equipped with an Agilent 1260 TCC
(G1316A) UV-vis detector (Agilent Technologies). The mobile phase consisted of ace-
tonitrile (solvent A) and water containing 0.1% formic acid (solvent B), and the HPLC
gradient profile was as follows: 14% A at 0–15 min, 14–26% A at 15–18 min, 26% A at
18–40 min, 26–90% at 40–50 min, and 90–14% A at 50–60 min. Five microliters of AGE
(30 mg/mL) was injected into a Sunfire C18 column (5 µm, 4.6 × 250 mm; Waters Corp.,
Milford, MA, USA) at a column temperature of 30 ◦C. The flow rate was 0.6 mL/min and
eluted compounds were detected at 360 nm. As reference compounds used in this study,
scopolin and scoparone were obtained from PhytoLab (Vestenvergsgreuth, Germany);
hyperoside was obtained from HWI Analytic GmbH (Ruelzheim, Germany); scoplectin,
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3,4-di-O-caffeolyquinic acid, 3,5-di-O-caffeolyquinic acid, and 4,5-dicaffeolyquinic acid
were obtained from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade solvents were
obtained from Thermo Fisher Scientific.

2.17. Statistical Analysis

All data were analyzed using GraphPad Prism software (version 9.0; La Jolla, CA, USA)
and were statistically examined using one-way analysis of variance followed by Bonferroni
post hoc test to compare multiple groups using SPSS software version 20 (IBM SPSS Inc.,
Armonk, NY, USA). The Bonferroni post hoc test was used to robustly control the family-
wise error rate increased with increasing the number of comparisons performed between 5
or 7 groups in this study. The values for in vitro data are expressed as the mean ± standard
deviation (SD), whereas in vivo data are expressed as the mean ± standard error (SE) of
independent experiments. A p-value < 0.05 was considered to be statistically significant.

3. Results
3.1. Effect of AGE on Cell Viability and iNOS and COX-2 Expression in MH-S Macrophages

Cell viability was tested to determine the non-cytotoxic concentration of AGE. As shown
in Figure 1a, cytotoxicity was not observed up to an AGE concentration of 100 µg/mL. Thus,
25, 50, and 100 µg/mL AGE were used in the experiment. After assessing cytotoxicity,
iNOS and COX-2 levels were measured to determine the anti-inflammatory ability of AGE.
As described in Figure 1b,c, NOS2 and COX2 mRNA levels were increased in CSE/LPS-
stimulated macrophages. In the AGE-treated macrophages, these levels decreased in a
dose-dependent manner. Similarly, the iNOS and COX-2 protein levels were enhanced in
CSE/LPS-stimulated macrophages. However, these levels were inhibited in AGE-treated
macrophages in a concentration-dependent manner (Figure 1d). These results suggest that
AGE inhibits the production of iNOS and COX-2.

Figure 1. Effect of the Artemisia gmelinii ethanol extract (AGE) on cell viability and the expression
levels of NOS2 and COX2 mRNA and protein in MH-S macrophages. For the cell viability assay
(a), the MH-S macrophages were co-treated with 12.5, 25, 50, 100, 200 µg/mL of AGE and CSE
(1%)/LPS (10 ng/mL) for 24 h. Cell viability was estimated by the WST assay. To determine the
expression of NOS2 COX2 mRNA (b,c) and protein (d), MH-S macrophages were co-treated with 25,
50, 100 µg/mL of AGE and CSE (1%)/LPS (10 ng/mL) for 1 h (NOS2 mRNA), 6 h (COX2 mRNA),
12 h (iNOS and COX2 protein), respectively. The expression of mRNA and protein was measured by
quantitative real-time polymerase chain reaction and Western blotting, respectively. Western blot
data were quantitatively analyzed using FUSION Solo S software. Data are presented as means ± SD
(n = 3). The significant differences among the groups were analyzed using one-way analysis of
variance by Bonferroni’s test (# p < 0.05 and ## p < 0.01 compared to the control group; * p < 0.05 and
** p < 0.01 compared to the CSE + LPS-stimulated group).
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3.2. Effect of AGE on Pro-Infammatory Cytokines and Chemokines and the NF-κB Pathway in
MH-S Machrophages

IL-6, TNF-α, and IL-1β are pro-inflammatory cytokines, while MIP-2 is a chemokine
related to the recruitment of neutrophils. As shown in Figure 2, the mRNA levels of IL-6,
TNF-α, IL-1β, and MIP-2 in the CSE/LPS-stimulated MH-S macrophages were significantly
higher than those in the control group. However, these levels decreased in a dose-dependent
manner in AGE-treated macrophages.

Figure 2. Effect of the Artemisia gmelinii ethanol extract (AGE) on the production of cytokines and
chemokines and the activation of MAPK/NF-κB pathways in MH-S macrophages. First, to measure
mRNA levels of IL6 (a), MIP2 (b), IL1β (c), and TNFα (d), MH-S macrophages were pre-treated with
25, 50, 100 µg/mL of AGE for 2 h and were then treated with CSE (1%)/LPS (10 ng/mL) for 3 h.
The mRNA levels were analyzed using quantitative real-time polymerase chain reaction. Secondly, to
determine the activation of MAPK (e)/NF-κB (f) pathways, MH-S macrophages were pre-treated
with 25, 50, 100 µg/mL of AGE for 2 h and were then treated with CSE (1%)/LPS (10 ng/mL) for 15
and 30 min, respectively. Protein expression of p-p38, p38, p-ERK, ERK, p-JNK, JNK, IκBα, NF-κB
p65, β-actin, and lamin B1 was assessed by Western blotting and data were analyzed using FUSION
Solo S software. To measure IL-6, the MH-S cells were pre-incubated with SB203580 (for 1 h) or PDTC
(30 min) followed by treatment of CSE (1%)/LPS (10 ng/mL) and AGE for 24 h. The protein levels
were analyzed for IL-6 (g,h) by ELISA. Data are presented as means ± SD (n = 3). The significant
differences among the groups were analyzed using one-way analysis of variance by Bonferroni’s test
(# p < 0.05 and ## p < 0.01 compared to the control group; * p < 0.05 and ** p < 0.01 compared to the
CSE + LPS-stimulated group).
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The secretion of pro-inflammatory mediators is related to the activation of the MAPK
cascade. As shown in Figure 2e, CSE/LPS markedly activated phosphorylation of p38, ERK,
and JNK in CSE/LPS-stimulated macrophages. However, treatment with AGE suppressed
the phosphorylation of p38 as the concentration of AGE increased. Quantitative data
showed that the p-p38/p38 ratio decreased in a dose-dependent manner.

NF-κB and MAPK are involved in the transcriptional induction of pro-inflammatory
mediators. In Figure 2f, IκBα in the cytosol was degraded in the CSE/LPS-stimulated MH-S
macrophages, whereas IκBα degradation was attenuated in the AGE-treated macrophages
in a dose-dependent manner. Quantitative data showed that the IκBα/β-actin ratio
was higher in the AGE-treated macrophages than in the CSE/LPS-stimulated MH-S
macrophages. In contrast, the expression of NF-κB p65 protein in the nucleus was in-
creased in CSE/LPS-stimulated MH-S macrophages while the NF-κB p65/lamin B1 ratio
was decreased in macrophages treated with AGE compared to CSE/LPS stimulated MH-S
macrophages. Consistent with the Western blotting (Figure 2f), the increased fluorescence
intensity of p65 observed in the nuclei of the CSE/LPS-stimulated MH-S macrophages was
significantly reduced by treatment with 100 µg/mL of AGE, as shown in Figure 3a,b.

Figure 3. Effect of Artemisia gmelinii ethanol extract (AGE) on the activation of NF-κB in MH-S
macrophages. (a) MH-S macrophages were pre-treated with 25, 50, 100 µg/mL of AGE for 2 h and
were then treated with CSE (1%)/LPS (10 ng/mL) for 30 min. NF-κB nuclear translocation was
estimated using an anti-p65 antibody and an Alexa Fluor 488-conjugated anti-rabbit IgG antibody.
The nuclei were stained with DAPI (scale bar: 50 µm). The images show representative plots of three
replicate experimens. (b) The relative p65 intensity in the nuclear region. Mean fluorescence intensity
of each individual cell nucleus was measured using ImageJ software. The significant differences
among the groups were analyzed using one-way analysis of variance by Bonferroni’s test ## p < 0.01
compared to the control group; ** p < 0.01 compared to the CSE + LPS-stimulated group).
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Next, we investigated whether AGE could inhibit IL-6 expression through the p38
and NF-κB pathway in the CSE/LPS stimulated MH-S cells. We measured the IL-6 after
treatment with pharmacological p38 and NF- κB inhibitors, SB203580 and PDTC, in the
absence or presence of AGE. As anticipated, the CSE/LPS-induced IL-6 was significantly
suppressed by SB203580 and PDTC treatment (Figure 2g,h). AGE also significantly attenu-
ated IL-6 production in CSE/LPS-stimulated MH-S cells, similar to the PDTC treatment.
In addition, the combination of AGE and either SB203580 or PDTC treatment significantly
inhibited IL-6 production compared to a single treatment of AGE or each inhibitor in the
CSE/LPS-stimulated MH-S cells (Figure 2g,h).

Taken together, these results suggest that AGE suppresses the production of pro-
inflammatory cytokines and chemokines by blocking the p38 MAPK and NF-κB pathways
in MH-S macrophages.

3.3. Effect of AGE on Inflammatory Cell Counts, Cytokines, Chemokines, MMP-9, and NETosis
in BALF

We investigated whether the oral administration of AGE attenuates lung inflammation in
a COPD mouse model. The mice of each group were intranasally treated with CSE/PPE and
orally administered with AGE and DEX from day 0 and day 7, respectively. The inflammatory
cell count and pro-inflammatory factor levels were measured in the BALF extracted from
each mouse group (Figure 4a). The effects of AGE on Diff-Quick staining of BALF cells,
total number of cells, total macrophages, and total neutrophils are shown in Figure 4b–e.
Compared to the BALF of the naïve group, the COPD group showed a markedly upregulated
number of inflammatory cells, which was dose-dependently reduced in the AGE group.

Figure 4f–m shows the cytokine and chemokine assessments. The COPD group
showed an increase in all factors, such as IL-6, MIP-2, KC, MDC, eotaxin, RANTES, MCP-1,
and TARC, and these levels were downregulated in the AGE group. In addition, the in-
creased MMP-9 and NETosis levels in the COPD group decreased as the AGE concentration
increased. These results suggest that AGE may be able to ameliorate COPD by inhibiting
the inflammatory responses.

3.4. Effect of AGE on Airway Inflammation, Alveolar Enlargement, Cytokines and Chemokines and
NF-κB in Lung Tissue

From the lung tissues of each group, the histopathology, pro-inflammatory cytokines
and chemokines and their mechanisms were investigated. The main features of COPD are
airway inflammation, enlargement, and destruction leading to airflow limitation. As de-
scribed in Figure 5a, the lung tissues of the Naive group did not display airway inflam-
mation or destruction of alveolar walls, and the size of the alveolar space was normal.
However, CSE and PPE contributed to the deterioration of airway inflammation and the
destruction and enlargement of alveolar space, which were observed in the COPD group.
In the AGE group, these effects were attenuated. We demonstrated that AGE attenuated
airway inflammation and alveolar enlargement in lung tissues. Inflammation involves the
response to pro-inflammatory cytokines and chemokines. Figure 5b–e shows mRNA levels
of IL6, TNFα, IL1β, and MIP2 in lung tissues. Similar to the in vitro results, these levels were
increased in the COPD group and were markedly decreased in the AGE group. These re-
sults agreed with the protein levels of the cytokines and chemokines shown in Figure 4f–m
and indicated that AGE suppresses the mRNA levels of pro-inflammatory cytokines and
chemokines. As NF-κB signaling pathways are known to produce these proteins, the
effects of AGE on the protein expression of IκBα and NF-κB p65 are shown in Figure 5f.
The COPD group exhibited lower protein expression of IκBα in the cytosol, and NF-κB
p65 in the nucleus was higher than that in the naïve group, but recovered in the AGE
group. The levels of IκBα protein in the cytosol were markedly increased, and NF-κB p65
in the nucleus was significantly decreased in the AGE group. These results demonstrated
that AGE can inhibit lung inflammation by suppressing the secretion of cytokines and
chemokines via inhibiting NF-κB activation.
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Figure 4. Effect of the Artemisia gmelinii ethanol extract (AGE) on the the inflammatory cell count
and the production of cytokines and chemokines in bronchoalveolar lavage fluid (BALF) from the
CSE/PPE-induced chronic obstructibe pulmonary disease (COPD) model. (a) The timeline of mouse
CSE/PPE sensitizaion and oral administration. Cell infiltration (b) was measured by Diff-quick stain
methods (scale bar: 50 µm) and all images were taken at ×400 magnification. The total cells counts
(c) were assessed by automatic cell counter. The number of macrophages (d) and neutrophils (e)
was counted from microscopy images. The levels of IL-6 (f), MIP-2 (g) and MMP-9 (n) proteins
were measured by ELISA and the levels of KC (h), MDC (i), eotaxin (j), RANTES (k), MCP-1 (l),
and TARC (m) were analyzed by Q-plex. NETosis (o) was determined by Sytox Green fluorescence.
Data are presented as means ± SD. The significant differences among the groups were analyzed
using one-way analysis of variance by Bonferroni’s test (## p < 0.01 compared to the control group;
* p < 0.05 and ** p < 0.01 compared to the CSE + LPS-stimulated group).
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Figure 5. Effect of the Artemisia gmelinii ethanol extract (AGE) on airway inflammation and alveolar
enlargement, cytokines and chemokines, and the activation of NF-κB pathways in lung tissues from
the CSE (100%)/PPE (1.8 U/Head)-induced COPD mice. Following the schedule in Figure 4a, lung
tissues from each group were collected and used to assess the airway inflammation and alveolar
enlargement, cytokines and chemokines, and the activation of NF-κB pathways. The airway in-
flammation and alveolar enlargement (a) were measured by hematoxylin and eosin staining and
all images were taken at × 200 magnification (scale bar: 100 µm). The mRNA levels of IL6 (b),
TNFα (c), IL1β (d), and MIP2 (e) were measured by quantitative real-time polymerase chain reaction.
IκBα, NF-κB p65, β-actin, and lamin B1 (f) were assessed and quantitative data were analyzed using
Protein Simple capillary immunoassay (WES). Data are presented as means ± SEM. Significant
differences among the groups were analyzed using one-way analysis of variance using Bonferroni’s
test (# p < 0.05 and ## p < 0.01 compared to the Naive group; * p < 0.05 and ** p < 0.01 compared to
the COPD group) Naïve—Naive group; COPD—COPD group; 50—AGE 50 group; 100—AGE 100
group; 200—AGE 200 group; DEX—dexamethasone group.

3.5. Active Compounds in AGE

To investigate the active AGE components, we analyzed ACE using HPLC. The re-
sults showed seven main peaks which were identified as follows: (1), scopolin; (2),
chlorogenic acid; (3), hyperoside; (4), scopoletin; (5), 3-4-di-O-caffeoylquinic acid; (6),
3-5-di-O-caffeoylquinic acid; (7), 4-5-di-O-caffeoylquinic acid (Figure 6). Scoparone used
to discriminate between A. capilliaris and AG was not detected in AGE. In quantitative
analysis, Table 1 shows that AGE included 8.6 mg/g of scolopin, 21.8 mg/g of chlorogenic
acid 21.8 mg/g, 5.2 mg/g of hyperoside, 7.3 mg/g of scopoletin, 9.5 mg/g of 3-4-di-O-
caffeoyl quinic acid, 34.6 mg/g of 3-5-di-O-caffeoyl quinic acid, and 5.2 mg/g of 4-5-di-
O-caffeoyl quinic acid. A recent study showed that coumarins, such as scopoletin and
scopolin, and phenolic compounds, such as chlorogenic acid and caffeoylquinic acid, are
major constituents of Artemisia species, and possess various biological functions, including
anti-inflammatory, anti-oxidative, anti-infection, anti-proliferation, and anti-diabetic ef-
fects [23,24]. Therefore, we examined whether the separated components (scopolin, chrolo-
genic acid, hyperoside, scopoletin, 3-4-di-O-caffeoylquinic acid; (6), 3-5-di-O-caffeoylquinic
acid; (7), 4-5-di-O-caffeoylquinic acid) altered CSE/LPS-induced IL-6 secretion in the MH-S
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cells. Most components, except scopoletin, suppressed IL-6 expression in a dose-dependent
manner, as shown in Table 2. In particular, 3-5-di-O-caffeoyl quinic acid, which is the
component with the highest concentration in AGE, had the best effect in inhibiting IL-6
production at a concentration of 10 ng/mL.

Figure 6. High-performance liquid chromatography profile of standard mixture (a) and
Artemisia gmelinii extract (b): (1) scopolin; (2) chlorogenic acid; (3) hyperoside; (4) scopoletin;
(5) 3,4-di-O-caffeoylquinic acid; (6) 3,5-di-O-caffeoylquinic acid; (7) 4,5-di-O-caffeoylquinic acid;
(8) scoparone.

Table 1. The quantification of seven components in Artemisia gmelinii extract.

Compound Regression Equation Regression Coefficient (R2) Content (mg/g)

Scopolin y = 8.1105x − 3.6018 0.9999 8.6
Chlorogenic acid y = 5.3291x − 42.167 1.0000 21.8

Hyperoside y = 17.799x + 3.6018 1.0000 5.2
Scopoletin y = 22.339x − 194.46 0.9990 7.3

4,5-di-O-caffeoylquinic acid y = 3.8996x + 10.436 0.9996 5.2
3,5-di-O-caffeoylquinic acid y = 7.2616x + 35.623 0.9998 34.6
3,4-di-O-caffeoylquinic acid y = 8.2834x + 16.766 1.0000 9.5

Scoparone y = 24.082x − 114.77 0.9994 ND



Antioxidants 2022, 11, 568 14 of 21

Table 2. The inhibitory effects of scopolin, chrologenic acid, hyperoside, scopoletin, 3-4-di-O-caffeoylquinic acid, 3-5-di-O-caffeoylquinic acid, 4-5-di-O-caffeoylquinic
acid on IL-6 production by CSE/LPS-stimulated MH-S cells.

Identified
Components

Il-6 (ρg/mL)

Naive CSE/LPS 10 ng/mL 100 ng/mL 1000 ng/mL

Scopolin 784.38 ± 50.39 7029.17 ± 1214.07 ## 5340.63 ± 726.96 ** 5050.00 ± 641.53 ** 5286.75 ± 753.36 **
Chlorogenic acid 762.50 ± 75.70 11,010.42 ± 1582.40 ## 12,840.63 ± 762.50 8128.13 ± 590.90 ** 8000.00 ± 718.10 **

Hyperoside 762.50 ± 75.70 11,010.42 ± 1582.40 ## 7237.50 ± 1209.01 ** 6406.25 ± 1620.76 ** 4078.13 ± 318.42 **
Scopoletin 784.38 ± 50.39 7029.17 ± 1214.07 ## 8515.63 ± 1092.70 6895.83 ± 1087.02 6641.67 ± 466.43

4,5-di-O-caffeoylquinic acid 784.38 ± 50.39 7029.17 ± 1214.07 ## 8090.63 ± 593.58 5537.50 ± 97.36 * 4725.00 ± 234.30 **
3,5-di-O-caffeoylquinic acid 762.50 ± 75.70 11,010.42 ± 1582.40 ## 5346.88 ± 726.96 ** 5122.92 ± 697.35 * 4214.58 ± 750.66 **
3,4-di-O-caffeoylquinic acid 762.50 ± 75.70 11,010.42 ± 1582.40 ## 11,971.88 ± 210.50 8343.75 ± 696.90 ** 6685.42 ± 914.50 **

Significant differences among the groups were analyzed using one-way analysis of variance by Bonferroni’s test ## p < 0.01 compared to the Naive group; * p < 0.05 and ** p < 0.01
compared to the CSE/LPS group).
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4. Discussion

Our study showed AGE as a good alternative to medications or supplements for
lung health by suppressing CSE/PPE-induced lung inflammation in COPD mouse model
and the inflammatory response via the inhibition of NF-κB and p38 in the CSE/LPS-
stimulated MH-S alveolar macrophage cell line. AMs, which reside in the lumen of the
airway, play an essential role in clearing harmful infectious particles that invade the
respiratory tract, regulate innate alveolar defenses against respiratory infections, and
present antigens to adaptive immune cells [25]. When AMs are stimulated and activated by
foreign substances, such as CS and LPS, they begin to produce pro-inflammatory mediators,
such as NO and prostaglandin E2 (PGE2), contributing to lung destruction [26,27]. iNOS
and COX-2 produce NO and PGE2, respectively, which cause airway inflammation and
modulate lung fibroblast functions [28,29]. Accordingly, a recent study reported that the
mRNA expression of NOS2 and COX2 in lung tissues was increased in COPD patients
compared to in non-smokers and smokers without COPD. Therefore, one of the therapeutic
strategies for COPD is inhibiting iNOS. In this study, the mRNA and protein levels of NOS2
and COX2 were upregulated in CSE/LPS-stimulated AMs; however, in AGE-treated AMs,
the mRNA and protein levels of NOS2 and COX2 were reduced, demonstrating that AG has
anti-inflammatory properties (Figure 1). IL-6, TNF-α, IL-1β, and MIP-2 are representative
pro-inflammatory cytokines and chemokines that are related to the pathogenesis of various
lung diseases. IL-6 is related to systemic inflammation in COPD patients [30], and TNF-α
and IL-1β induce fibroblast proliferation and enhance the synthesis of fibronectin and
collagen during the progression of COPD [31]. Murine MIP-2, a functional homolog of
human IL-8, is a chemokine that attracts neutrophils to the inflammation sites [32]. Our
study showed that CSE/LPS caused increased mRNA levels of IL6, TNFA, IL1B, and
MIP2. They were all suppressed in AGE-treated AMs (Figure 2a–d). From these results, the
attenuating effects of AGE on lung damage may be related to the reduction in inflammation-
related factors.

To determine which mechanism is related to the suppression of pro-inflammatory
factors, the MAPK/NF-κB signaling pathways, which are involved in the secretion of IL-6,
TNF-α, IL-1β, and MIP-2, as well as iNOS and COX-2 were measured. Activation of the
MAPK/NF-κB signaling pathway is related to pulmonary inflammation induced by CS.
Previous studies have shown that toxic substances in CS, such as tar, nicotine, acrolein, and
H2O2, activate the MAPK/NF-κB signaling pathway, leading to lung injury and emphy-
sema [33,34]. In the present study, CSE/LPS increased the phosphorylation of all MAPK
members, while phosphorylation of p38 was inhibited most effectively in AGE-treated AMs.
p38 is involved in fibrosis, neutrophilia, apoptosis, and cytokine production during lung
injury. In AMs, as well as in the alveolar walls of smokers with COPD, the phosphorylation
of p38 was increased, which was associated with lung dysfunction [32]. This study showed
that AGE acted as a p38 inhibitor, and, through the p38 pathway, suppressed the secretion
of pro-inflammatory mediators (Figure 2e). Western blot data also showed that the NF-κB
signaling pathway was activated in CSE/LPS-stimulated AMs, possibly by degrading IκBα
in the cytosol and translocating NF-κB p65 into the nucleus. However, AGE inhibited
this reaction. In addition, from fluorescence confocal microscopy data, deactivation of
the NF-κB signaling pathway was observed in AGE-treated AMs (Figures 2f and 3a,b).
These results indicated that AGE inhibited the secretion of pro-inflammatory cytokines and
chemokines via suppression of NF-κB p65 nuclear translocation and phosphorylation of
p38 in the MAPK family.

Meanwhile, accumulated evidence indicates that the Nuclear factor-E2-related factor 2
(Nrf2)/heme oxygenase-1 (HO-1) pathway, a major antioxidant defense system, regulates
inflammatory responses by suppressing the excessive production of ROS, inflammatory
mediates, and pro-inflammatory cytokines [35]. In addition, recent studies have reported
that the inhibition of NF-κB of phytochemicals is related to the activation of Nrf2/HO-1 [36].
Accordingly, to investigate whether the anti-inflammatory effects of AGE is related to the
activation of Nrf2/HO-1 signaling pathways, we analyzed the expression of Nrf2 and
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HO-1 following AGE treatment in the CSE/LPS-stimulated MH-S. As for the results of the
Western blot analysis, AGE increased the expression of HO-1 by further promoting nuclear
translocation of Nrf2 in a dose-dependent manner (Figure S1). From these observations,
we hypothesized that AGE may regulate the CSE/LPS-induced inflammatory response by
its antioxidant properties as well as anti-inflammatory properties; however, further studies
are needed to determine the molecular mechanisms associated with Nrf2/HO-1.

Based on our in vitro experiments, we examined the protective effect of AGE on lung
damage using the CSE/PPE mouse model, in which COPD is induced and demonstrates
emphysema and inflammation [37,38]. Numerous studies have shown that inflammatory
cell counts are increased in the BALF of CSE- or PPE-treated mouse models [39,40]. In COPD
patients, the number of AMs and neutrophils is markedly increased in the BALF, airway,
and sputum, indicating a correlation between the number of AMs and COPD severity [41].
Therefore, the total inflammatory cell count is a critical biomarker for confirming the
diagnosis of COPD. In our study, total cell, macrophage, and neutrophil counts were
increased in the BALF of the COPD group, which was treated with CSE/PPE, compared to
the Naïve group. In the AGE group, which was orally administered 50, 100, and 200 mg/kg
of AGE, these levels were reduced. Consistent with these results, the Diff-quick stain
method was used to measure cell infiltration, and revealed a decrease in macrophages
and neutrophils in the AGE-treated group (Figure 4b–e). The results revealed that AGE
administration clearly reduced the unbridled infiltration of total cells, macrophages, and
neutrophils, in BALF.

Persistent infiltration of immune cells enhances the release of inflammatory cytokines
and chemokines. Heightened cytokine and chemokine secretion is one of the main factors
in the exacerbation of COPD. MIP-2 and KC are pro-inflammatory chemokines known to
recruit neutrophils in the lungs [32]. Eotaxin is a chemokine that plays a role in recruiting
eosinophils, causing airway inflammation in COPD [42]. The other chemokine, RANTES,
increases the number of eosinophils and T cells in the large airways of COPD patients.
MCP-1 is also expressed in the airways of patients with COPD, recruiting and activating
inflammatory cells [43,44]. TARC and MDC function as chemoattractants for Th2 cells, and
are related to a decline in forced expiratory volume in 1 s (FEV1) in COPD patients [45,46].
These proteins are also related to hypertrophy and hyperplasia of airway smooth muscle,
resulting in irreversible airway obstruction. In this study, the BALF of the COPD group
showed a significant increase in all these factors, whereas these levels were decreased in
the AGE group (Figure 4f–m).

MMP-9, a 92-kDa type IV collagenase/gelatinase B family member of the MMP family,
is secreted by neutrophils and macrophages. Under basal conditions, MMP-9 levels are
generally low, but overproduction is related to alveolar destruction and emphysema,
leading to various lung diseases, such as lung cancer, asthma, fibrosis, and interstitial lung
diseases [47]. In clinical trials, serum MMP-9 levels were markedly higher in patients with
COPD than in the non-smoker control group, and an increase in MMP-9 was associated
with a decrease in FEV1% [48]. In our study, the level of MMP-9 in the COPD group
was significantly upregulated compared to that in the Naïve group, and the level was
significantly decreased in the AGE group (Figure 4n), which contributed to the attenuation
of alveolar destruction (Figure 5a).

Proteolytic enzymes secreted through NETosis, the formation of NETs accompanied
by the death of neutrophils, and inflammatory mediators secreted by AMs cause airway
inflammation, airway wall thickening, and the destruction of alveolar space observed in
COPD, which result in irreversible airflow obstruction, [49]. In our study, CSE/PPE induced
an increase in NETosis (Figure 4o), MMP-9, IL-6, TNF-α, IL-1β, MIP-2, KC, RANTES,
MCP-1, MDC, TARC, and eotaxin levels in the BALF, inflammatory cell infiltration, luminal
occlusion by secretion of mucous glycoproteins and inflammatory exudates, airway wall
thickness, mucus hypersecretion, alveolar enlargement, and alveolar destruction (Figure 5a),
as observed in the lung tissues of the COPD group. These lung injuries were alleviated in a
dose-dependent manner in the lung tissues of the AGE group. Moreover, mRNA levels of
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IL-6, TNF-α, IL-1β, and MIP-2 were increased in the lung tissues of the COPD group and
were decreased in the AGE group (Figure 5b–e). Similar to in vitro studies, we examined
whether AGE suppressed the activation of the NF-κB signaling pathway in the lung
tissue and observed the inhibition of translocating NF-κB p65 into the nucleus in the AGE
group (Figure 5f). These data suggested that AGEs could attenuate lung inflammation by
suppressing the NF-κB signaling pathway.

Artemisia plants, including AG, have been used as medicinal herbs for the treatment
of colds, coughs, headaches, dyspepsia, and colic in Europe, Asia, and North America, be-
cause the genus Artemisia contains mainly terpenoids, flavonoids, coumarins, caffeoylquinic
acids, sterols, and acetylenes. Accordingly, we identified the components of AGE by quan-
titative HPLC analysis to identify the main active compounds possessing anti-inflammatory
effects. From the HPLC profile of AGE, we identified a variety of active compounds, such
as scopolin, chlorogenic acid, hyperoside, scopoletin, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-
caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid. There have been many reports about the
anti-oxidant and anti-inflammatory activities of these compounds: scopolin and scopolectin iso-
lated from A. iwayomogi suppresses the production of ROS in RAW 264.7 cells [50]; chlorogenic
acid suppresses allergic inflammatory responses via the inhibition of STAT-6 and JNK activa-
tion [51]; caffeoylquinic acid reduces pro-inflammatory cytokines, such as TNF-α and IL-1β,
and attenuates oedema volume in rat [52]; and caffeoylquinic acid-rich fraction purified from
A. absinthium L. and A. ludoviviana Nutt suppresses ROS production [53]. Based on these reports,
we measured IL-6 in the CSE/LPS-stimulated MH-S cells to evaluate the anti-inflammatory
activities of these compounds. Consistent with these studies, scopolin, chlorogenic acid, hy-
peroside, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic
acid suppressed the IL-6 increase induced by CSE/LPS stimulation in our study. In particular,
3,5-di-O-caffeoylquinic acid, the predominant compound in AGE, effectively decreased IL-6
expression at a low concentration of 10 ng/mL. Given the results, various components, espe-
cially 3,5-di-O-caffeoylquinic acid, in AGE contribute to the anti-inflammatory characteristics of
AGE. We anticipated that the synergistic effects of these compounds will not be limited in lung
disease and will adapt to other diseases.

The studies on the pharmacokinetics and bioavailability of AGE have not been re-
ported, despite the use of AGE in traditional medicine which has existed for a long time.
Fortunately, recently several studies have reported the pharmacological and biological
effects of chlorogenic acid, one of the functional components of AGE [54]. Chlorogenic
acid has been known to have an improving effect in various animal models of respiratory
diseases such as ALI, lung fibrosis, pneumonia, and lung cancer model [55–57]. It is possi-
ble that chlorogenic acid directly affects lung-related inflammation, as when chlorogenic
acid-rich plant extract was orally administered, the highest content of chlorogenic acid
was detected in plasma after 30 min [58]. Subsequently, a large amount of chlorogenic
acid was detected in the liver, lung, heart, spleen, and kidney. Given the similarity of
their chemical structures, it may be possible that various components of AGE, including
caffeoylquinic acid, also sufficiently reached the blood and lung and then directly affected
immune cells such as alveolar macrophages. In future studies, we will investigate the
efficacy and organ distribution of functional components of AGE in various animal models
of pulmonary diseases.

Meanwhile, in terms of the usage of dietary supplements, functional foods, and
pharmaceuticals for lung health, the safety of natural products is as important as their
effectiveness. Although the safety of AG has not been reported, there is accumulated
evidence supporting the safety and efficacy of caffeoylquinic acid, chlorogenic acid, and
natural coumarins such as scopoletin, the main compounds of AGE, in pre-clinical, clin-
ical, and toxicity studies [59–61]. In addition, a recent study reported that the intake of
A. capillaris, with a similar chemical profile to AG, improved disease severity without
side effects in a clinical trial for patients with liver diseases [62]. These and our findings
suggest that AGE could be an effectual alternative to medications with side effects such as
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weight loss, headaches, and insomnia, in the prevention and treatment of inflammatory
lung disease.

5. Conclusions

In conclusion, AGE inhibited the secretion of pro-inflammatory cytokines, chemokines,
iNOS, and COX-2, by inactivating the MAPK/NF-κB signaling pathways in CSE/LPS-
stimulated MH-S cells. Oral administration of AGE attenuated clinical symptoms, including
the infiltration of inflammatory cells such as macrophages and neutrophils, and increased
pro-inflammatory cytokines and chemokines in the BALF obtained from CSE/PPE-induced
COPD mice. Furthermore, the attenuation of alveolar enlargement, mucus hypersecretion,
bronchiole thickness, and increased pro-inflammatory cytokines associated with NF-κB
signaling pathways were observed in the lungs of AGE-treated mice. These attenuating
effects are associated with scopolin, chlorogenic acid, hyperoside, 3,4-di-O-caffeoylquinic
acid, 3,5-di-O-caffeoylquinic acid, and 4,5-di-O-caffeoylquinic acid, which are the main
components in AGE. Considering both the in vitro and in vivo results, we suggest that AGE
may have beneficial effects on lung diseases including COPD. However, further studies
are needed to determine the mechanisms underlying the inflammatory cell infiltration and
proteolytic enzyme function in the development of COPD.
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Abbreviations
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AG Artemisia gmelinii
AGE Artemisia gmelinii ethanol extract
AM Alveolar macrophage
BALF Bronchoalveolar lavage fluid
COPD Chronic obstructive pulmonary disease
COX-2 Cyclooxygenase-2
CS Cigarette smoke
CSE Cigarette smoke extract
ELISA Enzyme-linked immunosorbent assay
HO-1 Heme oxygenase-1
HPLC High-performance liquid chromatography
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IL-6 Interleukin-6
iNOS Inducible nitric oxide synthase
IκBα Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
KC Keratinocytes-derived chemokine
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein-1
MDC Macrophage-derived chemokine
MIP-2 Macrophage inflammatory protein-2
MMP-9 Matrix metalloproteinase-9
NET Neutrophil extracellular traps
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NO Nitric oxide
Nrf2 Nuclear factor-E2—related factor 2
PDTC Ammonium pyrrolidine dithiocarbamate
PPE Porcine pancreas elastase
RANTES Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted
ROS Reactive oxygen species
TARC Thymus and activation-regulated chemkine
TNF-α Tumor necrosis factor-α
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