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Abstract: The placenta participates in cholesterol biosynthesis and metabolism and regulates ex-
change between the maternal and fetal compartments. The fetus has high cholesterol requirements,
and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major
source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mech-
anisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein
cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scav-
enger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding
cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular
traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol
is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick
type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required
for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY
into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or
plasma membrane. Although the production, metabolism, and transport of cholesterol in placental
cells are well explored, there is little information on the role of proteins related to intracellular choles-
terol traffic in placental cells during physiological or pathological pregnancies. Such studies would
be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced
by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular
and biological functions and has emerged as a critical common mechanism after lysosomal and mito-
chondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial
dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
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1. Introduction

The placenta is a large organ that develops during pregnancy, enabling optimal fetal
growth. It can adapt to diverse external factors both structurally and functionally. In
adaptation problems during placenta development, fetal survival or fetal growth will be in
danger, and diseases could develop [1]. In addition, problems in the correct development
of the placenta contribute to different diseases such as preeclampsia, which predispose the
mother to lifelong diseases [2].

The different essential functions of the placenta include biosynthesis, metabolism, and
transport of cholesterol, glucocorticoids, and sex hormones.

This article compares the hepatic and placental cellular management of cholesterol
under physiological conditions and provides an overview of the changes observed due to
preeclampsia and maternal hypercholesterolemic pregnancies. We will also discuss the role
of cholesterol accumulation in syncytiotrophoblasts due to maternal hypercholesterolemia
resulting from lysosomal and mitochondrial dysfunction and oxidative stress.
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2. Cholesterol

Cholesterol is a sterol that was first isolated from gallstones. It is biosynthesized by all
animal cells and is an essential structural component of cell membranes in mammals [3].
Cholesterol serves as a precursor for the biosynthesis of bile acid, vitamin D, and sex
hormones such as testosterone, estradiol, androsterone, progesterone, and adrenocortical
hormones such as aldosterone and cortisone. It is also required to form lipid domains
involved in endocytosis and cell signaling. Cholesterol plays an important role in various
homeostatic systems [4,5].

In physiological conditions, cellular cholesterol homeostasis includes tightly regulated
processes. The body has two major sources of available cholesterol: (i) intestinal absorp-
tion of dietary and biliary cholesterol; and (ii) cholesterol biosynthesis in various tissues,
predominantly in the liver and intestine. There are two main pathways for cholesterol excre-
tion: (i) cholesterol excretion through the gastrointestinal tract and skin; and (ii) converting
cholesterol to other compounds such as bile acids and steroid hormones [6]. It is important
that the total cholesterol pool can be kept constant, since the total cholesterol input into the
body must equal the total output in the steady state, to prevent the accumulation of excess
cholesterol in the body [6]. High cholesterol biosynthesis in the liver leads to the synthesis
of very-low-density lipoprotein (VLDL) secreted into plasma, increasing total plasma levels
and low-density lipoprotein (LDL) cholesterol concentrations. Additionally, increased
quantities of dietary cholesterol increase total plasma and LDL cholesterol levels in most
individuals, which is an important risk factor for developing cardiovascular diseases in
humans and laboratory animals [6,7]. Total and LDL cholesterol levels in plasma also
fluctuate during physiological conditions such as pregnancy. This increase in lipid levels
is known as maternal physiological hypercholesterolemia (MPH), a biological response
to increased fetal demands. A significant number of pregnant women develop maternal
supraphysiological hypercholesterolemia (MSPH). This condition is characterized by higher
LDL levels than MPH and is associated with fetal and placental oxidative stress, endothelial
dysfunction, and early fetal atherosclerotic lesions [8,9].

Given the complex regulation and diverse functions attributable to sterols, it is per-
haps not surprising that inherited defects of genes involved in cholesterol metabolism or
changes in the function of proteins required for proper homeostasis led to diverse metabolic
alterations [10]. Before discussing this topic in further depth, we will first address aspects
of cholesterol homeostasis to provide a framework for understanding the consequences of
cholesterol metabolism/transport defects in humans, particularly in the vasculature of the
placenta and the fetus from MSPH pregnancies.

3. Endosomal Cholesterol Transport

Mammalian liver cells contain several types of binding sites for plasma lipoproteins.
Most cholesterol entering the cells is taken up by receptor-mediated uptake from lipopro-
teins. The core of lipoprotein particles is composed of triglycerides and cholesterol esters
(i.e., fatty acylated cholesterol), while phospholipids and free cholesterol cover the particle
surface. Endocytic circuits harbor substantial amounts of cholesterol that they acquire
not only from lipoprotein uptake but also via membrane recycling and nanovesicular
equilibration [11].

Cholesterol import from LDL and high-density lipoprotein (HDL) occurs via LDL-
receptor-mediated uptake (LDLR) and HDL-mediated reverse transport via the scavenger
receptor SR-BI, respectively. Additional receptors can mediate LDL and modify LDL
uptake [12,13]; however, we will focus exclusively on the LDLR and SR-BI pathways in
this review.

Lipoproteins are internalized via clathrin-coated pits into early endosomes. The
receptor is recycled to the cell surface, and the LDL-particle is targeted for proteolytic and
lipolytic degradation [14]. Alternatively, HDL particles can transfer cholesteryl esters to
the plasma membrane without requiring endocytosis (selective lipid uptake) [15]. After
internalization, the lipoprotein-cholesteryl esters are hydrolyzed. The enzyme responsible
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for the hydrolysis of cholesterol esters is lysosomal acid lipase. This lipase is present in
lysosomes and earlier endocytic compartments [16]. This suggests that particle breakdown
is initiated rapidly after internalization. The details of how cholesterol is trafficked within
cells and how it leaves the lysosome remain subjects of investigation [17].

After the action of lipase, free cholesterol appears in the late endosomes/lysosomes
(LE/LY) [16]. Free cholesterol is transported across the cell to metabolically active pools
or membranes via the proteins Niemann–Pick type C 1 (NPC1) and C2 (NPC2) or other
less well-defined sterol carrier proteins [18]. NPC2 first binds to the hydrophobic side
chain of unesterified cholesterol and transfers the molecule to the N-terminal domain of
NPC1, which inserts cholesterol into the lysosomal membrane [19] (Figure 1). In cells
affected by the NPC1 mutation and reduced NPC1 function, cholesterol transport from the
late endosomes to various destinations, including the plasma membrane, is defective [20].
Impairment of the lysosomal cholesterol export pathway, mediated by NPC1 and NPC2
proteins, leads to cholesterol build-up and organelle and lysosomal dysfunction [17]. Al-
though NPC1 and NPC2 participate in the entry and progress of cholesterol in the LE/LY
system, functional loss of these proteins differentially affects different organelles. For exam-
ple, several mitochondrial properties such as adenosine triphosphate (ATP) production,
oxidative stress, and possible mitophagy are altered by NPC1 deficiency [21–23], probably
due to increased mitochondrial cholesterol [24].
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Figure 1. Diagram of NPC1, NPC2, and STARD3 proteins in LDL-derived cholesterol transport.
Cholesterol from the endocytic pathway is hydrolyzed in the lysosome by acid lipase to form free
cholesterol, which binds to NPC2 and is delivered to NPC1. NPC1 takes the cholesterol out of the
lysosome via glycocalyx molecules on the internal surface of the lysosomal membrane. Cholesterol
then moves to the endoplasmic reticulum (ER) and is distributed to the rest of the cell. Alterna-
tively, NPC2 can transfer cholesterol from LE/LY directly to STARD3, which mediates transport to
mitochondria; however, the exact mechanism by which this occurs is unknown.

In contrast to NPC1 deficiency, the movement of endosomal cholesterol to the mito-
chondria is interrupted by NPC2 deficiency [25]. NPC2 mutants that bind cholesterol but
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cannot transfer cholesterol to NPC1 can restore cholesterol trafficking to the mitochondria
in NPC2-deficient cells [25]. A possible explanation for this difference between NPC1 and
NPC2 is that NPC2 transfers cholesterol from the LE/LY lumen directly to the perimeter
membrane of LE/LY, as well as to other transmembrane proteins such as the StAR related
lipid transfer domain containing 3 (STARD3) [26] (Figure 1). Several studies showed that
STARD3 contributes to the growth of HER2-positive cancer cells, but given that both pro-
teins do not directly interact, the molecular mechanism remains unclear [27]. Over the last
years, the basic function of STARD3 has been clarified as a cholesterol transporter working
at contact sites between endosomes and the mitochondria [28,29] or endoplasmic reticulum
(ER) [30,31]. Remarkably, the proteins involved in intracellular cholesterol traffic have
mostly been described in liver-derived cells. However, its role in other cells relevant for
cholesterol metabolism, such as the placental cells, has been neglected.

To eliminate cholesterol, hepatocytes, and other cell types, including placental cells,
secrete cholesterol to extracellular lipid acceptors such as lipoproteins, a process known as
cholesterol efflux [30–32]. In hepatocytes, cholesterol efflux mechanisms include passive
diffusion and active pathways mediated by ABCA1, ABCG1, and SR-BI. Several factors
influence cholesterol efflux efficiency, including cellular cholesterol status, lipid transporter
activity, and the nature of extracellular acceptors. In hepatocytes, ABCA1 and ABCG1 are
important for eliminating cholesterol from cells and tissues and HDL biogenesis. ABCA1
stimulates cholesterol efflux to lipid-free apolipoproteins, predominantly to ApoA-I and
ApoE. In contrast, ABCG1 promotes the efflux of cholesterol and oxysterols to pre-mature
HDL. SR-BI can mediate cholesterol efflux from peripheral cells to HDL, but not to lipid-
free ApoA-I [32]. Although most events related to these phenomena remain unclear, in
the placenta, endothelial cells and syncytiotrophoblasts express the LDL receptor (LDLR),
SR-BI, ABCA1, and ABCG1, which mediate cholesterol uptake and its release from cells to
acceptors such as ApoA-I (via ABCA1) or HDL (via ABCG1) [33,34].

The placental syncytiotrophoblast has several active transporters on the apical and basal
side that may regulate fetal transport. Several ABC transporters are expressed in the human
placenta, where they play a role in transporting endogenous and exogenous compounds.

Previous studies by our group suggest that the ABCG1 transporter is mainly localized
on the basolateral side of the trophoblast layer [35,36], suggesting a possible role for choles-
terol export to fetal circulation. Interestingly, ABCG1 was reduced in MSPH compared to
MPH. Regarding ABCG5 and ABCG8, the placental expression levels of these transporters
are low, and there is little information about their localization and functional relevance [37].

4. Association of Abnormal Cholesterol Transport with Diseases

Among the approximately 7000 inborn metabolic errors, there is a family of diseases
that result from defects in genes involved in sterol metabolism [10,38]. For example, a
genetic disorder caused by a defect on chromosome 19 results in continued cholesterol pro-
duction despite excess cholesterol in the blood (lack of uptake by the LDL receptor), which
may cause familial hypercholesterolemia [39]. Many of these syndromes have correspond-
ing mouse models; some are spontaneous mutants, while others have been generated by
genetic manipulation. All these disorders have common phenotypes suggesting common
pathological mechanisms.

If we focus on cholesterol trafficking disorders, a study by Vanier et al. [40] first re-
ported the potential role of pathological cholesterol transport on two lysosomal storage
diseases (LSDs); Niemann–Pick type C 1 (NPC1), and Niemann–Pick type C 2 (NPC2).
Both diseases involve pathological storage of lipids (cholesterol and sphingolipids) in
the CNS and peripheral tissues, and cholesterol is the main lipid involved in peripheral
pathology [40]. NPC1 or NPC2 deficiency causes accumulation (storage) of unesterified
cholesterol in LE/LY and prevents delivery to the ER and mitochondria. This cholesterol
accumulation in LE/LY disrupts the expression of genes involved in cholesterol homeosta-
sis, such as SREBP-dependent gene expression, promotes liver X receptor (LXR)-mediated
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responses, and impairs oxysterol generation [41]. Therefore, NPC has features of excessive
cholesterol storage and deficiency [42].

Additionally, Smith–Lemli–Opitz syndrome (SLOS) is characterized by abnormal
7-dehydrocholesterol (7DHC) accumulation. SLOS patient fibroblasts cultured in a lipid-
depleted medium synthesize cholesterol but exhibit significant cholesterol trafficking
defects and accumulate unesterified cholesterol in LE/LY [43]. Additionally, 7-DHC accu-
mulation in SLOS leads to lysosomal storage of cholesterol, sphingomyelin, and multiple
GSLs, all hallmarks of NPC disease [44].

Congenital cholesterol metabolism defects have provided many fundamental insights
into normal cholesterol homeostasis and cell biology. They have traditionally been viewed
as discreet diseases with unique phenotypes; however, NPC and SLOS involve NPC
pathway inhibition. Platt et al. [44] showed that SLOS disease involves secondary inhibition
of the NPC pathway, since cholesterol storage in the late endocytic compartment is a
common feature of these diseases. However, if NPC pathways inhibition drives pathology
in other diseases, approved NPC disease therapies could be used for diseases that currently
lack effective treatments.

5. Endosomal Cholesterol Transport in the Syncytiotrophoblast

Several studies have shown that maternal cholesterol can be transported to the fe-
tus. The human placenta needs more than 1 g of cholesterol per day to facilitate fetal
growth [45], and the human placenta manufactures approximately 400 mg of sex steroids
from cholesterol per day [46]. Cholesterol is essential for myelination, the sonic hedgehog
signaling pathway and fetal nervous system patterning [47]; therefore, human pregnancy
is characterized by maternal hyperlipidemia, especially during the last trimester [48]. High
maternal estrogen concentrations and insulin resistance stimulate hepatic VLDL production
and increase triglyceride and cholesterol concentrations, providing ample cholesterol fuel
for the placental cells [49].

During human pregnancy, the fetal circulation is separated from maternal blood by
the placental barrier, which plays an essential role in fetal development and health by
tightly regulating molecular exchange between the mother and the fetus [50]. The placenta
develops from the blastocyst’s outer layer, which forms the undifferentiated cytotrophoblast
(CTB). The CTB gives rise to two villi; the floating villus, where CTBs fuse to form the
multinuclear syncytiotrophoblast (STB), and the anchoring villus [51–54]. The STB acts as
an exchange barrier with the maternal blood to ensure that nutrients, waste, and gases are
exchanged with the fetal blood [55]. The anchoring villus mediates the placental attachment
to the endometrium in the uterine wall and sustains fetal growth [51–54].

Extravillous trophoblast cells (EVTs) are invasive mesenchymal cells which function
to establish critical tissue connection in the developing placental–uterine interface. These
cells proliferate and migrate from the cytotrophoblast in the anchoring villi of the placenta
and invade the maternal decidua and myometrium and can induce vascular remodeling.
The remodeling of uterine spiral arteries by EVTs is fundamental for effective placentation
and perfusion of the intervillous space [56]. EVT functions are affected by intrauterine
microenvironmental factors, including oxygen tension and inflammatory mediators [57].

The STB is a polarized layer of cells. The apical side is in contact with the maternal
blood, and the basal side is in contact with the extracellular matrix and the fetal endothe-
lium. Therefore, the expression of receptor or transporter proteins on one side of the
STB determines the directionality of the released molecules. Maternal-to-fetal cholesterol
trafficking requires STB mediated cholesterol uptake from maternal LDL and HDL through
the endocytic LDLR, and the HDL receptor SR-BI, respectively [58,59], and LDLR and
SR-BI expression has been reported in both placental endothelial cells and the STB [60–63].
Additionally, LDL-specific binding sites have been shown in preparations of microvillous
placental membranes, representing enriched apical STB plasma membranes, throughout
pregnancy [64,65].
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Furthermore, the expression of LDLR mRNA in STB increases with advancing preg-
nancy in baboons [66]. Finally, HDL binding sites and SR-BI have been identified on
isolated STB placental microvillous and basal plasma membranes [67]. LDL- and HDL-
cholesterol is absorbed by the placenta or trophoblast in rodents and humans [58,62,68,69].
After receptor-mediated uptake, LDL particles are transported via the endosome/lysosome
pathway, where the cholesteryl ester is hydrolyzed and transported by NPC2 and NPC1.
Burke et al. [68] showed that NPC1 is expressed in the human placenta, and in mouse
models the amount of NPC1 mRNA decreased in the placentas of mice fed with cholesterol
compared to controls [70]. Additionally, NPC1 protein expression decreases in hamsters
fed excess cholesterol [68]. However, changes in NPC1 expression in humans have not been
investigated to date. Additionally, there is no information on placental NPC2 expression,
there is only one paper on STARD3 expression in human STB mitochondria, and the role of
STARD3 in the human placenta is still unknown [71]. Placental expression of other trans-
porters, such as NPC1L1, ABCA2, SCP-x and HSP60, have been reported in humans [68].
Cholesterol transport in the human placenta remains an enigma.

A summary of the published information on proteins involved in cholesterol transport
and metabolism in different placental cell lines is presented in Table 1. These proteins have
been described in cell lines such as BeWo, JAR, and Jeg-3 (model of term cytotrophoblast),
Swan 71 and HTR-8 (first-trimester trophoblast), and in primary cultures of STB; however,
their functions and regulations have not been extensively investigated (Table 1).

Table 1. Comparative table of proteins involved in cholesterol metabolism and transport.

Name Source Presence Proteins
Cholesterol Metabolism Reference

Swan 71 Primary first trimester There is no information There is no information

HTR-8 Primary first trimester There is no information There is no information

BeWo Choriocarcinoma
VLDLR, LDLR, SR-BI,

ABCA1, ABCG1,
LRP1, ApoB

[33,36,61,72–75]

Jar Choriocarcinoma SR-BI [74]

Jeg-3 Choriocarcinoma SR-BI, STARD3, HSP60 [74,76]

STB Placental

ApoB, ApoA-I, ApoE,
LDLR, VLDLR, LRP1,
LRP2, LRP8, ABCA1,

ABCA2, ABCG1, SR-BI,
NPC1, NPC1-Like1,

NPC2, STARD3,
SCP-x, HSP60

[35,36,61,67,68,77–85]

Table legend: A summary of the published information on proteins involved in the transport and metabolism
of cholesterol in different placental cell lines. STB: syncytiotrophoblast; VLDLR: Very-low-density-lipoprotein
receptor; LDLR: Low-density lipoprotein receptor; SR-BI: Scavenger receptor class B type 1; ABCA1: ATP-binding
cassette transporter; ABCG1: ATP-binding cassette Subfamily G Member 1; LRP1: Low-density lipoprotein
receptor-related protein 1; ApoB: Apolipoprotein B; STARD3: StAR Related Lipid Transfer Domain Containing
3; HSP60: Heat Shock Protein 60; ApoA-I: Apolipoprotein A1; ApoE: Apolipoprotein E; LRP2: Low-density
lipoprotein receptor-related protein 2; LRP8: Low-density lipoprotein receptor-related protein 8; ABCA2: ATP-
binding cassette transporter ABCA2; NPC1: Niemann–Pick type C 1; NPC1-Like1: Niemann–Pick type C 1-like1;
NPC2: Niemann–Pick type C 2; SCP-x: Sterol carrier protein-x.

The efflux of cholesterol from the basal side of the STB is poorly understood. ABCA1
and ABCG1 are expressed in placental endothelial cells and STB and could mediate choles-
terol efflux via ApoA-I (via ABCA1) or HDL (via ABCG1) [35,63]. In the STB, cholesterol is
released to fetal endothelial cells and into the fetal circulation via cholesterol transporters
and acceptors [34,86,87]. ApoB, the main LDL protein, is expressed in the STB [61], and
lipoprotein particles containing ApoB and ApoA-I have been isolated from placental tis-
sue [78]. Additionally, the term placenta secretes ApoB-containing lipoprotein particles [88],
and polarized grown BeWo cells secrete ApoB from both their apical and basal surfaces [61].
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These observations suggest that cholesterol transport in the human placenta is similar
to other tissues involved in cholesterol metabolism (i.e., hepatocytes), where the abun-
dance and function of lipoprotein receptors and cholesterol transporters are regulated by
cholesterol levels [89].

Placental intracellular cholesterol transport is still poorly understood (Figure 2) and
requires further research.
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Figure 2. Diagram of endosomal cholesterol transport in the syncytiotrophoblast cells. In plasma,
cholesterol is associated with different types of lipoprotein particles. LDL particles can interact with
the plasma membrane of target cells via members of the LDLR family. The transfer of lipids between
HDL and target cells is poorly understood. Several proteins and receptors bind HDL, such as SR-BI,
which facilitates the uptake of cholesteryl esters. The receptor-ligand complexes dissociate after
they enter acidic endosomal compartments. The receptors return to the plasma membrane, and
lipoprotein particles enter the lysosomal pathway for degradation. Cholesterol incorporates into the
endosomal/lysosomal membranes via NPC1 and NPC2. Cholesterol is transported to mitochondria
for steroidogenesis via lipid transfer proteins such as STARD3. Cholesterol transport to other cellular
targets, e.g., the plasma membrane, occurs via vesicular transport or cholesterol binding to various
proteins. Alternatively, cholesterol can exit the STB via ABCA1 and ABCG1. ABCA1 stimulates
cholesterol efflux to lipid-free apolipoproteins (predominantly ApoA-I, but also ApoE). Conversely,
ABCG1 promotes the efflux of cholesterol and oxysterols to HDL. For detailed information, see text.

6. Hypercholesterolemia in Pregnancy as a Predictor of Adverse Outcomes

Cholesterol is not measured in current obstetric practice. There are no reference
ranges for circulating lipids during normal pregnancy because there is little evidence that
elevated cholesterol levels are important. Normal pregnant women exhibit a physiological
(i.e., normal) increase of around 30–50% in the total plasma cholesterol (TC) levels in
a condition described in a previous section, known as the MPH or control state (C, TC
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levels lower or equal to 280 mg/dL) [90,91]. However, in some cases, TC levels increase far
beyond this range, a condition known as maternal supraphysiological hypercholesterolemia
(MSPH or hypercholesterolemic state, TC higher than 280 mg/dL) [90,92]. Circulating LDL
levels increase during normal pregnancy, and this change is exaggerated in MSPH [17].
MSPH prevalence is ~30% [8,13,93], and although its etiology is still unknown, MSPH
is associated with oxidative stress, endothelial cell dysfunction in placental vessels [13],
and atherosclerosis in the fetal aorta [8,9]. Therefore, MSPH may be associated with
cardiovascular disease in the offspring later in life, but the mechanisms are unknown.

MSPH is also associated with increased lipid peroxidation, levels of reactive oxygen
species (ROS) and inflammation, in the placenta and fetus [9,94] (Figure 2). Conversely, in
animal models, cholesterol-lowering or antioxidant treatment during pregnancy reduces
atherogenesis, even though they do not lower maternal cholesterol levels [95–97].

Interestingly, MSPH neonatal TC levels are similar to those from normal pregnancies,
suggesting some regulation of placental cholesterol traffic in MSPH pregnancies.

MSPH is associated with increased expression of genes involved in lipid metabolism
in the placenta, exposing the fetus to an environment with a different lipid composition
and promoting vascular alterations [98]. Additionally, increased maternal cholesterol
and LDL (MPSH) levels decrease LDL receptor function and reduce SR-BI levels in the
whole placenta and in primary human trophoblast cells (PHT) [36], suggesting that higher
cholesterol concentrations in the maternal blood, regulate lipoprotein-derived cholesterol
uptake. The same report also showed lower cholesterol efflux from the STB. The authors
suggested placental cholesterol traffic is altered in MSPH pregnancies; however, there have
not been any studies on modulating cholesterol levels during human pregnancy, even
though the effect of this condition on the fetoplacental vasculature is well understood.

Cholesterol ester levels and free cholesterol levels are lower and higher in placental
cells from MSPH pregnancies, respectively [36]. Free cholesterol usually indicates cell
death [99–101]; however, its effects in PHT cells from MSPH is unknown. Additionally, the
levels of HMG-CoA reductase (HMGCR), an enzyme that catalyzes the limiting step in the
production of sterols, are lower in PHT from MSPH than controls, suggesting lower levels
of endogenous cholesterol synthesis [36].

Fuenzalida et al. [36] showed that in MSPH, cholesterol transport and content in
placental trophoblasts is altered, which could be associated with changes in placental-
mediated maternal–fetal cholesterol transport. The abundance of LDLR and SR-BI was
comparable between MSPH and MPH placentas. However, in PHT from MSPH, LDL
and HDL uptake was lower than MPH, without changes in LDLR and reduced SR-BI
levels. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol
transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from
MSPH, cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with
reduced ABCG1 levels compared to MPH [36].

Therefore, MSPH may alter cholesterol trafficking and cholesterol content in placental
trophoblasts to avoid exacerbated efflux of cholesterol to fetal circulation. Therefore, the
absorption, transport, distribution, and supply of maternal lipids to the fetus are modulated
by MSPH. However, how free cholesterol affects intracellular cholesterol pathways and cell
viability is unknown.

There is little information about cholesterol biosynthesis in the placenta. Cholesterol
synthesis and HMGCR activity in humans decrease as pregnancy progresses [102,103].

With advancing gestational age, novo cholesterol biosynthesis is markedly sup-
pressed, with elevated concentrations of maternal serum-derived cholesterol, which re-
places endogenously produced cholesterol as the major substrate of placental progesterone
production in humans [59]. The addition of LDL to primary trophoblast cultures drastically
suppresses the synthesis rates of cholesterol [69,104]. Nevertheless, when external LDL
supply is reduced in vivo or in vitro, human trophoblasts produce sufficient progesterone
due to endogenous cholesterol production [105]. As mentioned previously, human preg-
nancy is characterized by maternal hyperlipidemia, especially during the last trimester.
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Cholesterol concentrations provide ample cholesterol fuel for the STB [106]. There are
estimates that synthesis rates of cholesterol in the term human placenta provides only 1–2%
of the cholesterol required for progesterone biosynthesis [106]. Together, these data suggest
feedback inhibition of maternal-derived cholesterol on endogenous cholesterol synthesis
and cholesteryl ester formation in human STB.

Interestingly, maternal hypercholesterolemia does not change placental HMGCR
protein levels nor free placental cholesterol or cholesteryl ester content [98]. Instead, it
increases the placental expression of the transcription factor sterol regulatory element-
binding protein 2 (SREBP-2) [98]. There is scarce information on the placental SREBP–
SCAP–INSIG system [98]. As we mentioned, Fuenzalida et al. [36] observed that protein
abundance of HMGCR was reduced in primary human trophoblast (PHT) from MSPH
placentas, suggesting that cholesterol synthesis did not increase. In summary, human
placental cholesterol synthesis regulation requires further characterization.

7. Lysosomal and Mitochondrial Dysfunction: Searching for Links in
Hypercholesterolemic Pregnancies and Oxidative Stress

Lysosomes are important for various cell functions, including exocytosis, endocy-
tosis/phagocytosis, autophagy, cell growth and death [39]. Many of these functions are
mediated by acid hydrolase enzymes that degrade lipids, carbohydrates, proteins, and nu-
cleic acids within the lysosome. Mitochondria are the intracellular organelles that produce
adenosine triphosphate (ATP) via oxidative phosphorylation, regulate calcium homeostasis,
and act as signaling platforms for several critical cell survival and apoptotic pathways [36].

Additionally, cholesterol circulation between late endosome/lysosomes (LE/LY) influ-
ences endomembrane traffic [41,42]. These compartments receive cholesterol from ingested
plasma lipoproteins and the plasma membrane itself [43]. Cholesterol accumulation in
the endosomal/lysosomal system impairs lysosomal function, and accumulated choles-
terol “traps” the autophagy machinery, leading to impaired cellular homeostasis and
function [44]. Additionally, increased mitochondrial cholesterol can impair mitochondrial
function by reducing mitochondrial membrane fluidity [45] and decreasing ATP produc-
tion [46,47] and mitochondrial glutathione (GSH) import [48,49]. The function of lysosomes
and mitochondria in STB cells from MSPH placentas has not been evaluated yet despite
increased free cholesterol levels.

Cholesterol is oxidized by enzymatic or ROS-mediated pathways when present in
excess levels. Oxidized cholesterol increases in the cytoplasm [50] and disrupts cellular
membranes, especially lysosomal and mitochondrial membranes [51]. Disrupted lysosomes
are incapable of effectively removing ROS-damaged macromolecules [52], leading to a
feedforward cycle of damage wherein ROS promotes the oxidation of cholesterol, disrupts
lysosomal integrity, permeabilizes the mitochondrial membrane and finally kills the cell.
Oxidative damage is a feature of many human diseases [53], and MSPH is associated
with increased lipid peroxidation, oxidative stress and inflammation in the placenta and
fetus [54,58,59]. However, the mechanisms driving increased ROS levels in MSPH are still
unknown. MSPH placentas contain increased free cholesterol levels and ROS; therefore, we
propose that LE/LY and mitochondrial function are compromised in MSPH placental cells.

As stated above, oxidative stress is an important factor in many complications during
the second and third trimester of pregnancy. Preeclampsia, the most investigated preg-
nancy complication, develops in the second or third trimester and is characterized by
maternal endothelial cell dysfunction resulting in systemic endovascular inflammation.
This could cause symptoms such as proteinuria and hypertension. Inadequate extravillous
trophoblast (EVT) invasion could result in an imbalance of oxidant/antioxidant activity
when antioxidant capacity does not keep pace with increased oxygen tension, leading to a
chronic state of oxidative stress. Early preeclampsia is often accompanied by fetal growth
restriction [107,108], which is the second most studied pregnancy complication.

Watson et al. [109] showed that in the first trimester, the syncytiotrophoblast in the pres-
ence of high oxygen decreases microvilli at the surface and decreases mitochondria numbers
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without damaging cytotrophoblasts and stromal cells. Moreover, they demonstrated that
the syncytiotrophoblast in early pregnancy expresses low antioxidant levels [110]. These re-
sults suggest that syncytiotrophoblasts can adapt to minimal increases in ROS by restoring
the oxidant/antioxidant activity balance, which is seen in normal pregnancy.

8. Conclusions

Cholesterol accumulation and defects in cholesterol trafficking cause severe disease in
humans and animal models. Cholesterol availability during pregnancy and its flux between
the placenta and fetus are poorly described. Further investigation is needed to uncover the
precise mechanisms of cholesterol trafficking between the mother and fetus. Additionally,
the expression of proteins involved in cholesterol trafficking during pregnancy under
normal and pathological conditions has barely been investigated.

We have established two main gaps in our knowledge of placental cholesterol traffick-
ing: (1) The exact expression, localization, function, and regulation of key proteins required
for proper intracellular cholesterol traffic (NPC1, NPC2, and STARD3, among others) are
unknown. (2) It is unknown whether higher maternal levels of total and LDL cholesterol
affect intracellular cholesterol trafficking in placental cells. However, high total and LDL
cholesterol levels impair lysosomal and mitochondrial function and cell viability in other
cell types (see Sections 5 and 6). Therefore, the effect of chronic exposure to high cholesterol
levels on placental cells requires further investigation.
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Abbreviations

7DHC 7-dehydrocholesterol
ATP Adenosine triphosphate
ApoA-I Apolipoprotein A1
ApoB Apolipoprotein B
ApoE Apolipoprotein E
ABCG1 ATP Binding Cassette Subfamily G Member 1
ABCA1 ATP-binding cassette transporter
ABCA2 ATP-binding cassette transporter ABCA2
CTB Cytotrophoblast
EVT Extravillous trophoblast
GSH Glutathione
HSP60 Heat Shock Protein 60
HDL High-density lipoprotein
HMGCR HMG-CoA reductase
INSIG Insulin-induced Gene Protein
LE Late endosomes
LXR Liver X receptor
LDL Low-density lipoprotein
LDLR Low-density lipoprotein receptor
LRP1 Low-density lipoprotein receptor-related protein 1
LRP2 Low-density lipoprotein receptor-related protein 2
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LRP8 Low-density lipoprotein receptor-related protein 8
LSDs Lysosomal storage diseases
LY Lysosomes
MPH Maternal physiological hypercholesterolemia
MSPH Maternal supraphysiological hypercholesterolemia
NPC1 Niemann–Pick type C 1
NPC2 Niemann–Pick type C 2
NPC1-Like1 Niemann–Pick type C 1-like1
PTH Primary human trophoblast
ROS Reactive Oxygen Species
SR-BI Scavenger receptor class B type 1
SLOS Smith-Lemli-Opitz syndrome
SCAP SREBP cleavage-activating protein
STARD3 StAR Related Lipid Transfer Domain Containing 3
SCP-x Sterol carrier protein-x
SREBP-2 Sterol regulatory element-binding protein 2
STB Syncytiotrophoblast
TC Total plasma cholesterol
VLDL Very-low-density lipoprotein
VLDLR Very-low-density-lipoprotein receptor
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