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Abstract: Pterostilbene (PTS), a methylated analog of resveratrol (RSV), has recently attracted much
attention due to its enhanced bioavailability compared to RSV. However, little is known about
the radical-scavenging mechanism of PTS. In this study, we investigated the effect of Mg(ClO4)2

on the scavenging reaction of galvinoxyl radical (GO•) by PTS in acetonitrile (MeCN). GO• was
used as a model for reactive oxygen radicals. The second-order rate constant (kH) for the GO•-
scavenging reaction by PTS was more than threefold larger than that by RSV, although thermodynamic
parameters, such as the relative O–H bond dissociation energies of the phenolic OH groups, ionization
potentials, and HOMO energies calculated by the density functional theory are about the same
between PTS and RSV. The oxidation peak potential of PTS determined by the cyclic voltammetry in
MeCN (0.10 M Bu4NClO4) was also virtually the same as that of RSV. On the other hand, no effect of
Mg (ClO4)2 on the kH values was observed for PTS, in contrast to the case for RSV. A kinetic isotope
effect of 3.4 was observed when PTS was replaced by a deuterated PTS. These results suggest that a
one-step hydrogen-atom transfer from PTS to GO• may be the rate-determining step in MeCN.

Keywords: antioxidant; hydrogen transfer; resveratrol; pterostilbene; galvinoxyl; magnesium ion;
kinetic isotope effect; density functional theory; cyclic voltammetry

1. Introduction

Resveratrol (RSV) (Figure 1), 3,5,4′-trihydroxy-trans-stilbene, found in grapes, is one of
the representative antioxidants that shows a plethora of remarkable biological properties [1].
On the other hand, pterostilbene (PTS) (Figure 1), where the phenolic OH groups at the
C-3 and C-5 positions in RSV are replaced by methoxy groups, has recently attracted much
attention due to its enhanced bioavailability, compared to RSV [2–6]. However, little is
known about the radical-scavenging mechanism of PTS. There are three mechanisms for the
initial step of the radical-scavenging reaction of phenolic antioxidants: one-step hydrogen-
atom transfer (HAT) from the phenolic OH group; electron transfer followed by proton
transfer (ET–PT); and sequential proton-loss electron transfer (SPLET) [7]. Redox-inactive
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metal ions, such as magnesium ion (Mg2+), are a powerful tool to examine the involvement
of electron-transfer processes [8–13], because it has been reported that electron-transfer
reactions are significantly accelerated by their presence [14,15]. The stabilization of one-
electron reduced species by these metal ions leads to the acceleration. In fact, a significant
acceleration in the radical-scavenging reaction of RSV or (+)-catechin was observed in the
presence of Mg2+ in acetonitrile (MeCN), suggesting that the reaction may proceed via the
ET–PT mechanism [8,12]. In MeCN, an aprotic solvent, the SPLET mechanism can be ruled
out, since the deprotonation of the phenolic OH group hardly occurs.
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Figure 1. Chemical structures of RSV and PTS.

On the other hand, no effect of Mg2+ was observed on the radical-scavenging rate
of a vitamin E analog in MeCN, suggesting that the reaction may proceed via the HAT
mechanism [13]. The elucidation of the detailed radical-scavenging mechanism is of
considerable importance for the development of synthetic antioxidants having a stronger
activity than naturally occurring ones. In fact, we have previously reported a number of
synthetic antioxidants that show a stronger radical-scavenging activity than the parent
compounds [16–31]. We report herein the effect of Mg2+ on the scavenging reaction of
galvinoxyl radical (GO•) by PTS in MeCN. GO• is frequently used as a model for the
reactivity of reactive oxygen species to evaluate the activity of antioxidants [32]. The
difference in the effect of Mg2+ on the GO•-scavenging rates between RSV and PTS provides
a valuable insight into the structure–activity and structure–mechanism relationships for
the radical-scavenging reaction of phenolic antioxidants.

2. Materials and Methods
2.1. Materials

PTS (analytical grade) was commercially obtained from Excel Chemical Co., Ltd.,
Tokyo, Japan, and used without further purification. GO• was purchased from the Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan. MeCN (spectral grade) used as a solvent was
commercially obtained from Nacalai Tesque, Inc., Kyoto, Japan, and used as received. Mg
(ClO4)2 was purchased from FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan.
Deuterated PTS was prepared by dissolving 1 g of PTS in 20 mL of 10% D2O in CD3OD
and then removing the solvent by evaporation, a process that was repeated three times
(99% deuteration degree for NMR spectroscopy). RSV was commercially obtained from
Sigma-Ardrich, St. Louis, MO, USA). Tetra-n-butylammonium perchlorate (Bu4NClO4),
used as a supporting electrolyte for electrochemical measurements, was purchased from
the Tokyo Chemical Industry Co., Ltd., Japan, recrystallized from ethanol (spectral grade,
Nacalai Tesque, Inc., Kyoto, Japan), and dried under vacuum at 313 K.

2.2. Spectral and Kinetic Measurements

UV-vis spectra were recorded on an Agilent 8453 photodiode array spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA). The GO•-scavenging rates of PTS in MeCN were
determined based on the absorbance change at 428 nm due to GO• (ε = 1.4× 105 M−1 cm−1)
every 1.5 s after mixing of 0.2 mL of an MeCN solution of GO• (2.0× 10−5 M) with 0.2 mL of an
MeCN solution containing PTS (3.0× 10−3, 5.9× 10−3, 8.9× 10−3, and 1.2× 10−2 M), using a
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stopped-flow technique on a UNISOKU RSP-1000-02NM spectrophotometer (UNISOKU Co.,
Ltd., Osaka, Japan), which was thermostated at 298 K with a Thermo Scientific NESLAB RTE-7
Circulating Bath (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Pseudo-first-order rate
constants (kobs) were determined by a least-square curve fit on an Apple MacBook Pro personal
computer (Apple Inc., Cupertino, CA, USA). The first-order plots of ln (A–A∞) vs. time (A
and A∞ are the absorbance at the reaction time and the final absorbance, respectively) were
linear until three or more half-lives with the correlation coefficient ρ > 0.999. It was confirmed
that the kobs values derived from at least three independent measurements agreed within an
experimental error of±5% in each case.

2.3. Theoretical Calculations

Density functional theory (DFT) calculations were performed on a 16-processor high
performance computer (ForScientist XD1, HPC System Inc., Tokyo, Japan). The geometry
optimization was performed using the M06-2X/6-31++G(d) basis set with a C-PCM solva-
tion model parameterized for acetonitrile, as implemented in the Gaussian 09 (Revision
A.02, Gaussian, Inc., Wallingford, CT, USA) (the computational details (coordinates and
energy values) are available in the Supplementary Materials) [33]. The calculated energy
difference values (DHT, HT: hydrogen transfer) are defined as the energy difference values
of heat of formations of phenoxyl radicals (∆H (phenoxyl radical)) and the parent phenols
(∆H (phenol)) (Equation (1)), while the bond dissociation energy (BDE) includes the heat
of formation of hydrogen atom (∆H (H•)) (Equation 2). The ionization potentials (IP)
were calculated from the energy difference between the phenol and the corresponding
radical cation.

DHT = ∆H(phenoxyl radical) − ∆H(phenol) (1)

BDE = DHT + ∆H(H•) (2)

2.4. Electrochemical Measurements

The cyclic voltammetry measurements were performed on an ALS-630A electrochem-
ical analyzer (BAS Co. Ltd., Tokyo, Japan) in MeCN containing 0.10 M Bu4NClO4 as a
supporting electrolyte. The Pt working electrode (BAS Co. Ltd., Tokyo, Japan) was polished
with an alumina polishing suspension (BAS Co. Ltd., Tokyo, Japan) and an alumina pol-
ishing pad (BAS Co. Ltd., Tokyo, Japan) and rinsed with methanol (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan) before use. The counter electrode was a platinum
wire (BAS Co. Ltd., Tokyo, Japan). The concentration of PTS or RSV was 1.0 × 10−3 M.
The measured potentials were recorded with respect to an Ag/AgNO3 (0.01 M) reference
electrode (BAS Co. Ltd., Tokyo, Japan) with the sweep rate of 100 mV s−1 at 298 K. The
oxidation peak potentials (Epa) were converted to those vs. the saturated calomel electrode
(SCE) by adding 0.29 V [34].

3. Results and Discussion

The rate of the reaction of PTS with GO• was investigated by monitoring the spectral
change during the reaction. Upon mixing of PTS with GO• in MeCN, the absorption band
at 428 nm due to GO• decreased gradually, as shown in Figure 2. This indicates that PTS
efficiently scavenged GO• (Figure 3). The decay of the absorbance at 428 nm monitored by
a stopped-flow technique obeyed pseudo-first-order kinetics, when the concentration of
PTS ([PTS]) was maintained at more than a 10-fold excess of the concentration of GO• (inset
of Figure 2). The pseudo-first-order rate constants (kobs) linearly increased with increasing
[PTS] (Figure 4). The second-order rate constant (kH) in Equation 3 could be determined
from the slope of the plot (Equation 4) for the GO•-scavenging reaction by PTS (Figure 3)
in MeCN to be 1.3 × 10 M−1 s−1. This kH value is more than threefold larger than that
obtained for RSV (kH = 4.1 M−1 s−1) under the same experimental conditions (Table 1) [8].

−d[GO•]/dt = kH[PTS][GO•] (3)
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kobs ([PTS] > 10[GO•]) = kH[PTS] (4)
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Figure 2. Spectral change observed every 7.5 s (once every fifth measurement) during the reaction
of PTS (1.5 × 10−3 M) with GO• (1.0 × 10−5 M) in MeCN at 298 K. Inset: the first-order plot of the
absorbance at 428 nm.
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Table 1. Experimental kH values in MeCN, calculated DHT, IP and EHOMO values by DFT, and
experimental Epa values in MeCN (0.10 M Bu4NClO4) for RSV and PTS.

Compound kH/M−1 s−1 DHT/kcal mol−1 IP/kcal mol−1 EHOMO/kcal mol−1 Epa/V vs. SCE

RSV 4.1 398.4 133.3 –157.7 +1.10
PTS 1.3 × 10 398.2 132.6 –158.9 +1.11

The kH values were also determined for the reaction of PTS with GO• in the presence
of Mg(ClO4)2 to examine whether the electron-transfer reaction is involved as the rate-
determining step. In the case of RSV, the kH values were reported to increase with increasing
the concentration of Mg(ClO4)2 [8]. Such an acceleration by Mg(ClO4)2 indicates that the
GO•-scavenging reaction by RSV proceeds via an electron transfer from RSV to GO• as the
rate-determining step in MeCN [8]. On the other hand, no acceleration effect of Mg(ClO4)2
was observed on the kH values for PTS, as shown in Figure 5. Thus, the GO•-scavenging
reaction by PTS may proceed via the one-step hydrogen-atom transfer rather than via the
electron transfer followed by proton transfer as the rate-determining step in MeCN.
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The deuterium primary kinetic isotope effect (KIE) was investigated with the use of a
deuterated pterostilbene (PTS-d), which was prepared by the exchange reaction of H+ with D+

in the phenolic OH group of PTS in deuterated methanol (CH3OD). The second-order rate
constant (kD) for the reaction of PTS-d with GO• was determined to be 3.7 M−1 s−1. Thus, the
KIE value (kH/kD) was calculated to be 3.4. A KIE value larger than unity (kH/kD > 1) clearly
supports the involvement of a hydrogen-atom transfer as the rate-determining step [35].

The density functional theory (DFT) calculations were also carried out to compare the
radical-scavenging reactivity of PTS with RSV [33]. The energy difference values (DHT,
HT: hydrogen transfer) between the parent phenols (RSV and PTS) and the corresponding
phenoxyl radicals were determined by DFT calculation at the M06-2X/6-31++G(d) level
with C-PCM = acetonitrile. The DHT values reflect the relative O–H bond dissociation
energies of the phenolic OH groups. Thus, the hydrogen-atom donor ability of the phenolic
OH groups can be evaluated by the DHT values. The calculated DHT value thus obtained
for the OH group at the C-4′ position in PTS (398.2 kcal mol−1) is about the same as that
in RSV (398.4 kcal mol−1) (Table 1). On the other hand, the electron donor ability of the
phenols can be evaluated by their ionization potentials (IP). The IP value of PTS was also
calculated by DFT calculation to be 132.6 kcal mol−1, which is also about the same as that
of RSV (133.3 kcal mol−1) (Table 1). The HOMO energies (EHOMO) of PTS and RSV were
also calculated by the DFT calculations, as shown in Table 1, and were also almost the same.
The energy difference of the HOMO energies (0.8 kcal mol−1) is virtually the same as that
of the IP values (0.8 kcal mol−1).

The electron donor ability of PTS was also compared with RSV by cyclic voltammetry
measurements in MeCN containing 0.10 M Bu4NClO4 as a supporting electrolyte. An
irreversible oxidation (anordic) peak was observed both for PTS and RSV, as shown in
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Figure 6. From the cyclic voltammograms, the oxidation peak potentials (Epa) of PTS and
RSV were determined to be +1.11 and +1.10 V vs. SCE at the scan rate of 100 mV s−1

(Table 1). These Epa values are also virtually the same, indicating that the electron donor
ability of PTS is almost the same as that of RSV in MeCN (0.10 M Bu4NClO4).
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Figure 6. Cyclic voltammograms of PTS (1.0 × 10−3 M) (solid line) and RSV (1.0 × 10−3 M) (dashed
line) in MeCN (0.10 M Bu4NClO4) recorded at the scan rate of 100 mV s−1 on a Pt working electrode.

The partition coefficient of PTS (log P = 2.69) is significantly larger than that of RSV
(log P = 2.048) [3]. Thus, the hydrophobic interaction between PTS and GO• is thought to
be stronger than that between RSV and GO• in MeCN, an aprotic polar solvent, although
such an interaction could not be observed experimentally. This may cause the faster
GO•-scavenging rate for PTS compared to RSV.

4. Conclusions

PTS scavenged GO• more rapidly than RSV. The methyl substitution of the phenolic
OH groups in RSV may result in the change in the GO•-scavenging mechanism from elec-
tron transfer to the one-step hydrogen-atom transfer, providing valuable information about
the structure–reactivity and structure–mechanism relationships for the radical-scavenging
reaction of phenolic antioxidants.
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