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Abstract: Although selenium nanoparticles (SeNPs) have attracted great attention due to their
potential antioxidant activity and low toxicity, the application of SeNPs is still restricted by their
poor stability. A combination of polysaccharides and SeNPs is an effective strategy to overcome
the limitations. In this study, Polygonatum sibiricum polysaccharide (PSP) was used as a stabilizer
to fabricate SeNPs under a simple redox system. Dynamic light scattering, transmission electron
microscopy, energy dispersive X-ray, ultraviolet-visible spectroscopy, Fourier transform infrared,
and X-ray photoelectron spectrometer were applied to characterize the synthesized PSP-SeNPs. The
stability and the antioxidant activity of PSP-SeNPs were also investigated. The results revealed
that the zero-valent and well-dispersed spherical PSP-SeNPs with an average size of 105 nm and a
negative ζ-potential of −34.9 mV were successfully synthesized using 0.1 mg/mL PSP as a stabilizer.
The prepared PSP-SeNPs were stable for 30 days at 4 ◦C. The decoration of the nanoparticle surface
with PSP significantly improved the free radical scavenging ability of SeNPs. Compared to the
H2O2-induced oxidative stress model group, the viability of PC-12 cells pretreated with 20 µg/mL
PSP-SeNPs increased from 56% to 98%. Moreover, PSP-SeNPs exhibited a higher protective effect on
the H2O2-induced oxidative damage on PC-12 cells and lower cytotoxicity than sodium selenite and
SeNPs. In summary, these results suggest the great potential of PSP-SeNPs as a novel antioxidant
agent in the food or nutraceuticals area.

Keywords: selenium nanoparticles; Polygonatum sibiricum polysaccharide; stability; antioxidant

1. Introduction

Selenium is an essential micronutrient for humans and animals [1]. It is an integral
component of more than 30 kinds of selenoproteins and selenium-containing enzymes,
such as selenoprotein P (SelP), selenoprotein S (SelS), selenoprotein M (SelM), subfami-
lies of thioredoxin reductases (TrxR), glutathione peroxidases (GPx), and iodothyronine
deiodinases (ID), that play a key role in regulating redox balance and preventing cellular
damage from radicals [2,3]. However, at least one billion people in the world are at risk
of selenium deficiency at present because the intake of selenium is insufficient to meet
the daily requirement [4]. Epidemiological studies established that selenium deficiency
is associated with many diseases, including premature aging, a decline in sperm motility,
myocardial failure, neurological diseases, endemic osteoarthropathy (Keshan disease), and
ischemic heart disease [5]. Although high-dose sodium selenite, methyl selenium, and se-
lenocysteine exhibit excellent bioactivities, they can also result in serious toxicity problems,
leading to many diseases [6]. Thus, it is of great importance to seek novel selenium species
as food supplements or additives.
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Selenium nanoparticles (SeNPs) have gained much attention owing to their unique
physical, chemical, and antioxidant activities [7]. Moreover, SeNPs have higher bioavail-
ability and lower toxicity in comparison to other chemical forms of selenium, making them
the promising alternative selenium source in food dietary [8]. However, SeNPs alone with
valence state zero are highly unstable in an aqueous solution and easily transform to aggre-
gate, resulting in lower bioactivity and further limiting their practical application [9]. Many
efforts have been made to develop a simple, efficient, and green strategy for the dispersion
and stabilization of SeNPs using bioactive templates [10]. Natural polysaccharides not only
have complex structures, large specific surface areas, and ionizable functional groups but
also possess excellent biocompatibility and biodegradability [11]. These features could
decrease the surface energy of SeNPs, further preventing aggregation through electrostatic
interaction or hydrogen bonds. Thus, polysaccharides applied as carriers to fabricate SeNPs
with desired characteristics, such as stability and functionality, using the green chemical
method is drawing much attention recently. For example, numerous studies reported that
chitosan (CS) could be used as templates to prepare uniform SeNPs and the ligated SeNPs
remain stable for over 1 month [12]. However, the superior properties of CS are limited due
to its water insolubility and our previous research also found that CS-SeNPs aggregated
under alkaline conditions (pH ≥ 9) [13]. Several polysaccharides derived from fungi [14],
fruit [15], and medicinal plants [16] have been demonstrated to enhance the antioxidant
activity of SeNPs. Recently, medicinal plant polysaccharides have attracted increasing
attention due to their significant bioactivities with no side effects [17]. Therefore, it can be
expected that the combination of medicinal plant polysaccharides with SeNPs will reduce
the inherent limitations and enhance the benefits of selenium and polysaccharides.

Polygonatum sibiricum is a traditional Chinese herbal medicine, belonging to the Lili-
aceae family, which has been introduced in the 2015 edition of pharmacopeia [18]. China
has abundant resources of Polygonatum sibiricum, especially in the south of the Yangtze
River [19]. The constituents of P. sibiricum include polysaccharides, saponins, flavonoids,
alkaloids, lignin, vitamins, and a variety of trace elements, of which polysaccharides are the
major pharmacologically active ingredients [20]. In the last three years, Polygonatum sibir-
icum polysaccharides (PSP) are demonstrated to exhibit a wide range of pharmacological
activity [21], such as osteogenic activity [22], anti-diabetes [23], immunological activity [24],
and especially antioxidant activity, which makes them suitable for application in functional
foods and therapeutic agents. PSP demonstrated strong antioxidant properties, which
could attenuate D-gal-induced heart aging [25] and protect the mice livers against ethanol-
induced oxidative damage via inhibiting oxidative stress [26]. However, no study has been
reported using PSP as a decorator to functionalize SeNPs.

In this study, considering the antioxidant activity of PSP as well as the drawbacks of
SeNPs, a combined strategy was conducted to fabricate SeNPs using PSP as a stabilizer
in the redox system of sodium selenite (Na2SeO3) and ascorbic acid (Vc) through a sim-
ple chemistry approach. The synthesized PSP functionalized SeNPs (PSP-SeNPs) were
characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM),
energy dispersive X-ray (EDX), ultraviolet-visible spectroscopy (UV-vis), Fourier trans-
form infrared (FTIR), and X-ray photoelectron spectrometer (XPS). The physicochemical
stabilities of synthesized nanoparticles under varying conditions, including ionic strength,
pH, and temperature, were analyzed. In addition, the antioxidant activity of PSP and
PSP-SeNPs was quantified by ABTS and DDPH free radical scavenging assays. Moreover,
the protective effect on the H2O2-induced cell death was also investigated by MTT assay.

2. Materials and Methods
2.1. Reagents

Commercial Polygonatum sibiricum polysaccharide (PSP) with a purity of 95% and a molec-
ular weight of 14 kDa was obtained from Qiannuo Biotechnology Co. Ltd. (Xi’an, China),
sodium selenite (Na2SeO3), hydrogen peroxide (H2O2), ascorbic acid (Vc), potassium persul-
fate (K2S2O8), 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-
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sulfonic acid) and diammonium salt (ABTS) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). All chemicals used were of analytical grade, and the
water used in all experiments was obtained from the Milli-Q system.

2.2. Preparation of SeNPs and PSP Stabilized SeNPs

PSP-SeNPs were prepared according to the procedure described by Ye et al. with
minor modification [8]. PSP stock solution (5 mg/mL) was freshly prepared. Where 1 mL of
sodium selenite solution (50 mM) was mixed with various volumes of PSP solution under
stirring for 5 min. Then 1 mL of ascorbic acid solution (200 mM) was added dropwise
into the mixture, and it was reconstituted to a final volume of 10 mL with Milli-Q water.
The reaction was carried out at room temperature for 30 min. Finally, the solution was
dialyzed using regenerated cellulose tubes (Mw cutoff 3500 Da) against ultrapure water
for 48 h at 4 ◦C. The final concentrations of PSP were 0.01, 0.05, 0.075, 0.1, 0.125, 0.15,
0.25 mg/mL. SeNPs were synthesized in the absence of PSP through the same procedure as
above. The resultant products were lyophilized to obtain the freeze-dried nanocomposites.
The concentration of selenium was determined by the Optima 8300 inductively coupled
plasma optical emission spectrometer (ICP-OES, PerkinElmer, Billerica, MA, USA).

2.3. Characterization

The mean diameter, size distribution, and ζ-potential of nanocomposites were deter-
mined using a Zetasizer Nano ZS analyzer (Malvern Instruments Corporation, Worcestershire,
UK). The morphology was observed using transmission electron microscopy (TEM) (JEOL,
JEM-2100, Tokyo, Japan). Samples for TEM observation were prepared by placing one drop
of SeNPs and PSP-SeNPs aqueous solution on a carbon-coated copper grid and dried at
room temperature. The micrographs were acquired at the accelerating voltage of 200 kV.
The elemental composition and distribution were determined by the energy dispersive X-ray
(EDX) analysis performed on a high-resolution transmission electron microscopy (HRTEM)
(JEOL, JEM-2100, Tokyo, Japan). The ultraviolet-visible (UV-vis) spectrophotometer (UV-
1800, Shimadzu Corporation, Tokyo, Japan) was used to measure the UV-vis absorption
spectra of SeNPs and PSP-SeNPs solutions in the wavelength range of 190–800 nm with
an interval of 1.0 nm. The Fourier transform infrared (FTIR) spectra were recorded on a
Nicolet iS 10 instrument (Thermo Fisher Scientific, Waltham, MA, USA). Each sample was
grounded with KBr, pressed into uniform pellets, and scanned in the wavenumber range of
4000–400 cm−1 with a resolution of 4.0 cm−1 using pure KBr as the background. The X-ray
photoelectron spectrometer (XPS) was used to analyze the valence states of the elements. The
XPS patterns were operated on a Thermo Scientific ESCALab 250Xi+ (Thermo Fisher Scientific,
Waltham, MA, USA) using 150 W monochromated Al Kα radiation.

2.4. Stability of PSP-SeNPs

The stability of PSP-SeNPs under various conditions was investigated according to
the methods described previously [27]. To determine the effect of ionic concentration on
stability, 10 mL of PSP-SeNPs were mixed with different concentrations of NaCl solution
(10, 50, and 100 mM). The effect of pH on the stability of NPs was analyzed by adjusting the
pH of PSP-SeNPs to 2, 3, 4, 5, 6, 7, 8, 9, and 10 using 0.1 M HCl or NaOH. Where 10 mL of
PSP-SeNPs were incubated in a water bath at different temperatures (25, 50, 70, and 90 ◦C)
to investigate the effect of temperature on the stability of PSP-SeNPs. After being stabilized
for 1 h, their mean diameter and ζ-potential were determined using a Zetasizer Nano ZS
analyzer. In addition, PSP-SeNPs solutions were stored at 4 ◦C for 30 days to investigate
the short-term storage stability by determining the mean diameter and ζ-potential.

2.5. Antioxidant Assays
2.5.1. DPPH Radical Scavenging Ability

The DPPH radical scavenging activity was determined referring to the methods
reported previously with minor modifications [14]. Various concentrations of PSP, SeNPs,
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PSP-SeNPs, and Vc at 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0 mg/mL were prepared. Further,
2 mL of the sample solutions were mixed with an equal volume of freshly prepared DPPH
solution (50 mg/L) in ethanol. The mixture was shaken vigorously and incubated in
darkness at 33 ◦C for 30 min. The absorbance was measured at 517 nm using a UV-
vis spectrophotometer. Vc was used as a positive control. The scavenging activity was
calculated as follows:

DPPH radical scavenging ability (%) =

(
1 − Aa − Ab

Ac

)
× 100 (1)

where Aa is the absorbance of the sample mixed with DPPH solution, Ab is the absorbance
of the sample in the absence of the DPPH solution, Ac is the absorbance of the DPPH
solution without the sample as a blank control.

2.5.2. ABTS Radical Cation Decolonization Assay

The assay of ABTS radical cation scavenging ability was performed as described
previously with some modification [28]. ABTS and potassium persulfate (K2S2O8) were
dissolved in distilled water. A stock solution of ABTS•+ was prepared by mixing 7.4 mM
ABTS solution with 2.6 mM K2S2O8 solution. The mixture was incubated for 12 h in the
dark to reach equilibrium. The ABTS•+ stock solution was diluted with sodium phosphate
buffer (pH 7.4) to obtain an optical density of 0.70 ± 0.02 at 734 nm. Then 1 mL of different
concentrations of PSP, SeNPs, PSP-SeNPs, and Vc (0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0 mg/mL)
was added to 4 mL of diluted ABTS•+ solution. The mixture was vigorously blended and
incubated at room temperature for 6 min in darkness. The absorbance was measured at
734 nm using a UV-vis spectrophotometer. The ability to scavenge ABTS•+ was calculated
by Equation (2).

ABTS•+radical scavenging ability (%) =

(
1 − Ad − Ae

Af

)
× 100 (2)

where Ad is the absorbance of the sample mixed with the ABTS•+ solution, Ae is the
absorbance of the sample in the absence of the ABTS•+ solution, Af is the absorbance of the
ABTS•+ solution without the sample.

2.6. Cells Culture and MTT Assays

PC-12 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and 1% antibiotic mixture (100 U/mL penicillin
and 100 µg/mL streptomycin). The cytotoxic effects of different selenium concentrations of
PSP-SeNPs, SeNPs, and Na2SeO3 on cells were tested using MTT assays [15]. Cells were
seeded in a 96-well plate at a density of 1 × 104 cells/well and incubated at 37 ◦C in a CO2
incubator (5% CO2 and 95% relative humidity) for 24 h. Then the medium was removed
and cells were treated with different concentrations of samples prepared in DMEM with
10% FBS for an additional 24 h. After incubation, 20 µL of MTT (5 mg/mL) was added to
each well and incubated at 37 ◦C for 3 h. Then the supernatant was removed and 150 µL of
DMSO was added. The absorbance was measured by a microplate reader at 570 nm. The
cell viability was calculated by Equation (3).

Cell viability (%)= ODsample/ODcontrol × 100 (3)

where ODsample is the absorbance of the treated cells and ODcontrol is the absorbance of the
control cells.

To determine the protective effect of PSP-SeNPs, SeNPs, and Na2SeO3 on H2O2-
induced cell cytotoxicity, cells were pre-incubated with different selenium concentrations
of samples prepared in DMEM with 10% FBS for 24 h. After incubation, the medium
was removed and cells were washed with PBS. Then cells were treated with a medium
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containing 500 µM H2O2 for 12 h. The medium was removed and the cell viability was
determined by MTT assay as described above.

2.7. Statistical Analysis

All the experiments were performed at least in triplicate. The results were expressed as
mean ± standard deviation (SD). Statistical analysis was carried out using paired t-tests for
comparing means of two samples by the SPSS 20.0 statistical software (IBM, Armonk, NY,
USA). Statistical differences between samples were performed with a level of significance
of p < 0.05.

3. Results
3.1. The Synthesis of SeNPs and PSP-SeNPs

In the present study, SeNPs and PSP-SeNPs were prepared using a simple redox
system of ascorbic acid and sodium selenite in the absence and presence of PSP as the
stabilizer and capping agent. The visual color of the reaction solution is an indicator to
preliminary infer the formation of selenium nanoparticles [29]. As shown in Figure 1, the
red color of the solution indicated the SeO3

2− was successfully reduced to either monoclinic
or amorphous SeNPs [16]. In addition, the SeNPs in the presence of PSP showed a uniform
red color and were stable in the aqueous solution. However, SeNPs without the decoration
of PSP aggregated into precipitation after 1 day of storage, whereas no significant changes
were observed in the solution of PSP-SeNPs. This might be attributed to the high surface
energy, leading to the aggregation of SeNPs [9]. Hence, PSP plays a key role in the formation
and stabilization of SeNPs.

Antioxidants 2022, 11, x FOR PEER REVIEW 5 of 13 
 

where ODsample is the absorbance of the treated cells and ODcontrol is the absorbance of the 
control cells. 

To determine the protective effect of PSP-SeNPs, SeNPs, and Na2SeO3 on H2O2-in-
duced cell cytotoxicity, cells were pre-incubated with different selenium concentrations 
of samples prepared in DMEM with 10% FBS for 24 h. After incubation, the medium was 
removed and cells were washed with PBS. Then cells were treated with a medium con-
taining 500 μM H2O2 for 12 h. The medium was removed and the cell viability was deter-
mined by MTT assay as described above. 

2.7. Statistical Analysis 
All the experiments were performed at least in triplicate. The results were expressed 

as mean ± standard deviation (SD). Statistical analysis was carried out using paired t-tests 
for comparing means of two samples by the SPSS 20.0 statistical software (IBM, Armonk, 
NY, USA). Statistical differences between samples were performed with a level of signifi-
cance of p < 0.05. 

3. Results 
3.1. The Synthesis of SeNPs and PSP-SeNPs 

In the present study, SeNPs and PSP-SeNPs were prepared using a simple redox sys-
tem of ascorbic acid and sodium selenite in the absence and presence of PSP as the stabi-
lizer and capping agent. The visual color of the reaction solution is an indicator to prelim-
inary infer the formation of selenium nanoparticles [29]. As shown in Figure 1, the red 
color of the solution indicated the SeO32− was successfully reduced to either monoclinic or 
amorphous SeNPs [16]. In addition, the SeNPs in the presence of PSP showed a uniform 
red color and were stable in the aqueous solution. However, SeNPs without the decora-
tion of PSP aggregated into precipitation after 1 day of storage, whereas no significant 
changes were observed in the solution of PSP-SeNPs. This might be attributed to the high 
surface energy, leading to the aggregation of SeNPs [9]. Hence, PSP plays a key role in the 
formation and stabilization of SeNPs. 

 
Figure 1. Synthetic scheme for the preparation of selenium nanoparticles (SeNPs) and Polygonatum 
sibiricum polysaccharide stabilized selenium nanoparticles (PSP-SeNPs) and images of the disper-
sions before and after storage for 1 day. 

3.2. The Size and ζ-Potential Analysis of SeNPs and PSP-SeNPs 
The concentration of the polysaccharides is an important factor that influences the 

size of SeNPs, further affecting their functionality in food or medical application [30]. 
Thus, the effect of PSP concentrations on the hydrated particle size and the corresponding 
polydispersity index (PDI), as well as the ζ-potential of nanoparticles in the aqueous 
solution was investigated first. The particle size of barely SeNPs was up to 157 nm (Figure 

Figure 1. Synthetic scheme for the preparation of selenium nanoparticles (SeNPs) and Polygona-
tum sibiricum polysaccharide stabilized selenium nanoparticles (PSP-SeNPs) and images of the
dispersions before and after storage for 1 day.

3.2. The Size and ζ-Potential Analysis of SeNPs and PSP-SeNPs

The concentration of the polysaccharides is an important factor that influences the
size of SeNPs, further affecting their functionality in food or medical application [30]. Thus,
the effect of PSP concentrations on the hydrated particle size and the corresponding poly-
dispersity index (PDI), as well as the ζ-potential of nanoparticles in the aqueous solution
was investigated first. The particle size of barely SeNPs was up to 157 nm (Figure 2A).
The addition of PSP at different concentrations could decrease the average size of SeNPs.
The average diameter of PSP-SeNPs significantly decreased from 151 to 132 nm as the
concentration of PSP increased from 0.01 to 0.075 mg/mL. PSP-SeNPs showed the smallest
average size of 114 nm at the PSP concentration of 0.1 mg/mL, whereas further increases
in PSP concentration from 0.125 to 0.25 mg/mL resulted in an increase in the size from 123
to 152 nm. It might be due to PSP at a low concentration was not enough to control the
formation of SeNPs and prevent them from aggregation [31]. On the other hand, too high
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PSP concentration represented more PSP chains coated on the surface of SeNPs, resulting
in a larger hydration particle size [32]. As shown in Figure 2B, SeNPs in the absence of PSP
exhibited a negative ζ-potential at −20.3 mV. The ζ-potential values of PSP-SeNPs were
determined to be approximately −24.7, −26.6, −29.6, −30.4, −32.8, −34.9 mV at the PSP
concentration of 0.01, 0.05, 0.075, 0.1, 0.125, 0.25 mg/mL. The absolute ζ-potential values
of PSP-SeNPs increased with the PSP concentration increasing, further demonstrating
that negatively charged PSP was exposed on the surface of SeNPs. Moreover, the higher
magnitude of ζ-potential represents greater stability of nanoparticles [13], suggesting that
the SeNPs decorated with PSP possess higher stability than barely SeNPs. PSP-SeNPs
prepared by 0.1 mg/mL PSP were used in the following experiments.
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Figure 2. Size distribution (A) and ζ-potential (B) of SeNPs and PSP-SeNPs prepared with differ-
ent concentrations of PSP (0.01–0.25 mg/mL). Values marked with *: p < 0.05, **: p < 0.01, and
***: p < 0.001 indicated significant differences when compared to SeNPs.

3.3. Morphological and Structural Characterizations of SeNPs and PSP-SeNPs

The morphology and size of SeNPs and PSP-SeNPs were further characterized by
TEM. Figure 3A,B exhibited the TEM images of SeNPs in the absence of PSP. The results
showed that adjacent SeNPs agglomerated together and presented a dendritic structure.
The large-sized cluster and aggregates can also be easily visualized. However, the SeNPs in
the presence of 0.1 mg/mL PSP (Figure 3C,D) exhibited a homogeneous and monodisperse
spherical structure with an average size of about 105 nm, confirming the important role of
PSP in regulating and stabilizing SeNPs. It should be pointed out that the hydrodynamic
radius of the nanoparticles provided in the DLS analysis was larger than the size observed
in the TEM image, which was sensitive to the electron-rich nanoparticles. The HRTEM
image (Figure 3E) of an individual PSP-SeNPs showed a distinct lattice fringe with an
interplanar spacing of 0.43 nm, revealing the excellent crystallinity of PSP-SeNPs. The
elemental composition and distribution of the PSP-SeNPs were further determined by
EDX. As shown in Figure 3F, the strong C, O, and Se element peaks were observed in EDX
spectra. The PSP-SeNPs had a 63.10% weight percentage of C atom, together with 10.95%
O atom and 25.94% Se atom. Furthermore, no other peaks for other elements were detected,
indicating that PSP was successfully coated on the surface of SeNPs and confirming the
purity of PSP-SeNPs [33].
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Figure 3. TEM images of SeNPs (A,B) and PSP-SeNPs in the presence of 0.1 mg/mL PSP
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3.4. The Stability of SeNPs and PSP-SeNPs

Stability is an important factor influencing the functionality and applications of nano-
materials. In this study, the effect of pH, temperature, and ionic strength on the stability
of PSP-SeNPs was investigated. As shown in Figure 4A, the average size of PSP-SeNPs
significantly decreased from 1262 to 186 nm when pH was increased from 2 to 3. It could
be observed that no obvious changes occurred in the average size at pH range from 4 to
10. Similar results were also described previously on the stability of Polyporus umbellatus
polysaccharide (PUP) coated SeNPs [34]. This might be ascribed to the protonation of PSP
at pH 2 that weakened the electrostatic interactions between SeNPs and PSP, leading to the
aggregation of nanoparticles. Moreover, the ζ-potential of PSP-SeNPs kept increasing with
pH increased and reached the highest value of −32.6 mV at pH 7. A further increase in pH
did not significantly affect the ζ-potential of PSP. It has been reported that the ζ-potential
of nanoparticles was highly associated with the pKa value of the polysaccharides. The pH
value higher than the pKa of polysaccharides resulted in more deprotonated characteristic
groups, contributing to the increase in ζ-potential [27]. The average size of PSP-SeNPs
increased from 113 to 191 nm, accompanied by the temperature increase from 25 ◦C to
90 ◦C with a constant ζ-potential at around −31 mV (Figure 4B). The result indicated that
heating could increase the chances and strength of collisions, resulting in a larger size [29].
As shown in Figure 4C, the particle size of PSP-SeNPs exhibited a slight increase in 10
and 50 mM NaCl with decreased ζ-potential, and steeply increased to 882 nm in a high
concentration of NaCl at 100 mM. High ion strength could remarkably reduce the surface
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charge of nanoparticles due to the electrostatic interaction between positive charged Na+

and negatively charged PSP-SeNPs, resulting in the decrease of the electrostatic repulsion
among nanoparticles [35]. It was observed that PSP-SeNPs were stable at about 113 nm for
at least 20 days of storage (Figure 4D). The stability of PSP-SeNPs was higher than that of
SeNPs decorated with a hyperbranched polysaccharide from Lignosus rhinocerotis 14. It
should be pointed out that SeNPs in the absence of PSP precipitated after 1-day storage
(Figure 1). Moreover, the particle size of PSP-SeNPs only increased from 113 to 123 nm
after 30 days of storage and the ζ-potential of PSP-SeNPs presented at around −30 mV
during the storage time, suggesting that PSP-SeNPs had better stability.
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Figure 4. Effect of pH (A), temperature (B), ion strength (C), and storage time (D) on the average size
and ζ-potential of PSP-SeNPs. Values marked with *: p < 0.05, **: p < 0.01, and ***: p < 0.001 indicated
significant differences when compared to the conditions of pH: 7, temperature: 25 ◦C, NaCl: 0 mM,
or storage time: 0 day.

3.5. Characterization and Possible Stabilizing Mechanism of PSP-SeNPs

The UV-vis spectra of PSP and PSP-SeNPs in the range of 190 to 800 nm were presented
in Figure 5A. It was shown that no characteristic absorption peaks were observed on the
UV-vis spectra of PSP at the concentration of 0.01 mg/mL. The PSP-SeNPs exhibited wide
absorption bands with a maximum absorption peak at about 288 nm. The characteristic
absorption peak corresponded to a localized surface plasmon response (LSPR), further
demonstrating the formation of nanoparticles [36].

FTIR spectra were performed to clarify the interaction between PSP and SeNPs. In
the spectrum of PSP (Figure 5B), the broad absorption band at nearly 3390 cm−1 was
assigned to the O-H stretching vibration. The peak presented at 2927 cm−1 was attributed
to the C-H stretching vibration. The signals that occurred in the region of 1200–1000 cm−1

were associated with the C-O stretching vibration, indicating the existence of a pyranose
ring [37]. The FTIR spectrum of PSP-SeNPs was similar to that of the pure PSP, indicating
the presence of PSP on the surface of SeNPs. In addition, the O-H stretching vibration
occurred red-shift from 3390 cm−1 to 3376 cm−1, suggesting the formation of hydrogen
bonds between SeNPs and the PSP chains [38]. Based on the above results, we proposed
that the interaction mechanism was similar to the combination of arabinogalactans/and
SeNPs as described previously [36]. Briefly, the SeO3

2− reacted with the -OH group in the
PSP molecule to form special chain-shaped intermediates first, then reduced to the element
Se by ascorbic acid. The Se atom further aggregated into the nucleus to form SeNPs as
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the reaction processed and the -OH groups of PSP were bound to the surface of SeNPs to
prevent the aggregation of nanoparticles.
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Figure 5. UV-vis spectra (A), FTIR spectra (B), XPS spectra (C), and XPS spectra of Se 3d (D) of PSP
and PSP-SeNPs.

The XPS spectra were further used to analyze the valence state of selenium. The peaks
of Se 3d and 3p orbitals at the binding energy of 55.6 and 179.3 eV (Figure 5C) indicated the
zero-valent state of Se within the PSP-SeNPs [10]. As shown in Figure 5D, the peaks of Se
3d5/2 and Se 3d3/2 were up-shifted from 55.1 and 55.9 (SeNPs) to 55.4 and 56.2 (PSP-SeNPs),
respectively. The results indicate that the Se 3d orbit participated in the formation of PSP-
SeNPs [39], confirming that PSP was successfully conjugated to the SeNPs. Meanwhile, no
peak was found at 59.5 eV, which represented the typical Se 3d signal of Se (IV), suggesting
that Se (IV) was completely reduced to elemental selenium [40].

3.6. Antioxidant Assays

The DPPH and ABTS radical scavenging activity were measured in our study to
evaluate the antioxidant activity of PSP, SeNPs, and PSP-SeNPs. As shown in Figure 6A,
PSP exhibited a low DPPH radical scavenging ability at the tested concentrations. Both
SeNPs and PSP-SeNPs had a concentration-dependent DPPH radical scavenging effect
at 0.01–1.0 mg/mL. PSP-SeNPs showed a higher scavenging ability than SeNPs. The
scavenging effect of PSP-SeNPs reached 59% at the concentration of 1.0 mg/mL, whereas
SeNPs could only scavenge 43% DPPH radical at the same concentration. This might
be attributed to the enhanced hydrogen-donating ability of PSP-SeNPs to form a stable
DPPH-H molecule [41]. Compared to the DPPH radical, all the tested samples performed
more efficiently in scavenging ABTS radical (Figure 6B). Similar to the DPPH scavenging
assay, the ABTS radical scavenging capacity of PSP-SeNPs was significantly stronger than
that of PSP and SeNPs. At 1.0 mg/mL, the scavenging effects of PSP, SeNPs, and PSP-SeNPs
were 20%, 62% and 89%, respectively. It has been reported that the DPPH scavenging
ability of gum arabic-selenium nanocomposites was lower than 60% at 1.0 mg/mL [42].
The ABTS radical scavenging activity of SeNPs functionalized with a polysaccharide
from Rosa roxburghii fruit only reached about 50% at 1.0 mg/mL 15. The free radical
scavenging ability of PSP-SeNPs synthesized in our study was higher than the above
nanoparticles. Moreover, the results showed that the surface decoration of SeNPs with PSP
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could remarkably improve the antioxidant activity of SeNPs and PSP. PSP-SeNPs with a
smaller size could provide more radical reactive sites due to their larger specific surface
area, resulting in higher antioxidant activity [29,43]. However, barely SeNPs were easily
aggregated with a decreased active surface to react with the free radicals, further reducing
their biological activities [43].
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Figure 6. Antioxidant activities of PSP, SeNPs, and PSP-SeNPs in vitro. (A) DPPH radical scavenging
activity. (B) ABTS radical scavenging activity. Ascorbic acid (Vc) is used as a positive control. Values
marked with *: p < 0.05, **: p < 0.01, and ***: p < 0.001 indicated significant differences when compared
to SeNPs at the same concentration.

3.7. Effects of PSP-SeNPs on H2O2-Induced PC-12 Cells Toxicity

Although the free radical scavenging assays proved the excellent antioxidant activity of
PSP-SeNPs, the antioxidant assays based on chemical reactions may not necessarily reflect
the behavior of antioxidants in biological systems [16]. Thus, the effect of different selenium
species on oxidative stress-induced damage to PC-12 cells was further investigated by MTT
assay. As depicted in Figure 7A, the cell viability was higher than 90% when incubated
with SeNPs and PSP-SeNPs at the concentration of 1–20 µg/mL. However, the cell viability
dramatically decreased to 67% after treatment with 20 µg/mL Na2SeO3, suggesting that
both SeNPs and PSP-SeNPs showed lower cytotoxicity than Na2SeO3.
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Figure 7. Effects of sodium selenite (Na2SeO3), SeNPs, and PSP-SeNPs on the viability of PC-12 cells
(A). Values marked with *: p < 0.05 and ***: p < 0.001 indicated significant differences when compared
to the control group. The protective effect against H2O2 (0.5µM)-induced PC-12 cells toxicity by
MTT assay (B). Values marked with *: p < 0.05 and **: p < 0.01 indicated significant differences when
compared to the H2O2 treated group.

The overproduction of reactive oxygen species (ROS) is considered to be the main
cause of oxidative damage [44]. Herein, exogenous H2O2 was used as an inducer of cell
damage in our model. PC-12 cells incubated with 500 µM H2O2 showed a remarkable
decrease of cell viability reaching 56% (Figure 7B). However, the viability of PC-12 cells
decreased to 55%, 50%, and 43% when pretreated with Na2SeO3 at concentrations of 1,
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10, and 20 µg/mL, respectively. Interestingly, compared with the H2O2-induced oxidative
stress model group, cells pretreated with SeNPs or PSP-SeNPs alleviated the H2O2-induced
toxicity on PC-12 cells in a concentration-dependent manner, as reflected by the increase in
cell viability. The viability of PC-12 cells pretreated with 20 µg/mL SeNPs or PSP-SeNPs
significantly increased to 79% and 98%, respectively. In addition, the protective effect of
PSP-SeNPs on H2O2-induced oxidative damage on PC-12 cells was better than that of
SeNPs. The results confirmed that PSP-SeNPs had excellent antioxidant activity in cells,
which may be associated with the free radical scavenging ability.

4. Conclusions

Our present study provided a facile approach for the synthesis of size-controlled SeNPs
by using PSP as a stabilizer in the redox system of sodium selenite and ascorbic acid. The
synthesized PSP-SeNPs presented a monodisperse spherical structure with zero-valent Se. The
interaction between the hydroxyl groups of PSP chains and the surface of SeNPs contributed
to the stable structure of PSP-SeNPs. Furthermore, PSP-SeNPs exhibited stronger free radical
scavenging ability and a higher protective effect against H2O2-induced PC-12 cell death
than SeNPs. Our findings not only provide the foundations for the utilization of PSP in the
development of stable SeNPs but also emphasize the potential application of PSP-SeNPs as an
antioxidant in food additives, dietary supplements, and nutraceuticals.
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