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Abstract: Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate
the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of
endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue
from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was
performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion
during the experiment. Seven days from the induction, once the lesions were implanted, an Açai
Berry was administered daily by gavage for the next seven days. At the end of the experiment, the
hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical
and histological analysis confirmed this result. From the molecular point of view, Western blot
analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo
group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and
ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry
administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that
recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression.
Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The
Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream
antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored
the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was
also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration
was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.

Keywords: endometriosis; autophagy; mitophagy; oxidative stress; apoptosis

1. Introduction

Endometriosis is a chronic disease of the endometrium [1–3]. The abnormal infiltra-
tion and growth of stromal cells and endometrial epithelial cells causes the formation of
masses and nodules [2,4]. These lesions induce dysmenorrhea, chronic pelvic pain and
infertility [5,6]. Actual endometriosis affects 30 to 50% of women in menopause and 15% of
women of reproductive age [7]. The most accepted theories that explain the invasion and
implantation of endometrial tissue are the ectopic presence of endometrial stem cells [8],
retrograde menstrual reflux [9] and defects in the immune system [10].

Evidence from the literature shows a dysregulated antioxidant/pro-oxidant balance
and an increased proinflammatory microenvironment in endometrial lesions [11]. Recently,
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increasing importance has been assigned to the autophagic pathway in the induction of
the endometriosis [12–14]. It is the major constitutive pathway for the degradation of
cytoplasmic organelles and long-lived proteins in eukaryotic cells [15,16]. This catabolic
pathway mediates both the targeted and nonspecific sequestration of macromolecules
and cellular organelles, promoting the recycling of useful metabolites and permitting the
degradation of cellular constituents in lysosomes [17]. Autophagy can be deleterious
to the cell when its activation is too extensive, and it can induce cell death. Differently,
a basal autophagic response acts as a survival and housekeeping mechanism that maintains
cellular homeostasis in physiological conditions and contributes to overcoming the stress-
ful conditions induced by both extracellular and intracellular stimuli, including reduced
nutrient supply, hypoxia, invasion of microorganisms, oxidative stress and therapeutic
stress [18–20]. Autophagy is also responsible for the elimination of damaged or aged
organelles. Mitophagy or mitochondrial autophagy is the selective mechanism to remove
the dysfunctional mitochondria [21]. Indeed, autophagy shows a key role in inducing
cell death by promoting caspase-dependent apoptosis in homeostatic conditions [22,23].
For instance, the autophagic machine has important roles in the process of differentiation,
growth, cell immunity, tissue remodeling and environmental adaptation [24,25]. In normal
endometrial cells, the induction of autophagy exercises proapoptotic effects [26]. Mean-
while, ectopic endometrial cells showed a reduced autophagic pathway compared with the
normal endometrium [27]. The autophagic pathway was impaired in the endometriotic-
like lesions of the mice, and the autophagic markers were altered as compared to the
control [28]. Strongly associated with autophagy, apoptosis is one of the main impaired
pathways during endometriosis because it contributes to the survival of the ectopic cells
and the growth of the lesions [29].

Thus, several papers described that autophagic and apoptotic activators would reduce
the development of this pathology by reducing the growth of the lesions [30]. Recently,
increased interest has been developed for the nutritional properties and medicinal uses of
Açai Berries [31–33]. They are an Amazonian fruit produced by the Euterpe oleracea palm.
For millennia, it has been used by Indians as a natural mixture to treat many diseases [34–37].
Açai Berries, in fact, contain many biologically active phytochemicals including quercetin,
luteolin, delphinidin, cyanidin, malvidin and pelargonidin [38]. Several studies report that
Açai Berries have neuroprotective, anti-inflammatory and antioxidant properties [38–42].
Recently, the modulation of the autophagic pathway by the Açai Berry supplementation
was reported [33]. However, more data are required to confirm the beneficial effect of Açai
Berries. In this paper, we employed a well-consolidated endometriosis model to investigate
the effects of Açai Berry administration and the molecular pathway involved.

2. Materials and Methods
2.1. Animals

Female Sprague–Dawley rats were employed in this study. The University of Messina
Review Board for animal care (OPBA) approved this study. All animal experiments com-
plied with the new Italian and EU regulations (D.Lgs 2014/26, EU Directive 2010/63).

2.2. Experimental Protocol

Rats were randomly distributed into two groups, donor or recipient, and endometriosis
was induced as already described [43]. To establish similar estrogen levels among the rats,
donor animals were administered 10 IU pregnant mare serum gonadotropin. After 41 h,
the rats were euthanized and the uterus was removed. Tissue was minced with scissors in
a 1.5 mL centrifuge tube containing PBS. Tissue from all the donors was pooled, and the
equivalent of one uterus/500 uL of PBS was intraperitoneally injected along the midventral
line of the recipient animals. Endometriosis was allowed to develop for seven days.

The success rate for the lesion development was 70% [44].
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2.3. Experimental Groups

The rats were randomized and assigned to the following groups (n = 12):

(1) Endo group: rats were subjected to experimental endometriosis and vehicle (saline)
was administered by a gavage on the 7th day and for the next 7 days.

(2) Endo + Açai Berry group: rats were subjected to experimental endometriosis as
described and an Açai Berry (200 mg/kg) was orally administered on the 7th day and
for the next 7 days.

(3) Sham group: rats were injected intraperitoneally with 500 uL of PBS instead of
endometrial tissue, and a vehicle (saline) was administered on the 7th day and for the
next 7 days.

The Açai Berry dose was based on previous studies [45]. In order to evaluate the
effect of the Açai Berry administration on the endometriotic-like lesions, the rats were
sacrificed 14 days after the induction. Thereafter, a laparotomy was performed to collect
the endometriotic implants for further analyses.

2.4. Abdominal High-Frequency Ultrasound

Ultrasonographic exams were performed using the Esaote MYLAB OMEGA VET
on anesthetized rats (2% isoflurane) positioned in dorsal recumbency. An abdominal B-
mode was performed with a High Frequency Linear array (4–15 MHz) transducer [46].
Longitudinal and transverse scanning planes were employed for the evaluation of different
abdominal structures.

2.5. Histological Examination

Endometriotic lesions were fixed in a formaldehyde solution and were embedded
in Paraplast [47,48]. Tissue slides were stained with H&E and were evaluated using
a Leica DM6 microscope (Leica Microsystems SpA, Milan, Italy). A histological analysis
was performed using a double-blind procedure. Histopathological scores were assigned
according to the formula P (persistence of epithelial cells in the explants) × I (intensity
of glands), as already described [30]. The lesion volume was calculated according to the
formula V = (length × width2) × 0.5 [49].

2.6. Terminal Deoxynucleotidyl Nick-End Labeling (TUNEL) Assay

Apoptosis was analyzed with a TUNEL assay using an in situ cell death detection kit
(Roche 11684795910) [50–52].

2.7. Western Blot Analysis

Western blots were performed as already described to obtain either cytosolic and
mitochondrial [53] or cytosolic and nuclear [54] protein fractions. The specific primary
antibodies anti-Beclin (sc-48381, Heidelberg, Germany), anti-mTOR (Cell Signaling, 2972,
Milan, Italy), anti-p-mTOR (sc-293089, Heidelberg, Germany), anti-p-AKT (sc-293125,
Heidelberg, Germany), anti-AKT (Invitrogen AHO1112, London UK), anti-LC3 II (Sigma
Aldrich, ABC232, Milan, Italy), anti-AMBRA1 (Abcam, Ab69501, Cambrige, UK), anti-IP3K
(sc-1637), anti-BCL-2 (sc-7382, Heidelberg, Germany), anti-PARKIN (sc-32282, Heidelberg,
Germany), anti-BAX (sc-7480, Heidelberg, Germany), anti-NQO1 (sc-32793, Heidelberg,
Germany), anti-HO1 (sc-136960, Heidelberg, Germany), anti-PINK1 (sc-517353, Heidelberg,
Germany), anti-NRF2 (sc-365949, Heidelberg, Germany), anti-p-ERK (sc-7383, Heidelberg,
Germany), anti-ATG9 (cell signaling 13509, Milan, Italy), anti-ERK (sc-514302, Heidelberg,
Germany), anti-p-ATG1 (Bioss, BS-3464R, Cambrige, UK) and anti-ATG1 (Sigma, A7481,
Cambrige, UK) were mixed in a 5% w/v nonfat dried milk solution and were incubated at
4 ◦C overnight. Blots were incubated with a peroxidase-conjugated goat antirabbit IgG
(Jackson Immuno Research) or a peroxidase-conjugated bovine antimouse IgG secondary
antibody for 1 h at room temperature [55,56]. To confirm the equal amounts of protein,
filters were also incubated with the antibody against β-ACTIN (sc-47778), COXIV (ab14744)
and HISTONE 3 (ab1791). Signals were detected with an enhanced chemiluminescence
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detection system reagent (Super-Signal West Pico Chemiluminescent Substrate) [57,58]. The
relative expression of the protein bands was quantified using densitometry with Bio-Rad
ChemiDoc XRS software, #1708265 [59]. Images of the blot signals were imported to analysis
software (Image Quant TL, Amersham Biosciences, Freiburg, Germany, v2003) [60,61].

2.8. Biochemical Analysis

Lipid peroxidation was evaluated with the TBARS test by reading the MDA levels at
535 nm [54,62]. SOD activity was evaluated as already described [47,63] and is expressed as
U/g protein [64]. GSH levels were determined using a microplate reader at 412 nm [65,66].

2.9. Statistical Analysis

All the values are expressed as mean ± standard error of the mean of N observations.
The results were analyzed with a t-test when comparing the two groups, and we used
the t-test and the Kolmogorov–Smirnov test to analyze the normal distribution of the
data (Prism 8 for macOS version 8.2.1 (279)). A p-value of less than 0.05 was considered
significant. * p < 0.05 vs. Endo, ** p < 0.01 vs. Endo, *** p < 0.001 vs. Endo.

3. Results
3.1. Effect of Açai Berry on Endometriotic-Like Lesions Development

Ultrasonographic exams were employed to monitor the development of the pathology
at seven and fourteen days from the induction. A pelvic ultrasound showed endometriotic-
like lesions in the inner surface of the peritoneal cavity in both groups at seven days from
the induction (Figure 1A,B). This analysis was conducted to control the establishment
of the pathology before the Açai Berry administration. No differences were detected in
diameter (Figure 1C) and lesions number (Figure 1D). After this control was applied, the
Açai Berry was administered for the next 7 days. Fourteen days from the induction, the
ultrasonographic exams showed that the Endo group had an increased lesion diameter
(Figure 1E,G) as compared to the Endo + Açai Berry group (Figure 1F,G). The same number
of lesions was detected in both groups (Figure 1H).

Antioxidants 2022, 11, 2484 5 of 17 
 

 
Figure 1. Analysis of endometriotic-like lesions development: High-frequency ultrasound analysis 
(hfUS) at 7 days from the endometriosis induction: Endo (A), Endo + Açai Berry (B), lesion diameter 
(C) and lesion number (D). hfUS analysis at 14 days from the endometriosis induction: Endo (E), 
Endo + Açai Berry (F), lesion diameter (G) and lesion number (H). A p-value of less than 0.05 was 
considered significant. *** p < 0.001 vs. Endo. 

3.2. Effect of BS Administration on Macroscopic and Histological Analysis 
Fourteen days after the rats developed endometriosis, an induction laparotomy was 

performed in both groups and lesions were harvested. The macroscopic analysis (Figure 
2A,B) was in line with the ultrasonographic exams. The endometriosis lesions collected 
from the Endo group showed a higher volume (Figure 2C) and area (Figure 2D) that than 
collected from the Endo + Açai Berry group. The histopathological analysis showed that 
the Açai Berry administration changed the lesion morphology. Lesions harvested from 
the Endo group presented characteristic glands and stroma (Figure 2E,G), while the Açai 
Berry administration reduced the histopathological score (Figure 2F,G). 
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Figure 1. Analysis of endometriotic-like lesions development: High-frequency ultrasound anal-
ysis (hfUS) at 7 days from the endometriosis induction: Endo (A), Endo + Açai Berry (B), lesion
diameter (C) and lesion number (D). hfUS analysis at 14 days from the endometriosis induction:
Endo (E), Endo + Açai Berry (F), lesion diameter (G) and lesion number (H). A p-value of less than
0.05 was considered significant. *** p < 0.001 vs. Endo.

3.2. Effect of BS Administration on Macroscopic and Histological Analysis

Fourteen days after the rats developed endometriosis, an induction laparotomy
was performed in both groups and lesions were harvested. The macroscopic analysis
(Figure 2A,B) was in line with the ultrasonographic exams. The endometriosis lesions col-
lected from the Endo group showed a higher volume (Figure 2C) and area (Figure 2D) that
than collected from the Endo + Açai Berry group. The histopathological analysis showed
that the Açai Berry administration changed the lesion morphology. Lesions harvested from
the Endo group presented characteristic glands and stroma (Figure 2E,G), while the Açai
Berry administration reduced the histopathological score (Figure 2F,G).
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analysis: Endo (E), Endo + Açai Berry (F) and histopathologic score (G). A p-value of less than 0.05
was considered significant. ** p < 0.01 vs. Endo, *** p < 0.001 vs. Endo.

3.3. Effect of BS Administration on Autophagy Inhibition Induced by Endometriosis

A Western blot analysis was employed to evaluate the modulation of the autophagic
pathway induced by the Açai Berry administration. Samples collected from the Endo group
showed an elevated PI3K expression (Figure 3A) and an increased phosphorylation of AKT
(Figure 3B), ERK (Figure 3C) and mTOR (Figure 3D). Differently, in the samples harvested
from the Endo + Açai Berry group, the PI3K expression (Figure 3A) decreased, as did the
pAKT (Figure 3B), p-ERK1/2 (Figure 3C) and the p-mTOR (Figure 3D) levels.

To further evaluate the autophagosome formation, we checked the phosphorylation of
the ATG1/ULK1 complex and the expression of the downstream proteins. The samples
collected from the Endo group showed elevated ATG1 phosphorylation (Figure 4A) and
low AMBRA1 (Figure 4B), BECLIN (Figure 4C), ATG9 (Figure 4D) and LC3II (Figure 4E)
expressions. The Açai Berry administration reduced Atg1 phosphorylation (Figure 4A) and
increased the expression of AMBRA1 (Figure 4B), BECLIN (Figure 4C), ATG9 (Figure 4D)
and LC3II (Figure 4E).

3.4. Effect of BS Administration on Mitophagy Inhibition Induced by Endometriosis

To investigate mitophagy induction, we investigated the cytoplasmic and mitochon-
drial expression of PINK1 and PARKIN. The samples collected from the Endo group showed
elevated PINK1 (Figure 5A) and PARKIN (Figure 5B) expressions in the mitochondria,
while Parkin expression was reduced in the cytosol (Figure 5C). The Açai Berry administra-
tion reduced PINK1 (Figure 5A) and PARKIN (Figure 5B) mitochondrial expressions, while
the PARKIN cytoplasmic expression was increased (Figure 5C).
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less than 0.05 was considered significant. *** p < 0.001 vs. Endo.
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A p-value of less than 0.05 was considered significant. ** p < 0.01 vs. Endo, *** p < 0.001 vs. Endo.

3.5. Effect of BS Administration on Oxidative Imbalance Induced by Endometriosis

In order to evaluate the oxidative alterations, the NRF2 pathway was examined.
A Western blot analysis showed a low nuclear NRF2 expression (Figure 6A) and low
cytosolic HO-1 (Figure 6B) and NQO-1 (Figure 6C) expression in the samples collected
from the Endo group. Conversely, the Açai Berry administration increased the NRF2
nuclear expression (Figure 6A) and the cytosolic expression of the downstream proteins
(Figure 6B,C).
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Figure 6. Analysis of Açai Berry administration on prooxidative alterations. Western blot anal-
ysis of NRF2 (A) nuclear expression, HO-1 (B) and NQO-1 (C) cytosolic expression, GSH levels
(D), SOD activity (E) and MDA (F) levels. A p-value of less than 0.05 was considered significant.
** p < 0.01 vs. Endo, *** p < 0.001 vs. Endo.

The lesions collected from the Endo group also showed low GSH levels (Figure 6D)
and SOD (Figure 6E) activity, while lipid peroxidation was found to be elevated (Figure 6F).
The Açai Berry administration increased the GSH levels (Figure 6D) and SOD activity
(Figure 6E) and reduced lipid peroxidation (Figure 6F).
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3.6. Effect of BS Administration on Apoptosis Inhibition Induced by Endometriosis

The samples collected from the Endo group showed an impaired apoptotic pathway
(Figure 7). A Western blot analysis revealed an elevated BCL-2 (Figure 7A) and low BAX
(Figure 7B) expression in the Endo group. The Endo + Açai Berry group showed a reduced
BCL-2 (Figure 7A) and increased Bax (Figure 7B) expression. These results were confirmed
with a TUNEL analysis where the number of TUNEL-positive cells strongly increased in
the Endo + Açai Berry group (Figure 7D,E) as compared to the Endo group (Figure 7C,E).
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4. Discussion

Endometriosis is a chronic disease with intricate molecular mechanisms. Açai Berries
have important antioxidant, anti-inflammatory and neuroprotective proteins that have
the ability to modulate the autophagic pathway in many diseases [38–42]. This paper
aimed to evaluate the molecular mechanisms regulated by Açai Berry supplementations
during endometriosis. The pathology was induced and monitored with an hfUS analysis.
The Açai Berry supplementation reduced the lesion area, volume and diameter. From
the molecular point of view, the endometrial microenvironment was characterized by
dysregulated autophagic, oxidative balance and apoptotic pathways [33,67,68].

Many papers described that autophagy is suppressed in endometriotic cells by the
PI3K/AKT/ERK1/2 pathways that positive regulate the expression of mTOR, which is
the major modulator of autophagy [69–73]. Açai Berry administration inhibited PI3K
and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR.
mTOR has a central role in the regulation of cell growth and autophagy [74]. Inhibiting
mTOR Açai Berry administration dephosphorylated ATG1, which promoted the activity of
the ATG1/ULK1 complex. The ATG1/ULK1 complex recruits other proteins, including
AMBRA1/BECLIN1 and ATG9, to promote autophagosome nucleation [75]. Additionally,
Açai Berry supplementation increased the expression of AMBRA1 and BECLIN-1, which
promotes the autophagic pathway transforming LC3I into its membrane-bound form
of LC3-II [76]. These findings showed the role of the Açai Berry administration in the
management of the autophagic pathway in endometriosis.

Although autophagy was initially considered a nonselective process, accumulating
evidence has shown the presence of specific pathways for the degradation of damaged
organelles [77,78]. Recent papers already described the role of mitochondrial autophagy
in endometriosis [30]. Currently, PARKIN and PINK1 are the most well-studied proteins
involved in the mechanism [79]. In the functional mitochondria PINK1, a serine/threonine
kinase is continuously degraded by matrix-processing peptidase [80,81]. It is a sensor
of organelle damage and an initiator of mitophagy [82]. In depolarized mitochondria, it
accumulates in the outer mitochondrial membrane [83] and recruits PARKIN, a cytoso-
lic E3 ubiquitin ligase [84]. PARKIN is a cytosolic protein that is recruited by PINK1 in
impaired mitochondria. PARKIN-labeled mitochondria are polyubiquitinated [85]. The
phospho-ubiquitin chain further recruits autophagy receptor proteins, triggering the for-
mation of autophagosomes for degradation. The Açai Berry administration restored this
organelle-specific autophagy by facilitating the removal of damaged mitochondria through
mitophagy. Mitochondria are the major source of ROS; therefore, when the mitophagy func-
tion is impaired and unfunctional mitochondria are not removed properly, they increase
ROS production, which aggravates tissue injury [86–89]. The endometrial microenviron-
ment is, in fact, characterized by a dysregulated oxidative balance [24]. The NRF2 signaling
controls the transactivation of several cytoprotective genes and is one on the most im-
portant regulatory pathways in defending cells from ROS [90]. Physiologically bound to
its inhibitor KEAP1, NRF2 is usually polyubiquitinated by the E1 ligase complex and is
degraded [33,91]. A dysregulated oxidative balance, which is characteristic of the disease,
breaks the KEAP1-NRF2 link and allows for the NRF2 translocation into the nucleus [92].
Here it binds the antioxidant response elements (ARE), promoting the expression of cyto-
protective genes with antioxidant and detoxifying roles [91]. The samples collected from
the animals administered with Açai Berries showed an increased NRF2 nuclear expression
as well the cytosolic expression of the cytoprotective proteins NQO-1 and HO-1. Well in
line with the literature, where elevated lipid peroxidation and ROS were found in ectopic
endometrium biopsies, Açai Berry supplementation restored the oxidative imbalance.

Increased oxidative stress and dysregulated autophagic pathways result in impaired
apoptosis. It has been recently shown that the induction of autophagy has a proapoptotic
effect on normal human endometrial cells [93]. While the overactivation of autophagy and
apoptosis has been identified as damaging in many pathologies, during endometriosis
they extern cytoprotective properties [94,95]. Indeed, they are tightly regulated by com-
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mon signals [96–98]. Our results demonstrated the proapoptotic effect of the Açai Berry
administration, which reduced the expression of the proapoptotic protein Bax and the anti-
apoptotic protein BCL2. This result was confirmed by the TUNEL assay, where apoptotic
cells were identified by the terminal deoxynucleotidyl transferase (TdT)-mediated addition
of labeled (X) de-oxyuridine triphosphate nucleotides (X-dUTPs) to the 3′-OH end of DNA
strand breaks.

Overall, our result showed the role of the Açai Berry administration on the man-
agement of endometriosis, describing the modulation of the autophagy, oxidative stress
and apoptosis.

5. Conclusions

Overall, this paper showed the key role of autophagy, oxidative stress and apoptosis
in the development of endometriosis. Our results showed that Açai Berries modulate the
PI3K/AKT/ERK1/2 pathways, thereby reducing the expression of mTOR and promoting
the autophagy. Indeed, the Açai Berries facilitated the removal of damaged mitochon-
dria through the activation of mitophagy and restored the oxidative imbalance and the
impaired apoptosis.
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