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Abstract: This study tested the hypothesis that intrarenal arterial transfusion of oxidized low-density
lipoprotein (ox-LDL) jeopardized the residual renal function and kidney architecture in rat chronic
kidney disease ((CKD), i.e., induced by 5/6 nephrectomy) that was reversed by rosuvastatin. Cell culture
was categorized into A1 (NRK-52E cells), A2 (NRK-52E + TGF-β), A3 (NRK-52E + TGF-β + ox-LDL)
and A4 (NRK-52E + TGF-β + ox-LD). The result of in vitro study showed that cell viability (at 24,
48 and 72 h), NRK-52E ox-LDL-uptake, protein expressions of epithelial–mesenchymal–transition
(EMT) markers (i.e., p-Smad2/snail/α-SMA/FSP1) and cell migratory and wound healing capacities
were significantly progressively increased from A1 to A4 (all p < 0.001). SD rats were categorized
into group 1 (sham-operated control), group 2 (CKD), group 3 (CKD + ox-LDL/0.2 mg/rat at day 14
after CKD induction) and group 4 (CKD + ox-LDL-treated as group 3+ rosuvastatin/10 mg/kg/day
by days 20 to 42 after CKD induction) and kidneys were harvested at day 42. The circulatory levels
of BUN and creatinine, ratio of urine-protein to urine-creatinine and the protein expressions of
the above-mentioned EMT, apoptotic (cleaved-caspase3/cleaved-PARP/mitochondrial-Bax) and
oxidative-stress (NOX-1/NOX-2/oxidized-protein) markers were lowest in group 1, highest in
group 3 and significantly higher in group 4 than in group 2 (all p < 0.0001). Histopathological
findings demonstrated that the kidney injury score, fibrotic area and kidney injury molecule-1
(KIM-1) displayed an identical pattern, whereas the cellular expression of podocyte components
(ZO-1/synaptopodin) exhibited an opposite pattern of EMT markers (all p < 0.0001). In conclusion,
ox-LDL damaged the residual renal function and kidney ultrastructure in CKD mainly through
augmenting oxidative stress, EMT and fibrosis that was remarkably reversed by rosuvastatin.

Antioxidants 2022, 11, 2465. https://doi.org/10.3390/antiox11122465 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11122465
https://doi.org/10.3390/antiox11122465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-1989-9752
https://orcid.org/0000-0001-9688-8769
https://doi.org/10.3390/antiox11122465
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11122465?type=check_update&version=1


Antioxidants 2022, 11, 2465 2 of 19

Keywords: chronic kidney disease; oxidized low-density lipoprotein; epithelial mesenchymal
transition; oxidative stress

1. Introduction

There is regrettably lacking an effective therapy for preserving the residual renal func-
tion of chronic kidney disease (CKD), leading to not only a growing burden of healthcare
costs [1] but also ultimately a result of end-stage renal disease (ESRD) [2] and unacceptably
high morbidity and mortality [3]. Renal fibrosis has been identified as an inevitable process
that frequently involves the initiation and evolution of CKD [2,3]. Currently, the mechanism
of renal fibrosis is believed to be multifactorial and yet completely understood [4–6]. In fact,
renal fibrosis is a complicated process that involves an interplay between epithelial cells,
extracellular matrix, vascular cells, myofibroblasts, and immune cells [7]. As the process of
renal fibrosis initiates, multiple physical changes occur between tubulointerstitial regions,
including interstitial fibrosis and tubular atrophy [8]. The accumulated extracellular ma-
trix (ECM) fibrils restrict the function of surrounding small vessels, resulting in reduced
blood flow, decreased water motility, and delayed oxygen diffusion rate [9,10]. Therefore,
ischemic tubular injury starts to trigger tubular cell apoptosis, leading to an increase of
profibrotic stimuli to drive expandable renal fibrosis [9,10].

The epithelial–to-mesenchymal transition (EMT) is recognized as being essential for
embryogenesis and tumor progression [11]. EMT is a cellular program by which epithelial
cells lose their cell–cell adhesion and gain the properties of migration to possess the different
fate in the mesenchymal type. It has been demonstrated that tubular epithelial cells undergo
phenotypic conversion after treatment with transforming growth factor-beta (TGF-β) and
the conversion is characterized by loss of epithelial proteins such as E-cadherin, and zonula
occludens-1 (ZO-1), and gain of mesenchymal markers such as vimentin, alpha-smooth
muscle actin (alpha-SMA), fibroblast-specific protein-1 (FSP1), and fibronectin [12,13].
Additionally, these alterations are usually accompanied by morphologic changes to a
fibroblast-like appearance [14–16]. EMT-associated morphology and phenotype as well as
EMT markers were detected in the tubular epithelium and peritubular interstitium after
nephrectomy in rodent [17].

Oxidized low-density lipoprotein (LDL) is a potentially risky type of cholesterol
for arterial atherosclerosis that is generated when normal LDL cholesterol is damaged by
free radicals and can be taken up by cells through scavenger receptor-mediated
endocytosis [18,19]. Interestingly, several studies have reported that oxidized LDL was
involved in the EMT process through its receptor interactions to trigger a cascade of the
signaling pathway [20–23] and specific miRNAs [24]. Additionally, it has been reported that
the elevation of plasma oxidized LDL leads to early fibrosis in not only kidney parenchyma
across the whole spectrum of CKD stages [25–27] but also cardiac myofibroblasts [28].
Furthermore, endothelial dysfunction and oxidative stress have been identified as com-
monly present in diabetic CKD and are strongly associated with unfavorable prognostic
outcomes [29]. Moreover, CKD always elicits oxidative stress and inflammation, resulting
in clinical adverse events [30].

Based on the above-mentioned issues [9–30], we tested the hypothesis that oxidized
LDL might play an essential role in the deterioration of the residual renal function in setting
of CKD through upregulation of renal tubular epithelial cells EMT process and renal fibrotic
signaling pathway.
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2. Materials and Methods
2.1. In Vitro Study Design
2.1.1. To Elucidate the Impact of Oxidized LDL on Facilitating TGF-β Induced EMT
Process in Cell Model

It is well recognized that the EMT process is mainly regulated by transforming growth
factor beta (TGF-β). Thus, in our in vitro study, we utilized the TGF-β co-cultured with
NRK-52E. Additionally, whether oxidized LDL would facilitate TGF-β to boost the progres-
sion of EMT was investigated.

2.1.2. Cell Culture and Cell Grouping

NRK-52E cells (rat renal proximal tubular cell line) were purchased from the Biore-
source Collection and Research Center (BCRC, Taipei, Taiwan) and cultured in DMEM(H)
medium with 5% CFS. All cells were maintained at 37 ◦C under 5% CO2. For individual in the
in vitro study, the cells were categorized into A1 (NRK-52E cell line), A2 (NRK-52E + TGF-β
(5 ng/mL co-cultured for 48 h)), A3 (NRK-52E + TGF-β (5 ng/mL) + oxidized LDL
(5 µg/mL co-cultured for 48 h)), and A4 (NRK-52E + TGF-β (5 ng/mL) + oxidized LDL
(20 µg/mL co-cultured for 48 h)), respectively.

2.1.3. Lipid Droplet Staining

To elucidate the uptake capacity of NRK-52E cells to ox-LDL, the Dil-labeled oxidized
LDL (i.e., purchased from Invitrogen) was utilized to induce the accumulation of lipid
droplets in NRK-52E cells. After TGF-β and oxidized LDL treatments, the lipid droplets
within NRK-52E cells were identified and quantitated by using LipidTOX™ Green neutral
lipid stain reagent (Invitrogen, Waltham, MA, USA, H34475).

2.1.4. Assessment of Wound Healing Migratory Ability

To assess the impact of TGF-β and oxidized LDL treatments on enhancing the growth
and migratory speed of NRK-52E cells, these cells were categorized into A1 to A4, respec-
tively. To investigate the growth speed of NRK-52E cells, the cells were incubated in the
disk and an artificial ditch was homogeneously created at the baseline (i.e., at 0 h) and the
cells were incubated on both sides separately. By 24 h after cell culture, we measured the
residual confluence area, defined as a wound healing process (%) that was estimated by
(initial area − final area)/(initial area).

To determine the migratory ability, the NRK-52E cells were cultured in the Transwell.
By 24 h after cell culture, the membrane was removed and the migrated cells in the bottom
side of the Transwell were carefully counted for the analysis of migratory ability.

2.2. In Vivo Study Design
2.2.1. Animal Model of 5/6 Nephrectomy for CKD Induction

Pathogen-free, adult male Sprague Dawley (SD) rats, weighting around 300–320 g
(Charles River Technology, BioLASCO Taiwan Co., Ltd., Taipei, Taiwan), were utilized in
the present study. The procedure and protocol of 5/6 nephrectomy for induction of the
CKD animal model were based on our recent reports [31,32]. In detail, all the animals
were anesthetized with inhalational 2.0% isoflurane, placed supine on a warming pad at
37 ◦C for midline laparotomies. Sham-operated rats received laparotomy only, while CKD
was induced by right nephrectomy plus arterial ligation of upper two-third (upper and
middle poles) blood supplies of the left kidney (i.e., by leaving lower one-third (lower pole)
kidney with normal blood supply). Such a CKD model allowed preservation of a limited
amount of function in renal parenchyma and offered a simulation of CKD setting. After
5/6 nephrectomy, oxidized LDL was given by intra-renal arterial administration. After
14 days of CKD induction, rosuvastatin (10 mg/kg/day) was given to the lower serum level
of oxidized LDL. By 42 days after 5/6 nephrectomy surgery, peripheral blood was collected
for the circulatory levels of blood urine nitrogen (BUN) and creatinine. The animals in each
group were euthanized and the kidneys were harvested for individual examination.
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The animals (n = 32) were equally categorized into group 1 (sham-operated control),
group 2 (CKD + 0.5cc normal saline by intrarenal arterial administration by day 14 after CKD
induction), group 3 (CKD + oxidized LDL/0.2 mg/rat by intrarenal artery administration once
by day 14 after CKD induction), and group 4 (CKD + oxidized LDL/0.2 mg/rat by intrarenal
artery administration once by day 14 after CKD induction + rosuvastatin/10 mg/kg/day
since day 20 to day 42 after CKD induction) and the kidney in each animal was harvested
at day 42. Because the company (i.e., Charles River Technology, BioLASCO Taiwan Co.,
Ltd., Taipei, Taiwan) could not provide the female animals for this study, we only utilized
male animals in the present study.

2.2.2. Examination of Renal Function Parameters

To elucidate if the CKD animal model was satisfactorily achieved, blood samples were
serially drawn prior to and after the CKD induction (i.e., before and by days 14, 28, and
42 prior to the animals were sacrificed). Plasma levels of creatinine and BUN were analyzed
by utilizing the standard laboratory method.

2.2.3. Collection of 24 h Urine for the Ratio of Urine Protein to Urine Creatinine (RuPr/uCr)
Prior to and by Day 42 after CKD Procedure

The procedure and protocol were based on our recent study [32]. To collect 24 h urine
for the RuPr/uCr, each animal in every group was placed in a metabolic cage (DXL-D,
Suzhou Fengshi Laboratory Animal Equipment Co., Ltd., Suzhou, China) for 24 h, and food
and water were freely accessed for the animals. A total of 24 h urine was collected from
each animal prior, and by day 42 after CKD, was conducted for assessing the RuPr/uCr.

2.2.4. Histopathological Assessment of Fibrotic Area

Masson’s trichrome stain was applied for the determination of fibrotic feature in
kidney specimens. Three 4 µm-thick serial fragments of kidney tissue were acquired by
Cryostat (Leica CM3050S). The fibrosis region was calculated using ImageJ software. Three
selected fragments were quantified for each animal. Three randomly chosen HPFs (100×)
were analyzed in each fragment.

2.2.5. Histopathologic Scoring of Kidney Damage by Day 42 after CKD Procedure

The pathological assessment of kidney injury scoring was determined in a blinded
manner that has been addressed by our previous studies [32,33]. In detail, the harvested
left kidney samples from each group of the animals were fixed in 10% buffered formalin,
embedded in paraffin, at 4 µm and stained specimen (hematoxylin and eosin; H & E)
for light microscopy. The scoring indicated the degree of tubular necrosis, loss of brush
border, cast formation, tubular dilatation, and Bowmen’s capsule dilatation in 10 randomly
selected, non-overlapping fields (200×) for each animal listing as: 0 (none), 1 (≤10%),
2 (11–25%), 3 (26–45%), 4 (46–75%), and 5 (≥76%).

2.2.6. Western Blot Assessment of Left Kidney Specimens

The methodology was based on our recent studies [32,33]. Briefly, primary antibod-
ies against p-Smad2 (1:1000, Cell Signaling, Danvers, MA, USA), p-Smad2 (1:1000, Cell
Signaling), Snail (1:1000, Cell Signaling), α-SMA (1:5000, Sigma, MA, USA), ferroptosis
suppressor protein 1 (FSP1) (1:1000, Cell Signaling), E-cadherin (1:1000, Abcam, Cambridge,
UK), Laminin (1:1000, Novus Biologicals, Centennial, CO, USA), Elastin (1:1000, Affinity
Biosciences, Cincinnati, OH, USA), Collagen type I (1:5000, Sigma), fibronectin (1:1000,
Abcam), transforming growth factor (TGF)-β1 (1:3000, Abcam), cleaved-Caspase3 (1:1000,
Cell Signaling), cleaved-PARP (1:1000, Cell Signaling), mitochondrial Bax (1:1000, Abcam),
NOX-1 (1:1000, Sigma), NOX-2 (1:1000, Sigma), oxidized protein (1:100, Millipore, Burling-
ton, MA, USA), Vimentin (1:1000, Cell Signaling), matrix metalloproteinase (MMP)2 (1:1000,
Cell Signaling), MMP9 (1:1000, Abcam), Actin (1:10,000, Chemicon, Tokyo, Japan), and
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COXIV (1:10,000, Abcam) were used. Signals were detected with horseradish peroxidase
(HRP)-conjugated goat anti-mouse, goat anti-rat, or goat anti-rabbit IgG.

Immunoreactive bands were visualized by enhanced chemiluminescence (ECL; Amer-
sham Biosciences, Buckinghamshire, UK), which were then exposed to Biomax L film
(Kodak). For quantification, ECL signals were digitized using Labwork software (UVP).
For oxyblot protein analysis, a standard control was loaded on each gel.

2.2.7. Immunofluorescent (IF) Study

The procedure and protocol for IF examination have been described by our recent
investigations [32,33]. Briefly, IF staining was conducted for the assessment of synap-
topodin (1:500, Santa Cruz, CA, USA), kidney injury molecule (KIM)-1 (1:400, Novus
Biologicals, Centennial, CO, USA), and zonula occludens-1 (ZO-1) (1:200, Novus). The
respective primary antibody was used with irrelevant antibodies as controls. Three sec-
tions of kidney specimens were analyzed in each rat. For quantification, three randomly
selected HPFs (×200 for IF study) were analyzed in each section. The mean number per
HPF for each animal was then determined by summation of all numbers divided by 9.
An IF-based scoring system was adopted for semi-quantitative analysis of KIM-1 in the
kidney as a percentage of positive cells in a blinded fashion (score of positively-stained cells:
0 = negative staining; 1 = <15%; 2 = 15–25%; 3 = 26–50%; 4 = 51–75%; 5 = 76–100% per
high-power filed (HPF)). Additionally, the fluorescent intensity was utilized for the analysis
of the ZO-1 and synaptopodin expression.

2.2.8. Statistical Analysis

Quantitative data are expressed as mean ± standard deviation. Statistical analyses
were performed using SAS statistical software for Windows version 8.2 (SAS Institute, Cary,
NC, USA). ANOVA was conducted, followed by Bonferroni multiple comparison post hoc
test for comparing variables among groups. A probability value <0.05 was considered
statistically significant.

3. Results
3.1. Preliminary Results for Pointing out a Corrective Direction of the Study (Figure S1)

First, before carrying on the present study, we tried to gather some preliminary data
to support our hypothesis. Thus, we utilized the NRK-52E cells (i.e., rat proximal renal
tubular cell line) which were categorized into G1 (i.e., NRK-52E), G2 (NRK-52E + TGF-β
(5 ng/mL)), G3 (NRK-52E + TGF-β + oxidized LDL (5 µg/mL)) and G4 (NRK-52E + TGF-β
+ oxidized LDL (20 µg/mL)), respectively. The result showed that the protein expressions
of phosphorylated (p)-Smad2, snail, alpha smooth muscle actin (α-SMA), and fibroblast-
specific protein 1 (Fsp1), four biomarkers of EMT, were notably progressively increased
from G1 to G4 (Figure S1). These findings provided essential information to schematically
illustrate the simplified underlying mechanism of EMT process in which oxidized LDL
facilitated TGF-β stimulation in renal tubular cells of CKD (Figure 4).

3.2. The Protein Expressions of EMT Biomarkers in NRK-52E Cell Line Undergoing the TGF-β
and Oxidized LDL Treatments (Figure 1)

To test whether oxidized LDL treatment would facilitate the TGF-β to enhance the
protein expressions of EMT biomarkers, the NRK-52E cells were categorized into A1
(NRK-52E), A2 (NRK-52E + TGF-β (5 ng/mL)), A3 (NRK-52E + TGF-β + oxidized LDL
(5 µg/mL)) and A4 (NRK-52E + TGF-β + oxidized LDL (20 µg/mL)). The result demon-
strated that the protein expressions of p-Smad2, snail, α-SMA, and Fsp1, four indicators
of EMT, were significantly and progressively increased, whereas the protein expression of
E-cadherin, an indicator of endothelial cell (EC) marker, was significantly and progressively
reduced from A1 to A4. Additionally, the protein expressions of collagen type I, laminin,
elastin, and fibronectin, four indices of extracellular proteins/fibrosis markers, exhibited
an identical pattern of EMT biomarkers. These findings implicated that oxidized LDL
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treatment played a fundamental role in upregulation of EMT process with dose-dependent
effect in renal tubular epithelial cells. Additionally, oxidized LDL, offered a synergic effect
with TGF-β to augment the EMT process. Our findings could, at least in part, explain why
fibrosis and perdition of renal function were commonly found in advanced CKD patients.
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Figure 1. Protein expressions of EMT biomarkers in NRK-52E cells treated by TGF-β and oxidized
LDL. (A) Protein expression of phosphorylated (p)-Smad2, * vs. other groups with different symbols
(†, ‡, §), p < 0.001. (B) Protein expression of Snail, * vs. other groups with different symbols (†,
‡, §), p < 0.001. (C) Protein expression of alpha smooth actin (α-SMA), * vs. other groups with
different symbols (†, ‡, §), p < 0.001. (D) Protein expression of fibroblast-specific protein 1 (Fsp1),
* vs. other groups with different symbols (†, ‡, §), p < 0.001. (E) Protein expression of E-cadherin
(E-cad), * vs. other groups with different symbols (†, ‡, §), p < 0.001. (F) Protein expression of collagen
type I (Coll-I), * vs. other groups with different symbols (†, ‡, §), p < 0.001. (G) Protein expression of
laminin, * vs. other groups with different symbols (†, ‡, §), p < 0.001. (H) Protein expression of elastin,
* vs. other groups with different symbols (†, ‡, §), p < 0.001. All statistical analyses were performed by
one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 3 for each group).
Symbols (*, †, ‡, §) indicate significance for each other (at 0.05 level). TGF-β = transforming growth
factor-beta; EMT = epithelial mesenchymal transition; LDL = low-density lipoprotein.

3.3. Cellular Levels of Fibrosis/ECM and Kidney Damaged Biomarkers (Figure 2)

It is well known that fibrosis/ECM is one of most common pathological findings
in setting of CKD (referred to Figure 4) or after acute kidney injury. To verify whether
oxidized LDL treatment would facilitate the TGF-β to upregulate the cellular expression of
fibrosis and the renal tubular damage, the immunofluorescent (IF) microscopic finding was
utilized in the present study with the conditions listed in Figure 1. As we expected, the IF
microscope demonstrated that the cellular expressions of laminin, fibronectin, and collagen
I, three extracellular matrix (ECM)/fibrosis markers, and cellular expression of KIM-1, an
indicator of kidney damage, were significantly and progressively increased from A1 to A4.
In this way, our results explicitly proved the aforementioned hypothesis, implying that
histopathological features of CKD are rather complicated.
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Figure 2. Cellular levels of fibrosis/ECM and kidney injury biomarkers in NRK-52E cells treated
by TGF-β and oxidized LDL. (A–D) Illustrating the immunofluorescent (IF) stain of microscopic
finding (400×) for identification of cellular expression of laminin (green color). (E) Analytical result
of number (%) of laminin+ cells, * vs. other groups with different symbols (†, ‡, §), p < 0.001.
(F–I) Illustrating the IF stain of microscopic finding (400×) for identification of cellular expression of
fibronectin (green color). (J) Analytical result of number (%) of fibronectin+ cells, * vs. other groups
with different symbols (†, ‡, §), p < 0.001. (K–N) Illustrating the IF stain of microscopic finding (400×)
for identification of the expression of collagen I (green color). (O) Analytical result of number (%) of
collagen I+ cells, * vs. other groups with different symbols (†, ‡, §), p < 0.001. (P–S) Illustrating the
IF microscopic finding (400×) for identification of cellular expression of kidney injury molecule-1
(KIM-1) (green color). (T) Analytical result of number (%) of KIM-1+ cells, * vs. other groups with
different symbols (†, ‡, §), p < 0.001. Scale bars in right lower corner represent 20 µm. All statistical
analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison post
hoc test (n = 5 for each group). Symbols (*, †, ‡, §) indicate significance for each other (at 0.05 level).

3.4. Morphological Features of NRK-52E Cells Followed by TGF-β and Oxidized LDL
Stimulation (Figure S2)

To clarify morphological features of NRK-52E cells after TGF-β and oxidized LDL
treatments, the NRK-52E cells were categorized into A1 to A4, i.e., as listed in Figure 1. The
result showed that the phenotype of NRK-52E cells was identified to alter from epithelial-
like phenotype to spindle-shape counterpart (i.e., indicated mesenchymal-like cells) after
7-day cell culture, especially more prominent in A4 group, implying these data once again
proved that oxidized LDL would induce EMT process in renal tubular epithelial cells.

3.5. Lipid Droplets in NRK-52E Cells after Oxidized LDL Treatment and Inflammatory Cells
Enhanced Extracellular Matrix (ECM) Production by NRK-52E Cells (Figure S3)

To clarify whether the uptake of oxidized LDL would be enhanced in NRK-52E
cells, the IF microscope was utilized with the conditions listed in Figure 1. The result
demonstrated that the number of lipid droplets within the cytoplasm of NRK-52E cells,
i.e., an index of endocytosis of oxidized LDL, was significantly and progressively in-
creased from A1 to A4, suggesting that NRK-52E cells had intrinsic capacity of uptake of
oxidized LDL.
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It is well recognized that inflammatory reaction was commonly upregulated in kidney
parenchyma in setting of CKD. Thus, we wanted to verify that inflammatory cells infiltra-
tion in renal tubules would enhance the production of ECM, i.e., an indirect biomarker
of fibrotic upregulation, by renal tubular cells, and therefore, the NRK-52E cells were
categorized into B1 (NRK-52E only) and B2 (NRK-52E + LPS-treated RAW 264.7 cells). The
results of cellular levels and protein levels of laminin, fibronectin, and collagen I, three
indicators of ECM, were significantly increased in B2 by comparison with B1. The findings
were consistent with our hypothesis.

3.6. Impact of Synergic Effect of TGF-β and Oxidized LDL on Wound Healing Process, Migratory
Assay, and Cell Viability (Figure 3)

Undoubtedly, oxidative stress/free radical and TGF-β were two cardinal factors
participating in the fundamental mechanism of CKD in human being. To verify the impact
of synergic effect of TGF-β and oxidized LDL on accelerating the wound healing process
and migratory assay due to the EMT effect (i.e., loss of cell–cell contact, resulting in
acceleration of migratory ability), the NRK-52E cells were categorized into A1 to A4, as
indicated in Figure 1. The result showed that the cell migratory ability and wound healing
process were significantly and progressively increased from A1 to A4, suggesting TGF-
β and oxidized LDL enhanced EMT process, as a consequence of speed-up of the cell
migratory ability and wound healing process.

Identically, the MTT assay demonstrated that the cell viability, indicator of ability of
cell proliferation, expressed a similar pattern of wound healing process among the groups.
The above finding indicated that TGF-β was significantly upregulated, and combined
TGF-β and oxidized LDL, especially in higher dose of oxidized LDL, further significantly
upregulated the cell proliferation. Our findings, once again, proved that oxidized-LDL and
TGF-β were two essential biological factors participating in cell biological change of tubular
epithelia cells to mesenchymal function and phenotype, i.e., a distinctive phenomenon of
EMT process of the renal epithelial cells.
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Figure 3. Impact of synergic effect of TGF-β and oxidized LDL on wound healing process and
migratory assay of NRK-52E. (A–D) Illustrating the baseline (i.e., at 0 h) wound healing process. No
difference in term of speed of the wound healing process. (E–H) Illustrating the 24 h morphological
feature of wound healing process. (I) Analytical result of wound healing speed, * vs. other groups
with different symbols (†, ‡, §), p < 0.0001. (J–M) Illustrating the microscopic finding (100×) for
identification of cell migratory ability (pink-gray color) after 24 h incubation. (N) Analytical result of
number of migratory cells, * vs. other groups with different symbols (†, ‡, §), p < 0.0001. Scale bars in
right lower corner represent 100 µm. All statistical analyses were performed by one-way ANOVA,
followed by Bonferroni multiple comparison post hoc test (n = 5 for each group). Symbols (*, †, ‡, §)
indicate significance for each other (at 0.05 level).
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3.7. The Mechanism of Oxidized LDL Boosting TGF-β on the EMT Process in Renal Tubular Cells
(Figure 4)

Based on the results of the present in vitro studies, we schematically proposed the
underling mechanism of oxidized LDL boosting TGF-β on the EMT process in renal tubular
cells. We highly speculated that the oxidized LDL cooperated with inflammatory cells,
such as macrophages, to accelerate the process of EMT from renal tubular epithelial cells.
In this way, the integrity of cell–cell contact would be weakened through undergoing
EMT. After loss of cell–cell contact, pro-fibrotic stimuli would induce the deposition of
ECM. Then, the accumulation of ECM fibrils acted as an obstacle to compress nearby
capillaries, resulting in reduced blood flow and decreased oxygen delivery, causing a
progressive kidney ischemic injury that would lead to initiation and propagation of renal
fibrosis. This proposed mechanism has drawn our interest in the relationship between the
level of oxidized LDL and the renal fibrosis. To further verify this issue, we designed an
animal study.
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Figure 4. The mechanism of oxidized LDL boosting TGF-β on the EMT process in renal tubular cells.
Based on the results of the in vitro studies, we schematically illustrate the underling mechanism of
oxidized LDL boosting TGF-β on the EMT process in renal tubular cells, i.e., NRK-52E cells. Note
that the upper panel (A) used the textual description to fully explain the pathological process of the
renal tubular epithelial cells in the middle panel (B) after the oxidized LDL or TGF-β treatment. On
the other hand, the lower panel (C) fundamentally concluded the final pathological outcomes of
renal tubular epithelial cells after the oxidized LDL or TGF-β treatment. To illustrate this underlying
mechanism of oxidized LDL or TGF-β induced renal tubular epithelial cells into EMT would lead to
the reader easily understanding the impact of oxidized LD/TGF-β on the pathogenesis of EMT in the
setting of CKD. A = upper panel; B = middle panel; C = lower panel.
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3.8. The Time Courses of Circulating Levels of BUN and Creatinine and the Ratio of Urine Protein
to Urine Creatinine (Figure 5)

At baseline prior to CKD induction, the circulatory levels of BUN and creatinine, and
the ratio of urine protein to urine creatinine, did not differ among groups 1 (sham-operated
control), 2 (CKD + 0.5cc normal saline), 3 (CKD + oxidized LDL), and 4 (CKD + oxidized
LDL + rosuvastatin). Rosuvastatin acted as a lipid-lowering agent for the treatment of
LDL elevation. By day 14 after CKD induction, these parameters were significantly lower
in group 1 than in groups 2 to 4, but they showed no difference among groups 2 to 4.
However, by days 28 and 42 after CKD induction, these parameters were significantly
higher in group 3 than in other groups, significantly higher in groups 2 and 4 than in
group 1, but these parameters did not differ between groups 2 and 4. These findings
implicated that oxidized LDL notably deteriorated the residual renal function that could be
remarkably reversed by rosuvastatin treatment, highlighting that the statin treatment sh
ould be strongly recommended for those of CKD stage III and IV patients.
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Figure 5. The time courses of circulating levels of BUN and creatinine and the ratio of urine protein
to urine creatinine. (A) Baseline circulatory level of blood urine nitrogen (BUN), p > 0.5. (B) Baseline
circulatory level of creatinine, p > 0.5. (C) Baseline ratio of urine protein to urine creatinine (RuPr/uCr),
p > 0.5. (D) By day 14 after CKD induction, the circulatory BUN level, * vs. †, p < 0.0001. (E) By
day 14 after CKD induction, the circulatory creatinine level, * vs. †, p < 0.0001. (F) By day 14 after
CKD induction, the RuPr/uCr, * vs. †, p < 0.0001. (G) By day 28 after CKD induction, the circulatory
BUN level, * vs. other groups with different symbols (†, ‡), p < 0.0001. (H) By day 28 after CKD
induction, the circulatory creatinine level, * vs. other groups with different symbols (†, ‡), p < 0.0001.
(I) By day 28 after CKD induction, the RuPr/uCr, * vs. other groups with different symbols (†, ‡,
§), p < 0.0001. (J) By day 42 after CKD induction, the circulatory BUN level, * vs. other groups
with different symbols (†, ‡, §), p < 0.0001. (K) By day 42 after CKD induction, the circulatory
creatinine level, * vs. other groups with different symbols (†, ‡, §), p < 0.0001. (L) By day 42 after CKD
induction, the RuPr/uCr, * vs. other groups with different symbols (†, ‡, §), p < 0.0001. All statistical
analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison post
hoc test (n = 8 for each group). Symbols (*, †, ‡, §) indicate significance for each other (at 0.05 level).
SC = sham-operated control; CKD = chronic kidney disease; R = rosuvastatin.
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3.9. Protein Expressions of EMT Biomarkers in Kidney Parenchyma by Day 42 after CKD
Induction (Figure 6)

To elucidate whether EMT biomarkers would be suppressed by rosuvastatin treatment,
the Western blot analysis was applied. The result showed that the protein expressions of
p-Smad2, snail, α-SMA, Fsp1, TGF-β and vimentin, six indices of EMT biomarkers, were
significantly higher in group 3 than in groups 1, 2, and 4 and significantly higher in group
2 and 4 than in group 1, but they were similar between groups 2 and 4. On the other hand,
the protein expression of E-cadherin, an indicator of the epithelial cell marker, displayed
an opposite pattern of EMT markers among the groups. Our findings in the in vivo studies
were not only consistent with the finding of the in vitro study but also ascertained the
principal role of EMT on initiation and propagation of CKD.
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Figure 6. Protein expressions of EMT biomarkers in kidney parenchyma by day 42 after CKD
induction. (A) Protein expression of phosphorylated (p)-Smad2, * vs. other groups with different
symbols (†, ‡, §), p < 0.0001. (B) Protein expression of Snail, * vs. other groups with different symbols
(†, ‡, §), p < 0.0001. (C) Protein expression of α-SMA, * vs. other groups with different symbols (†,
‡), p < 0.0001. (D) Protein expression of fibroblast-specific protein 1 (Fsp1), * vs. other groups with
different symbols (†, ‡), p < 0.0001. (E) Protein expression of transforming growth factor (TGF)-1β,
* vs. other groups with different symbols (†, ‡), p < 0.0001. (F) Protein expression of vimentin,
* vs. other groups with different symbols (†, ‡, §), p < 0.0001. (G) Protein expression of E-cadherin,
* vs. other groups with different symbols (†, ‡), p < 0.0001. All statistical analyses were performed by
one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 6 for each group).
Symbols (*, †, ‡, §) indicate significance for each other (at 0.05 level).

3.10. Protein Expressions of Apoptotic and Oxidative Stress Biomarkers in Kidney Parenchyma by
Day 42 after CKD Induction (Figure 7)

Further, we intended to delineate the impact of rosuvastatin therapy on alleviating
apoptosis and oxidative stress. The results of Western blot analysis demonstrated that
the protein expressions of mitochondrial Bax, cleaved caspase 3 and cleaved PARP, three
indicators of apoptosis, were significantly higher in group 3 than in other three groups,
significantly higher in groups 2 and 4 than in group 1, but they displayed a similar pattern
between groups 2 and 4. Additionally, the protein expressions of NOX-1, NOX-2, and
oxidized protein, three indices of oxidative stress, exhibited a similar pattern of apoptosis
among the groups. The above findings suggested that there was a strong association
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between apoptosis and oxidative stress, and renal parenchymal disease that induced by
oxidized LDL could effectively be suppressed by rosuvastatin.
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Figure 7. Protein expressions of apoptotic and oxidative stress biomarkers in kidney parenchyma
by day 42 after CKD induction. (A) Protein expression of mitochondrial Bax (mit-Bax),
* vs. other groups with different symbols (†, ‡), p < 0.0001. (B) Protein expression of cleaved caspase
3 (c-Casp3), * vs. other groups with different symbols (†, ‡), p < 0.0001. (C) Protein expression of
cleaved poly (ADP-ribose) polymerase (c-PARP), * vs. other groups with different symbols (†, ‡, §),
p < 0.0001. (D) Protein expression of NOX-1, * vs. other groups with different symbols (†, ‡), p < 0.0001.
(E) Protein expression of NOX-2, * vs. other groups with different symbols (†, ‡, §), p < 0.0001.
(F) The oxidized protein expression, * vs. other groups with different symbols (†, ‡, §), p < 0.0001
(Note: the left and right lanes shown on the upper panel represent protein molecular weight
marker and control oxidized molecular protein standard, respectively). M.W. = molecular weight;
DNP = 1–3 dinitrophenylhydrazone. All statistical analyses were performed by one-way ANOVA,
followed by Bonferroni multiple comparison post hoc test (n = 6 for each group). Symbols (*, †, ‡, §)
indicate significance for each other (at 0.05 level).

3.11. Protein Expression of ECM in Kidney Parenchyma by Day 42 after CKD Induction (Figure 8)
Moreover, to determine the production of ECM in the kidney parenchyma, Western

blot analysis was utilized once again. The result demonstrated that the protein expressions
of MMP-2 and MMP-9, two indicator of proteolytic enzymes for accumulation of ECM in
the extracellular space of kidney, were significantly higher in group 3 than in other groups,
significantly higher in groups 2 and 4 than in group 1, but these parameters did not differ
between groups 2 and 4. Additionally, the protein expressions of laminin, fibronectin, and
collagen I, three indicators of ECM, displayed an identical pattern of MMPs among the
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groups, implying that inappropriate accumulation of ECM in kidney parenchyma of CKD
could be a very common abnormal issue that compressed the space of renal tubules, i.e., the
sparrow’s nest is occupied by a pigeon (referring to Figure 6). Fortunately, the production
of ECM in kidney parenchyma was significantly inhibited by rosuvastatin treatment.

Antioxidants 2022, 11, x FOR PEER REVIEW 14 of 20 
 

3.11. Protein Expression of ECM in Kidney Parenchyma by Day 42 after CKD Induction  
(Figure 8) 

Moreover, to determine the production of ECM in the kidney parenchyma, Western 
blot analysis was utilized once again. The result demonstrated that the protein expressions 
of MMP-2 and MMP-9, two indicator of proteolytic enzymes for accumulation of ECM in 
the extracellular space of kidney, were significantly higher in group 3 than in other 
groups, significantly higher in groups 2 and 4 than in group 1, but these parameters did 
not differ between groups 2 and 4. Additionally, the protein expressions of laminin, fi-
bronectin, and collagen I, three indicators of ECM, displayed an identical pattern of MMPs 
among the groups, implying that inappropriate accumulation of ECM in kidney paren-
chyma of CKD could be a very common abnormal issue that compressed the space of renal 
tubules, i.e., the sparrow’s nest is occupied by a pigeon (referring to Figure 6). Fortunately, 
the production of ECM in kidney parenchyma was significantly inhibited by rosuvastatin 
treatment. 

 
Figure 8. Protein expression of ECM in kidney parenchyma by day 42 after CKD induction. (A) 
Protein expression of matrix metalloproteinase (MMP)-2, * vs. other groups with different symbols 
(†, ‡), p < 0.0001. (B) Protein expression of MMP-9, * vs. other groups with different symbols (†, ‡), 
p < 0.0001. (C) Protein expression of laminin, * vs. other groups with different symbols (†, ‡), p < 
0.0001. (D) Protein expression of fibronectin, * vs. other groups with different symbols (†, ‡), p < 
0.0001. (E) Protein expression of collagen I, * vs. other groups with different symbols (†, ‡), p < 0.0001. 
All statistical analyses were performed by one-way ANOVA, followed by Bonferroni multiple com-
parison post hoc test (n = 6 for each group). Symbols (*, †, ‡) indicate significance for each other (at 
0.05 level). 

  

Figure 8. Protein expression of ECM in kidney parenchyma by day 42 after CKD induction.
(A) Protein expression of matrix metalloproteinase (MMP)-2, * vs. other groups with different
symbols (†, ‡), p < 0.0001. (B) Protein expression of MMP-9, * vs. other groups with different symbols
(†, ‡), p < 0.0001. (C) Protein expression of laminin, * vs. other groups with different symbols (†, ‡),
p < 0.0001. (D) Protein expression of fibronectin, * vs. other groups with different symbols (†, ‡),
p < 0.0001. (E) Protein expression of collagen I, * vs. other groups with different symbols (†, ‡),
p < 0.0001. All statistical analyses were performed by one-way ANOVA, followed by Bonferroni
multiple comparison post hoc test (n = 6 for each group). Symbols (*, †, ‡) indicate significance for
each other (at 0.05 level).

3.12. The Histopathological Analyses of Kidney Injury Score, Fibrosis, Kidney Injury Molecule, and
Podocyte Components in Kidney Parenchyma by Day 42 after CKD Induction (Figures 9 and 10)

Certainly, the ultrastructural integrity of glomeruli and podocyte components are
strongly predictive of renal functional integrity and absence of proteinuria. Thus, we finally
utilized the microscope to verify the severity of kidney parenchymal damage in the present
study. The result showed that the kidney injury score (Figure 9) (i.e., summation of the
parameters, including the grading of tubular necrosis, loss of brush border, cast formation,
and Bowman’s capsule and tubular dilatation), fibrotic area (Figure 10) and KIM-1+ cells
(Figure 10), were significantly higher in group 3 than in groups 1, 2, and 4, and significantly
higher in groups 2 and 4 than in group 1, but they did not differ between groups 2 and
4. On the other hand, the cellular expressions of ZO-1 and synaptopodin (Figure 10), two
podocyte components predominantly localized in glomeruli, exhibited an identical pattern
of KIM-1 cells among the groups (Figure 10). Our finding, at least in part, provided useful
information for explanation of mechanistic basis of proteinuria in CKD setting.
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Figure 9. The histopathological analyses of kidney injury score and fibrosis in kidney parenchyma
by day 42 after CKD induction. (A–D) Light microscopic findings (200×; H&E stain) showing
significantly increased in loss of brush border in renal tubules (yellow arrows), tubular necrosis
(green arrows), tubular dilatation (red asterisk), protein cast formation (black asterisk), and di-
latation of Bowman’s capsule (blue arrows) in CKD + oxidized LDL group than in other groups.
(E) Analytical result of kidney injury score, * vs. other group with different symbols (†, ‡), p < 0.0001.
(F–I) Illustrating the microscopic finding (200×) of Masson’s stain for identification of fibrosis
(blue color). (J) Analytical result of fibrotic area, * vs. other group with different symbols (†, ‡),
p < 0.0001. (K–N) Illustrating the histological finding (200×) of Sirius red stain for identification
of condensed collagen-deposition area in renal parenchyma (pink color). (O) Analytical result of
condensed collagen-deposition area, * vs. other group with different symbols (†, ‡), p < 0.0001. Scale
bars in right lower corner represent 50 µm. All statistical analyses were performed by one-way
ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 6 for each group). Symbols
(*, †, ‡) indicate significance for each other (at 0.05 level).
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Figure 10. The histopathological analyses of kidney injury molecule and podocyte components
in kidney parenchyma by day 42 after CKD induction. (A–D) Illustrating the immunofluorescent
(IF) microscopic finding (200×) for identification of cellular expressions of kidney injury molecule
(KIM)-1 (green color). (E) Analytical result of the expression of KIM-1, * vs. other group with different
symbols (†, ‡), p < 0.0001. (F–I) Illustrating the IF microscopic finding (200×) for identification of
cellular expressions of ZO-1 (green color). (J) Analytical result of expression of ZO-1, * vs. other group
with different symbols (†, ‡), p < 0.0001. (K–N) Illustrating the IF microscopic finding (200×) for
identification of cellular expression of synaptopodin (green color). (O) Analytical result of expression
of synaptopodin, * vs. other group with different symbols (†, ‡), p < 0.0001. Scale bars in right
lower corner represent 50 µm. All statistical analyses were performed by one-way ANOVA, followed
by Bonferroni multiple comparison post hoc test (n = 6 for each group). Symbols (*, †, ‡) indicate
significance for each other (at 0.05 level).
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4. Discussion

This study, which investigated the impact of oxidized LDL and rosuvastatin on resid-
ual renal function and integrity of kidney parenchyma in setting of rodent CKD, has
abundant striking implications. First, we successfully created a CKD animal model by
which the renal function was markedly deteriorated by intrarenal arterial administration
of oxidized LDL that was reproducibly utilized for the study. Second, the result of the
present study clearly delineated that oxidized LDL augmented the expression of EMT
markers and ECM deposition in the kidney parenchyma of rat CKD. Third, as compared
with CKD + oxidized LDL animals, the residual renal function and renal architecture were
notably preserved in CKD + oxidized LDL animals after receiving rosuvastatin. Finally,
the results of the present study evidently appraised the underlying mechanism of oxidized
LDL boosting TGF-β on the EMT process in the setting of rat CKD (refer to Figure 4).

Despite the inflammation, reactive oxygen species (ORS)/oxidative stress, fibrosis
and immunogenicity having been extensively investigated as the fundamental etiologies
for the initiation and propagation of the CKD, the impact of dyslipidemia, especially the
fundamental role of oxidized LDL on outcomes of CKD, has not been clearly addressed to
this day. Interestingly, an association between hypercholesterolemia and kidney injury has
been recently established in an animal model study [34]. Additionally, some clinical studies
have previously demonstrated that oxidized LDL was associated with the deterioration
of kidney function and proteinuria beyond its properties of atherogenesis and vascular
occlusion [35,36]. These clinical observational findings [34–36] implied that hypercholes-
terolemia, especially oxidized LDL, may play a crucial role in directly participating in
the deterioration of renal function in human being. The most important finding in the
present study was that the kidney injury score was significantly increased in CKD treated
by oxidized LDL group than in that of CKD only. Additionally, not only the kidney injury
score, but this study also further identified that the deterioration of residual renal function
(i.e., increases in circulatory levels of BUN and creatinine and RuPr/uCr) was remarkably
increased in CKD animals treated by oxidized LDL than in that of CKD only, suggesting
oxidized LDL per se can cause both functional and structural renal damages. Furthermore,
our findings, consistent with those of previous studies [34–36], obviously identified that
oxidized LDL may play a paramount role on the deterioration of residual renal function
in the setting of CKD. Of particular importance was that rosuvastatin therapy effectively
protected the kidney against oxidized LDL damage in the CKD setting. It is well known
that uremic toxic substances always elicit inflammation and ROS/oxidative stress [35,36],
resulting in increasing both tissue and circulatory levels of oxidized LDL in CKD regardless
of background total cholesterol level. Our results, therefore, pinpoint that for the patients
with CKD, administering statin therapy could be a wise course of action for the prevention
or treatment of further renal injury no matter how their circulatory oxidized LDL and total
cholesterol levels are.

Surprisingly, when reviewing the literature [32,33,37], we always find that estimated
glomerular filtration rate (eGFR) reduction and glomerular diseases (i.e., the glomerulus
cell and apparatus damage), rather than the renal tubular epithelial cell (TEC) diseases,
were considered as the principal factors of deterioration of CKD, implicating that the great
important role of the renal TEC diseases on the progressive CKD had been regrettably
neglected. Until recently, the accumulating number of investigations has shed light on the
cardinal role of renal TECs in renal fibrosis and deterioration of renal function in the setting
of CKD [37–39]. An essential finding in the present study was that the KIM-1 marker (i.e., a
renal tubular damage marker) was notably increased in CKD animals and further, notably
increased in oxidized LDL-treated CKD animals. Besides, the fibrosis area was identified
predominantly localized in tubulointerstitial space, suggesting a close association between
oxidized LDL and renal tubulointerstitial fibrosis. Moreover, when carefully examined
the kidney injury score, we found that renal tubular damages, including tubular necrosis,
loss of brush border, cast formation, and tubular dilatation, were much more frequently
presented in oxidized LDL-treated CKD animals. Therefore, our findings not only were
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consistent with those of previous studies [37–39] but also indicated the relationship of
oxidized LDL with chronic renal tubulointerstitial damage.

Intriguingly, previous studies have further emphasized that tubulointerstitial fibrosis is
characterized by tubular atrophy and the accumulation of extracellular matrix (ECM) [7,38]. The
cardinal finding in the present study was that MMPs activity and abundant accumulation
of ECM along with generations of apoptosis and oxidative stress were found to remarkably
increase in the CKD group and further remarkably increased in the oxidized treated CKD
group as compared with those of the SC group. In this way, our findings echoed the
findings of the previous studies [7,40].

EMT, characterized by acquiring primary mesenchymal markers of vimentin, alpha-
SMA, FSP-1, collagen I, and fibronectin [16], is defined as the process that permits a
polarized epithelial cell to adopt a mesenchymal-cell phenotype, resulting in increasing
migratory ability, invasive behavior, and production of ECM components [41]. Of most
importance was that these aforementioned EMT biomarkers [16] were observed to be signif-
icantly upregulated in NRK-52E cells (i.e., in vitro study) and in harvested kidney tissues
(i.e., in vivo study) after oxidized LDL treatment, explaining that this switch (i.e., EMT
process of renal epithelial cells) is also a potential source of fibroblasts and ECM deposition
in renal tubulointerstitial space [7]. Additionally, the numbers of laminin, fibronectin, colla-
gen, and lipid droplets cells were also identified to be substantially increased in oxidized
LDL-treated NRK-52E cells (i.e., in vitro study). Our findings, in addition to supporting the
results of previous studies [7,16,40,41], further let us delineate the mechanism of oxidized
LDL boosting TGF-β on the EMT process in the setting of progressive CKD (Figure 4). Of
distinctive importance was that all of the above-mentioned cellular-molecular perturba-
tions were substantially suppressed by rosuvastatin treatment, i.e., not only in the in vitro
but also in the in vivo experimental studies, implicating a mechanistical insight for renal
protective effect of rosuvastatin against oxidized LDL in the setting of progressive CKD.

Our previous study has clearly demonstrated that the integrity of podocyte compo-
nents was essential for avoiding the proteinuria [32,42]. In the present study, we found that
the cellular expressions of podocyte components of ZO-1 and synaptopodin were notably
reduced in CKD animals and further, remarkably reduced in oxidized LDL-treated CKD
animals. Hence, our finding, besides supporting the findings of previous studies [32,42],
could at least in part explain why the proteinuria was notably increased in CKD and
further increased in oxidized LDL-treated CKD animals. Furthermore, these perturbations
of podocytes and proteinuria were significantly reversed by rosuvastatin treatment in
CKD + oxidized LDL animals, emphasizing again the importance of statin therapy for
alleviation of progressive renal damage in the CKD setting.

Interestingly, a recent head-to-head comparative clinical trial has extensively inves-
tigated the impact of oxidative stress biomarkers on all-cause mortality in hemodialysis
(HD) patients [43]. Disappointingly, the result showed that the oxidized LDL was not
independently associated with all-cause mortality in the HD patients as compared to those
with CKD in other stages [43]. When carefully delving deeper at the scenario of our animal
study, one would easily realize that the animals were only in mild to moderate CKD stages
rather than in the uremic stage, suggesting that the results of our study might be not
extrapolatory into the clinical setting of end-stage renal disease.

Finally, in Figure 4, we summarized the fundamental steps in the underlying mecha-
nism regarding how oxidized LDL induced deterioration of renal function in CKD.

This study has limitations. First, without stepwise increasing of the dosage of oxidized
LDL on the renal damage of CKD, we did not know whether the current dosage of oxidized
LDL utilized in the present study was optimal or not. Second, we also did not know how
high the circulatory level of oxidized LDL would damage the residual renal function and
kidney architecture of CKD. Third, a group of CKD treated by rosuvastatin only (i.e., CKD
+ rosuvastatin) might be missed in the study, because the therapeutic effect of rosuvastatin
has been keenly investigated by our previous studies [44,45].
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5. Conclusions

The results of the present study demonstrated that oxidized LDL participated in
deteriorating the residual renal function and kidney parenchyma in CKD through the
EMT process from damaged renal tubular ECs, resulting in accumulating the ECM and
augmenting the production of tubulointerstitial fibrosis. The detrimental effect of oxidized
LDL on the progression of CKD could be reversed through statin therapy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antiox11122465/s1, Figure S1: Preliminary results for
providing a corrective direction of the study. Figure S2: Morphological features of NRK-52E cells
followed by TGF-β and oxidized LDL stimulation. Figure S3: Lipid droplets in NRK-52E cells after
oxidized LDL treatment and inflammatory cells enhanced ECM production by NRK-52E cells.
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