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Abstract: Necroptosis is a form of programmed cell death with features of necrosis and apoptosis
that occurs in the intestinal epithelium of patients with inflammatory bowel disease (IBD), including
ulcerative colitis and Crohn’s disease. In addition, necroptosis has also been observed in enterocytes
in animal models of dextran sulfate sodium (DSS)-induced colitis. Thus, the discovery of natural
products for regulating necroptosis may represent an important therapeutic strategy for improving
IBD. We found that Magnolia officinalis bark extract (MBE) prevented weight loss and suppressed the
activation of the proinflammatory cytokine IL6 in DSS-induced colitis. Furthermore, MBE restored the
length of the damaged colon and decreased the expression of necroptosis markers in mice with DSS-
induced colitis. In vitro, necroptosis-induced reactive oxygen species (ROS) production was reduced
by MBE, and the expression of COX2, a target protein of ROS, was simultaneously suppressed. Both
magnolol and honokiol, the two major bioactive compounds in MBE, inhibited necroptosis in human
primary intestinal epithelial cells and colorectal adenocarcinoma cells. Our findings highlight the
effectiveness of MBE in modulating enterocyte necroptosis and suggest that MBE may be developed
as a natural, disease-targeting drug for the treatment of colitis.

Keywords: necroptosis; inflammatory bowel syndrome; colitis; Magnolia officinalis; reactive
oxygen species

1. Introduction

Inflammatory bowel disease (IBD) is prevalent worldwide, affecting 1.5 million people
in North America and 2 million people in Europe [1]. IBD is commonly referred to as an
intestinal disease and includes ulcerative colitis and Crohn’s disease. IBD was on the rise
in the Western World until the 20th century, but in the 21st century, its occurrence rate has
increased rapidly in regions such as South America, Eastern Europe, Asia, and Africa [2].
Dietary habits, aging, genetic factors, and homeostatic disruption of the immune system
are among the primary causes of IBD, which together result in a markedly diminished
ability of most IBD patients to combat chronic inflammatory responses [3–5]. Chronic in-
flammatory responses disrupt the tight junctions between intestinal epithelial cells and gut
microorganisms, allowing their products to migrate to the lamina propria [6,7]. Lympho-
cytes, macrophages, eosinophilic leukocytes, and mast cells present in the lamina propria
become activated and secrete inflammation-related cytokines and chemokines to activate
the mechanisms that promote epithelial cell death. Ultimately, intestinal pathogen invasion
is further accelerated and exacerbated by positive feedback, followed by an inflammatory
response [8,9].

Enterocytes, which constitute the gut epithelium, are the primary barrier preventing
the penetration of pathogens into the intestine [10,11]. Recent studies have reported that
enterocyte death due to acute and chronic inflammation is closely linked to the necroptotic
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pathway [12,13]. Necroptosis induces cell death through programmed cell death (PCD)
mechanisms similar to apoptosis; however, the PCD mechanism is distinguished from
apoptosis in that it occurs independently of the caspase 8-dependent pathway [14]. Evi-
dence suggests that necroptosis is initiated by the activation of the fas cell surface death
receptor (FAS), lipopolysaccharide (LPS), and tumor necroptosis factor-related apoptosis-
inducing ligand (TRAIL) receptors, which sequentially induce phosphorylation of RIP1,
receptor-interacting protein kinase3 (RIPK3 or RIP3), and mixed lineage kinase domain-like
pseudokinase (MLKL) (necrosome) [15,16]. Finally, phosphorylated MLKL (pMLKL) moves
to the inner plasma membrane, causing cell swelling and membrane rupture [17,18]. In
a recent study, necroptosis was observed in patients with ulcerative colitis and in animal
models of dextran sulfate sodium (DSS)-induced colitis [19–21]. Lee et al. confirmed a
significant increase in RIPK3 and MLKL in ulcerative colitis patient tissues, and treatment
with the RIPK3 inhibitor, GSK’872, in peripheral blood mononuclear cells isolated from the
patient suppressed the activated inflammatory response [22]. Treatment with GSK’872 also
reduced the inflammatory response in a DSS-induced colitis animal model, resulting in the
recovery of damaged enterocytes [23]. Chong et al. found that expression of the HtrA2
gene was significantly decreased along with the activity of pMLKL in mice treated with
DSS for seven days. The authors developed a strategy to selectively inhibit necroptosis
using UCF-101, a serine protease inhibitor of HtrA2, and found UCF-101 to be a potential
anti-colitis therapeutic [19]. Therefore, discovering novel substances that inhibit RIPK3 and
MLKL, while understanding the mechanism of necroptosis in intestinal diseases, may be
an excellent strategy for developing treatments for IBD.

Magnolia officinalis bark extract (MBE) has been used as a traditional medicine for
over 2500 years in East Asian countries, such as China, Japan, and Republic of Korea [24].
MBE is composed of various phenolic compounds, with magnolol (MN) and honokiol
(HK), which are classified as lignans, being the major bioactive compounds [25]; MN
and HK inhibit carcinogenic processes in breast cancer, melanoma, and head and neck
squamous cancer. In addition, MBE is effective for the treatment of asthma, diabetes, and
neuronal diseases, as well as for improving the digestive system, including the regulation
of gastrointestinal (GI) motility, antimetric and antidiarrheal effects, antiulcer effects, and
improvement of GI dysfunction [26]. MN and HK have inhibitory effects on tumor necrosis
factor-alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO) production; inhibit
the activity of nuclear factor kappa B (NFκB), a redox-sensitive transcription factor; provide
antioxidant effects through the inhibition of ROS; and can reduce allergy symptoms by
inhibiting histamine release [26]. These mechanisms are closely related to the mechanism of
cyclooxygenase 2 (COX2) inhibition, which is a factor related to immune cell inflammation
in the context of diseased intestinal cells both in vivo and in vitro, as well as the mechanism
inhibiting the release of histamine from immune cells [27–29]. Nevertheless, the potential
roles of MBE in necroptosis regulation and IBD alleviation are still unknown.

Using the DSS-induced colitis mouse model, we confirmed a significant increase in
necroptosis signals in the large intestine and observed that MBE reduced the expression of
necroptosis markers in a dose-dependent manner. Furthermore, the ROS-induced increase
in COX2 expression was significantly reversed by MN and HK. Mechanistically, MBE
represses RIPK3 and MLKL by modulating JNK/p38-MAPK/COX2 signaling induced by
ROS. Our study supports the further investigation of MBE as a potential natural therapeutic
product for ameliorating IBD.

2. Materials and Methods
2.1. Animals and In Vivo Experiments

All animal experiments were conducted using 7-week-old male C57BL/6 mice (Dooyeol
Biotech, Seoul, Republic of Korea). Twenty-five mice were randomly divided into the follow-
ing groups: control (water only), 2.5% DSS only, DSS plus MBE (100 and 200 mg/kg/day),
and MBE only (200 mg/kg/day) (n = 5/group). MBE was dissolved in distilled water
and administered orally once daily for 3 weeks. For oral administration, we weighed



Antioxidants 2022, 11, 2435 3 of 14

the animals and calculated the volume of the MBE solution required. A gavage needle
(gauge 20, length 1–2 inches, curved shape) appropriate for body weight, was inserted
into the mouse, directly over the tongue and into the pharynx. For the last seven days
(from day 14 to day 21), 2.5% DSS was administered in drinking water ad libitum. The
weights of the mice were recorded daily for the last 7 days. At the end of the animal
experiments, all mice were anesthetized with tribromoethanol (Avertin) and the colon and
blood were immediately harvested. The colon tissue was stored in 4% paraformaldehyde
and was subsequently used to prepare paraffin sections for staining. Serum was obtained
by centrifuging blood at 1500× g for 10 min; it was refrigerated and used for measuring the
cytokine level. Hematoxylin and eosin (H&E) and TUNEL-stained colonic tissue sections
were used for histological scoring. All the protocols are illustrated in Figure 1A. All proto-
cols involving animals were performed in accordance with the Republic of Korea Institute
of Oriental Medicine (KIOM-22-016) and the Guide for the Care and Use of Laboratory
Animals (8th edition, 2011) [30].
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Figure 1. MBE treatment alleviates DSS-induced colitis. (A) Schematic representation of MBE oral
administration to mice. (B) The weights of mice were recorded daily for the last 7 days of treatment.
(C) Representative images of the colon length from each group. (D) All colon lengths were measured
from the ileocecal junction to the distal end of the rectum. (E) IL-6 levels in mouse serum were
measured using ELISA. n = 5 for each group. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
(data were analyzed using an ANOVA); ns, not significant.

2.2. Cell Culture and Reagents

Human primary intestinal epithelial cells (InEpC) were maintained in a complete
human epithelial cell medium kit (Cat# H6621; Cell biologics, Chigago, IL, USA). Human
colorectal adenocarcinoma cells (HT29) cells were maintained in roswell park memorial
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institute (RPMI) (Cat# LM011-60, Welgene, Gyeongsan, Republic of Korea) containing 10%
fetal bovine serum (Cat# 12662029, GIBCO, USA), penicillin (100 U/mL), and streptomycin
(100 U/mL) (Cat# 10378016, Thermo Scientific, Waltham, MA, USA). MN, HK, and MBE
compounds were prepared by dissolving in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St.
Louis, MO, USA).

2.3. Cell-Viability Assays

MBE (50 µg/mL to 800 µg/mL), MN (5 µM to 80 µM), and HK (5 µM to 80 µM) were
dissolved in DMSO and passed through a filter with a 0.2 µm pore size. Next, 1 × 103 cells
were plated in 96-well plates, and MBE and the individual compounds were prepared at
different concentrations. After 24 h and 48 h, all samples were incubated in an aqueous
non-radioactive cell proliferation solution (MTS) (Cat# G3582, Promega, Madison, WI,
USA) for 1 h at 37 ◦C, and absorbance was recorded at 490 nm.

2.4. Immunohistochemistry (IHC)

Immunostaining was performed as previously described, with some modifications.
Prior to immunostaining, deparaffinization and hydration were performed in xylene and
ethanol in distilled water for 5 min each. Next, the slides were heated in an Antigen
Retrieval Solution (Cat# ab93678, Abcam, Cambridge, MA, USA) for 15 min and then
incubated with 0.3% hydrogen peroxide for 15 min. The prepared slides were incubated
with Sea-Block solution (Cat# 37527, Abcam, Cambridge, MA, USA). The primary anti-
body was diluted in DAKO diluent solution (Cat# S080983-2; Agilent, Santa Clara, CA,
USA) and incubated overnight at 4 ◦C in a humidified chamber. Slides were incubated
with a secondary antibody (Vector Laboratories, Burlingame, CA, USA) for 1 h at room
temperature. All samples were incubated with 3,3′-Diaminobenzidine (DAB) solution
and counterstained with hematoxylin (Leica, Buffalo Grove, IL, USA). Antibody informa-
tion is provided in Supplementary Table S1. To evaluate cell death in tissues, terminal
deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was
performed. Deparaffinized tissue sections were digested with Proteinase K at 55 ◦C for 1 h
and stained using the TUNEL detection kit (Cat# ab206386, Abcam, Cambridge, MA, USA).
The TUNEL assay was performed according to the manufacturer’s instructions. ImageJ
version 1.52a software was used to quantify histologic scoring.

2.5. Immunoblotting

A total of 1 × 106 cells were plated in 6-well plates, and different concentrations of
MBE, MN, and HK were added. Total cell lysates (30 µg) were extracted using mPER buffer
(Cat# 78501; Thermo Scientific, Waltham, MA, USA) supplemented with a protease inhibitor
cocktail (Cat# 4693116001; Roche, Basel, Switzerland). All antibodies were diluted using
HIKARI signal enhancer solution (Cat# 02267-41, NACALAI, Kyoto, Japan). Molecular
weight markers (Bio-Rad, Hercules, CA, USA) were loaded onto 4–20% TGX gels (Cat#
4561094, Bio-Rad) and run for 100 min at 100 V. The proteins were then transferred onto a
nitrocellulose membrane (Cat#2001, Bio-Rad, CA, USA). The antibodies used are listed in
Supplementary Table S1. All approximate molecular weights were decided by comparison
with the migration of pre-stained protein standards. A ChemiDoc MP imaging system was
used to produce digital images (Bio-Rad, Hercules, CA, USA). The quantitative protein
band was performed using ImageJ software (National Institutes of Health, Rockville, MD,
USA) and was shown in Supplementary Figures.

2.6. Interleukin 6 Cytokine Assay

For quantification of IL-6 in the blood, serum was analyzed using an enzyme-linked
immunosorbent assay (ELISA) kit (ab222503, Abcam, Cambridge, UK). Briefly, all blood
samples were mixed with the IL-6 antibody in each well and incubated with streptavidin-
conjugated horseradish peroxidase for 3 h. Then, all samples reacted with the substrate,
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and fluorescence intensity was analyzed using an ELISA microplate reader (Synergy HTX
Multi-Mode Reader; BioTeK, Winooski, VT, USA).

2.7. Sample Preparation and Chemical Profiling of MBE

Powdered MBE was purchased from KOCBiotech (Daejeon, Daejeon, Republic of
Korea) and stored in a−20 ◦C freezer at the Republic of Korea Institute of Oriental Medicine.
Dried MBE was extracted using 70% ethanol under reflux for 6 h at 90 ◦C and lyophilized
after filtration. The dried extracts were diluted with methanol for high-performance liquid
chromatography (HPLC) analysis. In addition, two standard compounds (MN and HK)
dissolved in methanol were analyzed to confirm the bioactive components in MBE. The
MBE extracts and individual components were analyzed using Agilent 1260 Infinity LC
(Agilent Corporation, Santa Clara, CA, USA) equipped with a Zorbax Eclipse XDB-C18
column (4.6 mm × 50 mm i.d., 5 µm; flow rate 0.3 mL/min) maintained at 20 ◦C. An
HPLC diode array detector was used for detection at 254 nm. Chromatographic data were
interpreted using the LabSolutions Multi PDA software. All compounds were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

2.8. Measurement of ROS Production

Endogenous levels of ROS were determined using a flow cytometer with 2′,7′-dichlorod
ihydrofluorescein diacetate (DCFDA) (Cat# D399, Invitrogen, Waltham, MA, USA). Briefly,
1 × 106 cells were plated and exposed to different concentrations of MBE, MN, and HK at
37 ◦C for 4 h. The positive control was treated with the Smac mimetic with z-VAD-fmk (SZ)
necroptosis inducer under the same conditions. After staining with 10 µmol/L DCFDA
at 37 ◦C for 30 min, cells were collected and washed five times with phosphate buffered
saline (PBS). The fluorescence intensities of cells were tested with a flow cytometer (BD
LSRFortessa X-20, Becton-Dickinson, San Jose, CA, USA).

2.9. Annexin V-Propidium Iodide Assay

Cell death was assessed using an Annexin V-FITC Analysis Kit (Cat# BD556547, BD,
Franklin Lakes, NJ, USA). The annexin V-propidium iodide (PI) assay was performed
according to the manufacturer’s instructions. Briefly, InEpC and HT29 cells were plated in
12-well plates at a density of 1 × 105 cells/well and pretreated with or without MBE, MN,
or HK for 30 min. The cells were then treated with SZ to induce necroptosis. Cell pellets
were resuspended in a 200µL buffer containing 5µL annexin V-FITC for 20 min and then
incubated with 5µL propidium iodide for 10 min at room temperature in the dark. After
staining, cells were collected and washed five times with PBS. The fluorescence intensities
of cells were tested with a flow cytometer (BD LSRFortessa X-20, Becton-Dickinson, San
Jose, CA, USA).

2.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (Version 9.0) software
and one-way analysis of variance (ANOVA) (Prism, San Diego, CA, USA). The data are
expressed as the mean ± standard error (SE), and the levels of significance were set at
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results
3.1. MBE Ameliorates DSS-Induced Colitis

To investigate the effects of MBE on the treatment of IBD, a mouse model of DSS-
induced colitis was established. We created five treatment groups, each containing five
mice: control (water only), MBE only (200 mg/kg/day), 2.5% DSS only, 100 mg/kg/day
MBE plus DSS, and 200 mg/kg/day MBE plus DSS. For the MBE groups, MBE was
administered orally for three weeks, and during the last week, 2.5% DSS was administered
to a subset of mice to induce colitis (Figure 1A). After one week, the DSS-only group
exhibited significant weight loss of 15–20% compared with the control group (water-
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only). Interestingly, the MBE-administered groups showed a recovery of DDS-induced
weight loss. In particular, a significant (p = 0.0361) weight recovery of more than 10%
was observed in the 200 mg/kg/day MBE high-concentration group (Figure 1B). We
proceeded to measure the length of the colon in the different groups to determine the
degree of colitis recovery following MBE treatment. In the group that was administered
DSS alone, the colon length was shortened by approximately 40% compared with that
in the control group; however, in the groups administered MBE, the length of the colon
was restored in a dose-dependent manner. In particular, colon length in the group that
was administered 200 mg/kg/day recovered by more than 20% compared with that in the
DSS-only group (Figure 1C,D). In addition, expression of the inflammatory cytokine IL-6,
previously reported to be upregulated by DSS treatment [31], was significantly reduced in
the MBE-administered groups (Figure 1E). These results suggest that MBE can ameliorate
IBD and the pharmacological mechanism of its effect can be further elucidated using a
DSS-induced colitis model.

3.2. MBE Attenuates Necroptosis in the Colons of DSS-Treated Mice

As mentioned earlier, DSS-induced colitis animal models experience enterocyte death
through necroptosis; therefore, suppressing necroptosis may represent a novel treatment
avenue for improving IBD. To this end, we first analyzed the death of enterocytes using
a TUNEL assay. TUNEL staining was barely detectable in the control group, whereas
enterocytes in the DDS-only group were brightly labeled by TUNEL, indicating severe cell
death. In contrast, in the MBE-administered groups, the number of TUNEL-positive cells
significantly decreased in a dose-dependent manner (Figure 2A,B). To determine whether
MBE inhibits DSS-activated necroptosis, the expression levels of the necroptosis markers
pRIP3 and pMLKL were compared. The DSS-only group exhibited stronger expression
of pRIP3 and pMLKL in enterocytes compared with the control group, and, consistent
with our TUNEL results, MBE treatment dramatically reduced the expression of these
necroptosis markers (Figure 2A,C,D). Taken together, these findings demonstrate that
DSS-induced cell death is associated with necroptosis, which is negatively regulated by
MBE, indicating that MBE has the potential to serve as a natural product for treating IBD
by preventing necroptosis.

3.3. Necroptosis Is Inhibited by MBE in Primary Human Intestinal Epithelial Cells and Colorectal
Adenocarcinoma Cells

Human primary intestinal epithelial cells (InEpC) and human colorectal adenocarci-
noma cells (HT29) were used to verify the biological efficacy of MBE at the cellular level
and to further investigate the mechanism of necroptosis inhibition. First, to measure the
intracellular toxicity of MBE, cells were treated with different concentrations from 50 to
800 µg/mL. InEpC cells did not exhibit signs of toxicity at any concentration up to 24 h after
treatment; however, after 48 h, toxicity was observed at high concentrations (≥200 µg/mL)
(Figure 3A). Similarly, HT29 cells showed no toxicity at 24 h, but toxicity was observed
at 800 µg/mL after 48 h (Figure 3E). Therefore, the following experiment was performed
at an MBE concentration and time that was determined to be non-toxic. Smac mimetic
is known to induce apoptosis and necroptosis. The pan-caspase inhibitor z-VAD-fmk
(z-VAD) selectively inhibits apoptosis. Therefore, the SZ complex (SZ, Smac mimetic with
z-VAD-fmk) was stimulated for 12 h to trigger necroptosis in vitro. We stained the cells
with PI and Annexin V to label dying cells and used flow cytometry to assess the level of
cell death. SZ increased cell death by approximately 24% compared with the control group
(no SZ) in InEpC; however, in the cells pretreated with MBE, necroptosis was inhibited
at all concentrations tested from 50 to 200 µg/mL (Figure 3B,C). Approximately 80% of
SZ-treated HT29 cells died, and the rate of cell death was reduced by MBE treatment in a
dose-dependent manner. In particular, a high concentration of MBE (200 µg/mL) protected
against enterocyte death by up to approximately 50% (Figure 3F,G). Next, cells were treated
with different concentrations of MBE to investigate the effect of MBE treatment on the
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expression levels of the necroptosis markers RIP1, RIP3, and MLKL. In both InEpC and
HT29 cells without MBE pretreatment, pRIP1, pRIP3, and pMLKL were activated by SZ
treatment; however, the levels of all three necroptosis markers were reduced in a dose-
dependent manner after pretreatment with MBE for 30 min (Figures 3D,H and S1). Taken
together, the protective effect of MBE on enterocyte death was observed both in vitro and
in vivo, supporting the efficacy of MBE in ameliorating IBD.
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Figure 2. MBE ameliorates DSS-induced damage in the intestinal epithelium. (A) Large intestinal
sections of mice were stained with TUNEL and pRIP3 and pMLKL antibodies. Colon tissues from
mice on day 7 were analyzed using H&E staining and evaluated using histologic score analysis.
Scale bar, 100 µm. TUNEL positive cells indicate cell death. Elevated pRIP3 and pMLKL indicate
necroptosis. (B–D) The percentages of TUNEL-, pRIP3-, and pMLKL-positive cells were measured
in randomly selected fields and are expressed as numbers of positive cells per field. n = 5 for each
group. *** p < 0.001, and **** p < 0.0001 (data were analyzed using an ANOVA).
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A recent study reported that necroptosis caused by inflammation is mediated by ROS 

[32,33]. To determine whether MBE inhibited necroptosis via ROS signaling or regulated 
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levels. In this way, we found that SZ treatment resulted in an approximately 30% increase 

in ROS levels. Pretreatment with MBE 30 min prior to SZ treatment resulted in a 

Figure 3. MBE efficiently blocks SZ-induced necroptosis in both InEpCs and HT29 cells. (A) Effects
of MBE on the viability of InEpC cells treated with the indicated extract concentration for 24 h
and 48 h. (B) InEpC cells were pretreated with the indicated concentrations of MBE for 30 min
before treatment with SZ (Smac mimetic (20 µM) and z−VAD (20 µM)) for 24 h. annexin V/PI was
analyzed using flow cytometry. (C) The values represent the sum of the percentage of cells in A
(PI+ annexin V+; necroptosis). (D) Levels of pRIP1, RIP1, pRIP3, RIP3, pMLKL, and MLKL were
analyzed using immunoblotting. Tubulin was used as a loading control. (E) HT29 cells were treated
with the indicated concentrations of MBE for 24 h and 48 h. (F) HT29 cells were pretreated with
the indicated concentrations of MBE for 30 min before treatment with SZ (Smac mimetic (100 nM)
and z−VAD (20 µM)) for 12 h. The expression of annexin V in HT29 cells was induced by SZ and
analyzed using flow cytometry. (G) The values represent the sum of the percentage of cells in E
(PI+ annexin V+; necroptosis). (H) Levels of pRIP1, RIP1, pRIP3, RIP3, pMLKL, and MLKL were
analyzed using western blotting. Tubulin was used as a loading control. ** p < 0.01, *** p < 0.001, and
**** p < 0.0001 (data were analyzed using an ANOVA).

3.4. SZ-Induced ROS Production Is Reduced in MBE-Treated Cells

A recent study reported that necroptosis caused by inflammation is mediated by
ROS [32,33]. To determine whether MBE inhibited necroptosis via ROS signaling or reg-
ulated necroptosis independently of ROS signaling, we assessed intracellular ROS pro-
duction levels. In this way, we found that SZ treatment resulted in an approximately 30%
increase in ROS levels. Pretreatment with MBE 30 min prior to SZ treatment resulted in a
significant dose-dependent decrease in ROS levels (Figure 4A,B). We next examined the
expression of COX2 to confirm that MBE suppressed ROS levels. COX2 is a target gene for
ROS and is known to be upregulated in DSS-induced colitis. As expected, COX2 expres-
sion was strongly increased in the DSS-only group but was significantly decreased in the
MBE-administered groups (Figures 4C and S2). At the cellular level, the increase in COX2
expression caused by SZ treatment was rescued by MBE pretreatment in a dose-dependent
manner (Figure 4D). Notably, the JNK and p38-MAPK pathways, which are known to be
upstream of COX2 [34,35], are regulated by MBE; therefore, it appears that MBE regulates
necroptosis via a ROS-mediated JNK/p38-MAPK/COX2 intracellular signaling mechanism
(Figures 4E and S2).
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Figure 4. MBE reduces ROS production and the expression of COX2, pp38, and pJNK in SZ-induced
necroptosis. (A) HT29 cells were pretreated with MBE for 30 min and then treated with SZ (Smac
mimetic (100 nM) and z-VAD (20 µM)) for 12 h. Intracellular ROS was detected as DCFDA flu-
orescence using flow cytometry. (B) The number indicates increased DCFDA fluorescence in A.
(C) Immunoblotting was performed using proteins extracted from HT29 cells. Tubulin was used as
an internal control. (D) Representative immunohistochemical staining of COX2 in large intestinal
sections. Scale bar, 100 µm. (E) Levels of pp38, p38, pERK, ERK, pJNK, and JNK analyzed using
immunoblotting. Tubulin was used as a loading control. * p < 0.05 and ** p < 0.01 (data were analyzed
using an ANOVA).

3.5. Necroptosis Is Reduced by Honokiol and Magnolol in Primary Human Intestinal Epithelial
Cells and Colorectal Adenocarcinoma Cells

MN and HK are well known as major bioactive compounds in MBE, and so we
specifically investigated their effects on necroptosis. First, HPLC was used to verify that
the MBE used in this study contained MN and HK (Figure 5A). Cytotoxicity tests indicated
no toxicity up to 40 µM after 24 h of treatment for both MN and HK (Figure 5B,C).

We next assessed cell death using flow cytometry, as was previously assessed for
MBE. Cells were pretreated with MN or HK for 30 min and were subsequently treated
with SZ for 12 h. Interestingly, both compounds exhibited a significant dose-dependent
inhibitory effect on cell death (Figure 6A,B,D,E). Moreover, the levels of pRIP1, pRIP3, and
pMLKL, which were increased by SZ treatment, were reduced by MN and HK pretreatment
in a dose-dependent manner (Figures 6C,F and S3). Therefore, both MN and HK inhibit
necroptosis and may represent natural products for inhibiting enterocyte death in colitis.
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Figure 5. Identification of MBE compounds and cell viability assays. (A) HPLC profiles of
MBE components. Chemical structures of two standards (Glc = β-D-glucopyranosyl, Rha = α-
L-rhamnopyranosyl) and HPLC chromatograms of two standards (1 mg/mL) and a sample extract
at a concentration of 20 mg/mL are shown. (B–C) Viability tests of HT29 cells treated with various
concentrations of MN (B) and HK (C) for 24 h and 48 h. ** p < 0.01, *** p < 0.001, and **** p < 0.0001
(data were analyzed using an ANOVA).
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Figure 6. MN and HK inhibit SZ-induced expression of necroptosis proteins in HT29 cells. (A and
D) HT29 cells were pretreated with MN and HK for 30 min before the treatment with SZ (Smac
mimetic (100 nM) and z-VAD (20 µM)) for 12 h. (B) The values represent the sum of the percentage of
cells in A (PI+ annexin V+; necroptosis). (C and F) Protein levels of pRIP1, RIP1, pRIP3, RIP3, pMLKL,
and MLKL were analyzed using western blotting. Tubulin was used as a loading control. (E) The
values represent the sum of the percentage of cells in D (PI+ annexin V+; necroptosis). **** p < 0.0001
(data were analyzed using an ANOVA).
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3.6. SZ-Induced ROS Production Is Reduced by Honokiol and Magnolol through Inhibition of the
JNK and p38-MAPK Pathways

Although MN and HK effectively reduced necroptosis, it is necessary to confirm
whether they also inhibit ROS production, similar to MBE. To address this question, ROS
production was induced using SZ, and the inhibitory effect of ROS production was in-
vestigated by treating cells with MN and HK. Similar to MBE, both HK and MN effec-
tively inhibited ROS production, resulting in a dose-dependent decrease in DCFDA levels
(Figure 7A,B,E,F). In addition, COX2 expression was reduced in a dose-dependent manner,
and it was suppressed to almost control levels at 40 µM (Figures 7C,G and S4). In addition,
the selective regulation of JNK and p38-MAPK is consistent with the results of previous
studies using MBE (Figures 7D,H and S4). Therefore, the biological efficacy of MBE can be
explained by the complex pharmacological effects of two of its major components, MN and
HK. Taken together, our findings strongly support the further investigation of MBE as a
novel, natural necroptosis inhibitor with the potential to treat IBD (Figure 7I).
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Figure 7. MN and HK attenuate ROS-dependent necroptosis. HT29 cells were pretreated with
indicated concentrations of MN (A) and HK (E) for 30 min before the treatment with SZ (Smac mimetic
(100 nM) and z-VAD (20 µM)) for 12 h. Intracellular ROS was detected as DCFDA fluorescence
using flow cytometry. (B,F) The number indicates increased DCFDA fluorescence in (A) and (E),
respectively. (C,G) The protein expression of COX2 was analyzed using western blotting. Tubulin
was used as a loading control. (D,H) The protein levels of p38, p38, pERK, ERK, pJNK, and JNK were
analyzed using western blotting. Tubulin was used as a loading control. ** p < 0.01, *** p < 0.001 and
**** p < 0.0001 (data were analyzed using an ANOVA). (I) Schematic diagram of the inhibition of the
necroptosis pathway by MBE, MN, and HK.

4. Discussion

In this study, we demonstrated that MBE may serve as a natural product for regulating
necroptosis in a DSS-induced colitis animal model. Using InEpC and HT29 cells, we
discovered that the suppression of JNK/p38-MAPK/COX2 signaling by MBE inhibits ROS-
mediated necroptosis in vitro. We also showed that MN and HK, two major components of
MBE, can exert pharmacological effects by acting as necroptosis inhibitors. Our findings
show that MBE can protect against colitis-induced enterocyte death via the inhibition of
ROS-mediated necroptosis.

Necroptosis, along with apoptosis, is an important phenomenon involved in intestinal
cell damage in IBD. Although the morphological features of necroptotic cell death are
similar to those of necrosis, such as cell membrane swelling and disruption of cell membrane
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integrity, as a form of PCD, it is more often compared with apoptosis. [14,36]. Furthermore,
Pierdomenico et al. reported dramatically increased RIPK3 and MLKL expression and
significantly decreased caspase-8 expression in the inflammatory tissues of 30 children
with ulcerative colitis and 33 with Crohn’s disease [37]; this is consistent with the fact that
necroptosis is independent of caspase-8 signaling and dependent on RIPK3 and MLKL. Our
findings of increased enterocyte death in the large intestine of mice with DSS-induced colitis
concurrent with increases in pRIPK3 and pMLKL are consistent with these previous reports.

Recent studies have reported that intracellular ROS accumulation in response to
external inflammatory substances acts as a trigger for necroptosis [38,39]. Herein, we
would like to further emphasize that modulating ROS target genes by inhibiting ROS is an
important mechanism for alleviating IBD caused by excessive necroptosis. We confirmed
that the expression of COX2, a ROS target gene, rapidly increased in the enterocytes of mice
with DSS-induced colitis and was effectively downregulated following MBE treatment.
COX2 is a representative pro-inflammatory gene induced by an excessive immune response
and is known to be regulated by the JNK and p38-MAPK pathways, which, notably, are
upstream signals that induce necroptosis. From this perspective, our data support the
hypothesis that MBE suppresses necroptosis via the selective control of the COX2, JNK,
and p38-MAPK pathways. For the reason that our investigation was limited to COX2
expression, detailed molecular correlation studies between the expression of COX2, other
ROS target genes, and necroptosis are needed to validate this mechanism.

Although MBE has been reported to be effective in treating diseases of the digestive
system, the underlying molecular mechanisms are not well understood. To address this,
we selected two major MBE components, MN and HK, for detailed investigation and
found that both components dramatically inhibited necroptosis in vitro. MN and HK are
known anticancer agonists. In our study, at high concentrations (800 µg/mL), MBE induced
apoptosis in HT29 cells. Therefore, MBE can potentially be used as a natural product to
suppress intestinal adenocarcinoma induced by IBD. In contrast, at low concentrations,
MBE could be used as a nutraceutical to help maintain enterocyte homeostasis under
inflammation. We speculate that their similar effects may be a consequence of similarities
in their chemical structures [40]. Notably, the similar efficacies of MN and HK have already
been demonstrated in other studies. For example, in the digestive system, Zhang et al.
showed the efficacy of both MN and HK in improving GI tract motility [41]. In addition,
MN and HK can be used to suppress prednisolone metabolism in the respiratory system and
improve the central nervous system as a mechanism to suppress cholinergic deficits [42–44].
Nevertheless, our results are the first to report that MN and HK can function as necroptosis
inhibitors to suppress colitis. Importantly, since the physicochemical and stability properties
of MN and HK differ, it cannot be overlooked that their intracellular pharmacokinetics may
differ as well. Thus, to anticipate the synergistic effect of MN and HK, additional research
on the suitability of each compound for the target disease is necessary.

5. Conclusions

Taken together, our findings demonstrate that MBE and its major bioactive compounds,
MN and HK, were effective in alleviating DSS-induced colitis and in mechanistically
controlling ROS-mediated necroptosis. Our results highlight the potential of MBE as a
disease-targeting drug for anti-colitis therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antiox11122435/s1, Table S1: Antibodies for immunoblot and immunohis-
tochemistry, Figure S1: Graph indicates quantification of Figure 3 immunoblot data, Figure S2: Graph
indicates quantification of Figure 4 immunoblot data, Figure S3: Graph indicates quantification of
Figure 6 immunoblot data, Figure S4: Graph indicates quantification of Figure 7 immunoblot data.
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