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Abstract: Earlier researchers have highlighted the utilization of salt eustress for boosting the nutri-
tional and phenolic acid (PA) profiles and antiradical potential (ARP) of vegetables, which eventually
boost food values for nourishing human diets. Amaranth is a rapidly grown, diversely acclimated C4

leafy vegetable with climate resilience and salinity resistance. The application of salinity eustress
in amaranth has a great scope to augment the nutritional and PA profiles and ARP. Therefore, the
A. gangeticus genotype was evaluated in response to salt eustress for nutrients, PA profile, and
ARP. Antioxidant potential and high-yielding genotype (LS1) were grown under four salt eustresses
(control, 25 mM, 50 mM, 100 mM NaCl) in a randomized completely block design (RCBD) in four repli-
cates. Salt stress remarkably augmented microelements, proximate, macro-elements, phytochemicals,
PA profiles, and ARP of A. gangeticus leaves in this order: control < low sodium chloride stress
(LSCS) < moderate sodium chloride stress (MSCS) < severe sodium chloride stress (SSCS). A large
quantity of 16 PAs, including seven cinnamic acids (CAs) and nine benzoic acids (BAs) were detected
in A. gangeticus genotypes. All the microelements, proximate, macro-elements, phytochemicals, PA
profiles, and ARP of A. gangeticus under MSCS, and SSCS levels were much higher in comparison
with the control. It can be utilized as preferential food for our daily diets as these antiradical com-
pounds have strong antioxidants. Salt-treated A. gangeticus contributed to excellent quality in the
end product in terms of microelements, proximate, macro-elements, phytochemicals, PA profiles,
and ARP. A. gangeticus can be cultivated as an encouraging substitute crop in salt-affected areas of
the world.

Keywords: A. gangeticus; protein and dietary fiber; minerals; phytochemicals; HPLC-UV DPPH;
ABTS+; PA profiles; NaCl

1. Introduction

Amaranth is a promising millennium vegetable with vast diversity [1–7]. It is an
alternate source of nutrients because of its richness in vitamin C, minerals [8–15], vita-
mins [16–20], protein [21,22], dietary fiber [23–25], leaf pigments [26–42], phenolic com-
pounds [43–58], and flavonoids [59–73] with strong antioxidants [74–86]. Amaranth has
a noteworthy contribution as an antioxidant in food manufacturing owing to quenching
reactive oxygen species (ROS) [87,88]. Wahid and Ghazanfar [89] reported that extreme
salt enhanced the secondary plant metabolites, eventually accelerating plant protection
apparatuses against ROS. Salinity enhances ROS production, which causes the oxidation of
cellular components. ROS [90]. In plants, antioxidants (non-enzymatic), such as proteins,
flavonoids, carbohydrates, carotenoids, and phenolic compounds, and enzymatic antioxi-
dants are capable of ROS detoxification [90,91]. Hence, in human life, salt-tolerant plants
could be considered a source of potent antioxidants. These compounds have extraordinary
benefits to our food owing to quenching ROS and protecting against numerous diseases,
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such as cancer, cardiovascular diseases, atherosclerosis, cataracts, retinopathy, emphysema,
arthritis, and neuron-damaging diseases [88].

Taste, flavor, and color determine the suitability of foods. Recently, consumers are
very much interested in coloring food products. These products have much interest in
the nutritional, safety, and beautification aspects of customers as foods. The utilization
of natural pigments is considerably increasing day by day. The selected A. gangeticus
genotype had sufficient betalains with bright red-violet color. Amaranthus leafy vegetable
is an exclusive origin of betalains with significant quenching capacity of free radicals [92].
In low-acid foods, betalains are preferable to be utilized as a food colorant. These have
greater stability than anthocyanins for pH [93], have preferential utility in the promotion of
health, act as anti-inflammatory compounds, and diminish the risk of cancers of the skin
and lungs and cardiovascular diseases.

Amaranth is an extensively acclimated leafy vegetable due to diverse stresses, such as
salinity [94–96] and drought [97], as well as having multiple uses. Salinity stress is a pioneer
for the rapid augmentation of the quantity and quality of natural antioxidants through
diverse factors, such as physiological, environmental, ecological, biological, biochemical,
and evolutionary processes [98]. Very limited reports on the effect of salinity stress are
available in terms of minerals, proximate, and bioactive compounds in different crops
including leafy vegetables. Petropoulos et al. [99] reported the salinity-induced reduction
of chlorophylls, fat, sugar, and carbohydrate and the augmentation of flavonoids, ascorbic
acid (AsA), phenolics, proteins, and ARP in Cichorium spinosum. Different concentrations of
sodium chloride enhanced the carotenoid content in buckwheat sprouts in comparison to
the control [100]. Alam et al. [101] reported salt-induced amelioration of phenolics, ARP,
and flavonoids in purslane. Ahmed et al. [102] recorded a salinity-induced increase in ARP
and phenolics in barley. The influence of sodium chloride stress on the phytochemicals,
nutrients, ARP, and PA profiles in A. gangeticus was studied for the first time. Based on our
previous studies, the ARP genotype (accession LS1) along with high yield potential were
selected. Therefore, the response of sodium chloride stress was assessed in A. gangeticus in
terms of phytochemicals, nutrients, ARP, and PA profiles.

2. Materials and Methods
2.1. Experimental Site, Conditions, and Plant Materials

A high-yielding ARP genotype (accession LS1) was selected from among 120 geno-
types from the Department of Genetics and Plant Breeding’s collection. The seeds were
sown in four replicates following a block design with complete randomization (RCBD) in
plastic pots at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (24◦23′ N,
90◦08′ E, 8.4 m.s.l., AEZ-28 [103,104]. Pots were filled with sandy loam soil. P2O5:K2O
was applied @ 48:60 kg ha−1 during the final land preparation. However, N was applied
@ 46 kg ha−1 in two equally split doses during the final land preparation and 10 days
after the sowing of the seeds. Four salt treatments, 100 (severe sodium chloride stress,
SSCS), 50 (moderate sodium chloride stress, MSCS), and 25 (low sodium chloride stress,
LSCS) mM NaCl, and a control (normal water) were used in the study. Pots were regularly
irrigated with normal water for 10 days after sowing (DAS). At 11 DAS, salt treatments
were imposed and sustained until the edible stage (30 DAS). Pots were irrigated once a day
using salt water (100, 50, and 25 mM NaCl) and normal water. A. gangeticus leaves were
harvested at 30 DAS.

2.2. Chemicals

Acetone, HClO4, HNO3, Sb, dithiothreitol (DTT), CsCl, AsA, 2, 2-dipyridyl, Trolox,
PAs, HPLC grade acetonitrile, acetic acid, gallic acid (GAA), NaOH, rutin, DPPH, H2SO4,
Folin-Ciocalteu reagent, MeOH, ABTS+, AlCl3.6H2O, Na2CO3, CH3CO2K, and K2S2O8. All
chemicals were bought from Kanto Chemical Co. Inc. (Tokyo, Japan) and Merck (Germany).
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2.3. Ash, Fiber, Moisture, Fat, Gross Energy, Carbohydrate, and Protein Estimation

The ash, fiber, moisture, fat, gross energy, and protein were estimated by the AOAC
method [105–107]. The mini-Kjeldahl method was followed to measure nitrogen (N).
Protein was calculated by multiplying N with 6.25. Protein, ash, fat, and moisture (%) were
deducted from 100 to estimate carbohydrates.

2.4. Elements Estimation

The leaves were dried in an oven at 70 ◦C temperature for 24 h. Mineral elements were
determined from the ground leaf by digesting with HNO3 and perchloric acid [105,108].
Exactly 0.5 g of the leaf samples were digested with 400 mL HNO3 (65%), 40 mL HClO4
(70%), and 10 mL H2SO4 (96%). The absorbance was read at 213.9 (Zn), 285.2 (Mg),
766.5 (K), 279.5 (Mn), 248.3 (Fe), 258.056 (S), 422.7 (Ca), 880 (P), 589 (Na), 430 (B), 313.3
(Mo), and 324.8 (Cu) nm wavelengths using an atomic absorption spectrophotometer (AAS
with flame) (Hitachi, Japan). Macro- and micro-elements were expressed in mg g−1 and
µg g−1 FW.

2.5. Beta-Carotene

In a mortar and pestle, 500 mg leaves (fresh) were thoroughly mixed with 10 mL
acetone (80%). The mixture was centrifuged at 10,000× g for 3–4 min for β-carotene
determination [109]. After the separation of the filtrate in a flask, the final volume of 20 mL
was maintained. The absorbance was taken at 510 and 480 nm by spectrophotometer
(Tokyo, Japan). β-Carotene was expressed in fresh weight as mg 100 g−1.

2.6. Ascorbic Acid (AsA) Estimation

Fresh leaves were used to determine AsA and DHA. The sample was pre-incubated
by dithiothreitol (DTT), which reduced DHA to AsA. With the reduction of AsA, Fe3+

converted to Fe2+. Fe2+ complexes were formed by reacting Fe2+ and 2, 2-dipyridyl [109].
The absorbance of the complexes was taken at 525 nm by a spectrophotometer (Hitachi,
Japan) to measure AsA in mg 100 g−1.

2.7. Samples Extraction and Determination of Total Polyphenols (TP), Total Flavonoids (TF), and
Antiradical Potential (ARP)

Leaves were dried in a shady place to avoid direct sunshine. The extraction was
performed from both the ground dried and fresh leaves (30 d) separately with a mortar and
pestle. Total polyphenols (TP) were measured from fresh leaves, while total flavonoids (TF)
content and ARP were determined from dried leaves. A 90% MeOH solution 10 mL was
added with 0.25 g samples in a capped bottle tightly. The mixture was placed for 1 h in a
shaker (Tokyo, Japan) at 60 ◦C. The final filtrate was stored for TP, TF, and ARP estimation.
TF and TP were estimated by the AlCl3 colorimetric method and the Folin-Ciocalteu
reagent, respectively [105,110]. The absorbance at 760 and 415 nm with a spectrophotometer
(Hitachi, Japan). TP and TF were measured as GAA and rutin equivalent µg GAE g−1

of FW and µg RE g−1 DW using standard GAA and rutin curves. The Trolox equivalent
antioxidant activity (TEAC) of ARP was estimated by the DPPH reduction and the ABTS+

assay [105,111]. ABTS+ and DPPH reduction percentage equivalent to the control was
measured for estimating the ARP using the equation:

ARP (%) = (Ac − As/Ac) × 100

where Ac denotes the control absorbance (150 µL MeOH for ARP (ABTS) and 10 µL MeOH
for ARP (DPPH) instead of leaf extract) and As is the absorbance of the samples. The results
were calculated as µg Trolox equivalent g−1 DW.
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2.8. Samples Extraction and Determination of Phenolic Acids (PAs) by HPLC

Fresh leaves (1 g) were extracted in MeOH (10 mL, 80%) containing CH3COOH (1%).
The thoroughly homogenized mixture was kept in a 50 mL tightly capped test tube and
placed in a shaker (Scientific Industries Inc., New York, NY, USA) for 15 h at 400 rpm. It was
filtered in a 0.45 µm filter (MA, New York, USA) and centrifuged for 15 min at 10,000× g.
The filtrate was used to estimate PAs. All extractions were repeated 3 times. The method of
Sarker and Oba [112] was followed to determine PAs using HPLC. Shimadzu HPLC (Kyoto,
Japan) was furnished with a binary pump, degasser, and detector. A column (150× 4.6 mm,
5 µm; Shinwa Chemical Industries, Ltd., Kyoto, Japan) was used for the separation of PAs.
Solvent B and solvent A (acetonitrile and 6% (v/v) acetic acid in water, respectively) were
pumped for 70 min at 1 mL min−1. HPLC system was run using a gradient program with
0–15% acetonitrile for 45 min, 15–30% for 15 min, 30–50% for 5 min, and 50–100% for 5 min;
35 ◦C temperature in the column was maintained with a 10 µL volume of injection. For
monitoring Pas continuously, the detector was set at 254 and 280 nm. The retention time
and UV–vis spectra with their respective standards were compared for the identification of
the compound. Pas was estimated as µg g−1 FW.

Each PA was quantified using the corresponding standards of calibration curves. A
total of 16 PAs were dissolved in MeOH (80%) 100 mg mL−1 as stock solutions. Indi-
vidual PAs were quantified using corresponding standard curves (10, 20, 40, 60, 80, and
100 µg mL−1) with external standards. Retention times, co-chromatography of samples
spiked with commercially available standards, and UV spectral characteristics were utilized
for identification and matching the PA.

2.9. Statistical Analysis

All the sample data of a trait were averaged for each treatment to obtain a replica-
tion mean [113–115]. The mean data of various traits were statistically and biometrically
analyzed [116–118]. Data analysis and ANOVA were performed using Statistix software
version 8.0, Tallahassee FL 32312, USA [119–121]. The means were compared at a 1% level
of probability using Duncan’s Multiple Range Test (DMRT). The results were reported as
the mean ± SD of four separate replicates [122–124].

3. Results and Discussion
3.1. The Response of Proximate Compositions to Sodium Chloride Stress

Figure 1 represents the nutritional compositions of A. gangeticus under different salin-
ity stresses. A. gangeticus leaves had a high moisture content like most leafy vegetables.
Nevertheless, our study revealed that A. gangeticus leaves have copious ash, carbohy-
drates, dietary fiber, moisture, and protein. The constituents of these components were
several times greater than C. spinosum [99]. The maximum moisture and fat were exhib-
ited under the control treatment, whereas the minimum moisture and fat were observed
under SSCS. Petropoulos et al. [99] reported a similar reduction in fat with the increase
in salinity stress in C. spinosum. Moisture and fat were significantly reduced in the or-
der: (control > LSCS > MSCS > SSCS) and (control > LSCS > MSCS = SSCS), respectively.
Higher leaf dry matter obtained from leaves ensure lower moisture content. Hence, salt-
stressed A. gangeticus leaves confirmed greater dry matter in comparison to the control.
The maximum dietary fiber, ash, carbohydrates, energy, and protein were recorded at SSCS,
while the minimum dietary fiber, ash, carbohydrates, energy, and protein were noticed
under the control. Similarly, Petropoulos et al. [99] reported higher ash and protein at the
maximum and 8.0 and 6.0 dS m−1, than the control and minimum salinity in C. spinosum.
Energy, protein, and dietary fiber contents were sharply augmented in the following order:
control < LSCS < MSCS < SSCS, whereas ash and carbohydrates contents were statisti-
cally similar in the control and LSS levels and progressively augmented from MSCS to
SSCS levels.
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Figure 1. The response of ash, fiber, moisture, fat, gross energy, carbohydrate, and protein (g 100 g−1)
to control, LSCS, MSCS, and SSCS in A. gangeticus accession; (n = 6), different letters in columns are
varied significantly by Duncan Multiple Range Test (DMRT) (p < 0.01).

In LSCS, MSCS, and SSCS, dietary fiber, energy, carbohydrates, ash, and protein were
increased by 17%, 2%, 2%, 9%, and 4%; 6%, 10%, 8%, 14%, and 19%; and 23%, 14%, 9%,
16%, and 29%, respectively, in comparison with the control condition (Figure 2).
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Figure 2. Changes of ash, fiber, moisture, fat, gross energy, carbohydrate, and protein over control in
A. gangeticus accession.

Dietary fiber has significantly acted in the remedy of constipation, increased digestibil-
ity, and palatability. Vegetarians and deprived rural communities in underdeveloped
countries mostly trust A. gangeticus for protein. Since the low amounts consumed in a daily
diet, the increments of energy content in the order of control < LSCS < MSCS < SSCS had
no substantial influence on the energy balance in humans. The findings of A. gangeticus
conformed with the outcomes of AT [91] and leaves of Ipomoea batata [125], respectively.
They specified that it influences cell function, the fat covering the body’s organs, and
continues the temperature of the body. The fats of vegetables are prime sources of crucial
fatty acids, such as Ω-6 and Ω-3. Fats perform a noteworthy contribution to the absorption,
digestion, and transportation of vitamins A, E, K, and D.

3.2. Sodium Chloride Impact on Minerals (Macroelements and Microelements) Composition

A. gangeticus has abundant minerals (macroelements and microelements) (Figure 3).
High levels of minerals were observed and corroborated with A. tricolor under normal
cultivation practice in an open field [126]. A. gangeticus had higher Fe and Zn than
Manihot esculenta leaves [127] and Lathyrus japonicus [128]. Jimenez-Aguiar and Grusak [129]
also found abundant Zn, Cu, Mn, and Fe in different A. spp. They also found higher iron and
copper compared with kale and higher Zn compared with leaf cabbage, Spinacia oleracea,
and Solanum nigrum. The maximum Zn, Ca, Mo, Mg, Na, S, Cu, B, Mn, and Fe was noticed
under the SSCS level, while the minimum levels Zn, Ca, Mo, Mg, Na, Cu, B, Mn, and Fe
were reported under control conditions, and the lowest sulfur content was observed under
the LSCS level. Zn, Ca, Mo, Mg, Na, Cu, B, and Mn were progressively augmented in the
order control < LSCS < MSCS < SSCS. In contrast, potassium and phosphorus contents
were drastically reduced in the order control > LSCS > MSCS > SSCS.

In LSCS, MSCS, and SSCS, Zn, Ca, Cu, Mo, Mg, Mn, B, and Na were augmented by
−1%, 0.8%, 13%, −1%, 10%, 4%, 1%, and 6%; 21%, 16%, 29%, 24%, 46%, 67%, 24%, and
12%; and 30%, 34%, 67%, 52%, 72%, 100%, 81%, and 36%, respectively, in comparison with
the control condition (Figure 4). In LSCS, MSCS, and SSCS, potassium and phosphorus
content declined to 5%, 14%, 25%, and 3%, 36%, 42%, respectively, in comparison with the
control condition (Figure 4).
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Figure 3. Response of minerals concentration (A) macroelements and (B) microelements under
control, LSCS, MSCS, and SSCS in A. gangeticus accession; (n = 6), different letters in columns are
varied significantly by DMRT (p < 0.01).
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Figure 4. Response of minerals (macroelements and microelements) over control in A. gangeticus
accession.

Most of the minerals increased under different salt levels compared with control con-
ditions, which were corroborated with minerals of C. spinosum under salinity stress [99].
Petropoulos et al. [99] reported sharp augmentation in calcium, magnesium, iron, man-
ganese, zinc, and sodium content and a reduction in potassium content in C. spinosum.
They stated that the application of fertilizer and treatments of salinity could be the reason
for the amelioration of sodium content and suggested that the species utilized accumulated
sodium to cope with the adverse effects of salinity. Iron content was statistically similar to
the value of the control and LSCS levels, while iron content was progressively augmented
under MSCS and SSCS levels by 12% and 62%, respectively. The lowest sulfur content was
obtained from the LSCS levels, which differed significantly from the control condition. The
sulfur content was gradually augmented under MSCS and SSCS levels by 20% and 51%,
respectively (Figure 4).

3.3. Impact of Salinity on Phytochemicals and ARP

Polyphenols, beta-carotene, AsA, flavonoids, and ARP varied significantly under
different sodium chloride stresses (Figure 5). Sodium chloride stress progressively aug-
mented polyphenols, beta-carotene, AsA, flavonoids, and ARP in the following order:
control < LSCS < MSCS < SSCS.

Beta-carotene, AsA, polyphenols, flavonoids, and ARP (DPPH and ABTS+) under
LSCS, MSCS, and SSCS were predominately augmented by 12%, 4%, 5%, 7%, 6%, and 3%;
28%, 18%, 22%, 22%, 20%, and 19%; and 47%, 52%, 54%, 45%, 38%, and 41% than control,
respectively (Figure 6).

The maximum polyphenols, beta-carotene, flavonoids, AsA, and ARP (DPPH and
ABTS+) were recorded under SSCS. Conversely, the lowest polyphenols, beta-carotene,
flavonoids, AsA, and ARP (DPPH and ABTS+) were confirmed under the control. Petropou-
los et al. [99] reported the salinity-induced augmentation of flavonoids, ARP, AsA, and phe-
nolics in C spinosum. Different concentrations of sodium chloride enhanced the carotenoid
content in buckwheat sprouts in comparison with the control (Lim et al. [100]. Alam
et al. [101] reported salt-induced amelioration of phenolics, ARP, and flavonoids in purslane.
In barley, a similar salinity-induced increase of ARP and phenolics were stated.
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Figure 5. Effect of salinity treatments (control, LSCS, MSCS, and SSCS) on phytochemicals composi-
tion in A. gangeticus accession. Flavonoids (µg RE g−1 DW), AsA and beta-carotene (mg 100 g−1 FW),
ARP (DPPH and ABTS+) (µg TEAC g−1 DW), and polyphenols (µg GAE g−1 FW), (n = 6); different
letters in columns are varied significantly by DMRT (p < 0.01).
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Figure 6. Comparison of phytochemicals over control in A. gangeticus accession.

3.4. Response of Salinity on PA Profiles

The HPLC-identified PA values of A. gangeticus (accession LS11) under four sodium
chloride stress were compared with PAs using the respective peaks of the compounds
(Table 1). Sixteen PAs, including seven CAs and nine Bas, were confirmed in A. gangeticus.
Three BAs [protocatechuic acid (PCA), β-resorcylic acid (β-RA), and gentisic acid (GA)]
were identified as new compounds for the first time in Amaranthus leaves.
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Table 1. Wavelengths of maximum absorption in the visible region (λmax), mass spectral data,
retention time (Rt), and tentative identification of PAs in A. gangeticus.

Peak No Rt (min) λmax (nm) Molecular Ion [M-H]− (m/z) MS2 (m/z) Identity of Tentative Phenolic Acids

1 9.1 254 169.1142 169.1563 3,4,5 Trihydroxybenzoic acid
2 30.6 254 167.1214 167.1564 4-Hydroxy-3-methoxybenzoic acid
3 34.8 254 197.1132 197.1104 3,5-Dimethoxy-4-hydroxybenzoic acid
4 31.5 254 137.0213 137.1574 4-Hydroxybenzoic acid
5 48.2 254 137.2113 137.1582 2-Hydroxybenzoic acid

6 52.5 254 301.0423 301.0643 2,3,7,8-Tetrahydroxy-chromeno
[5,4,3-cde] chromene-5,10-dione

7 2.2 280 154.1212 154.1157 3,4-Dihydroxybenzoic acid
8 4.0 280 154.1212 154.0156 2,4-Dihydroxybenzoic acid
9 3.7 280 154.1212 154.1157 2,5- Dihydroxybenzoic acid

10 32.0 280 179.0821 179.0687 3,4-Dihydroxy-trans-cinnamate
11 31.1 280 353.1253 353.1542 3-(3,4-Dihydroxy cinnamoyl) quinic acid
12 42.0 280 163.0658 163.1241 4-Hydroxy cinnamic acid
13 47.9 280 193.1726 193.1649 3-Methoxy-4-hydroxy cinnamic acid
14 49.6 280 163.2547 163.2872 3-Hydroxy cinnamic acid
15 49.0 280 223.1568 223.1748 4-Hydroxy-3,5-dimethoxy cinnamic acid
16 67.3 280 147.1142 147.1103 3-Phenyl acrylic acid

BAs were the amplest among the two categories of acids, thereafter CAs in A. gangeticus
(Figures 7 and 9). Salicylic acid (SA) was the most copious PAs across BAs thereafter GAA,
GA, PCA, vanillic acid (VA), p-hydroxybenzoic acid (p-HBA), β-RA, and syringic acid (SYA)
(Figure 7). BA contents in the A. gangeticus genotype under control conditions were superior
to the BA content of A. tricolor [130]. Chlorogenic acid (CHA) was the most noticeable
compound across CAs thereafter ferulic acid (FA), sinapic acid (SIA), m-coumaric acid
(m-COA), trans-cinnamic acid (Trans-CA), and caffeic acid (CFA) (Figure 7). A. gangeticus
had abundant CAs under control conditions. Seven CAs obtained were confirmed superior
to CAs of A. tricolor [130]. Phenylalanine is the most extensively distributed PA in plant
tissues, which are finally synthesized into CAs [131]. Identified Benzoic acids (BAs) have
important biological activities. For instance, gallic acid and its ester derivatives ARE flavor-
ing agents and preservatives in the food industry. There are diverse scientific reports on
the biological and pharmacological activities of these phytochemicals, with emphasis on
antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective, gastroprotective,
and neuroprotective effects [132]. Vanillic acid exerts diverse bioactivity against cancer,
diabetes, obesity, neurodegenerative, cardiovascular, and hepatic diseases by inhibiting
the associated molecular pathways. Its derivatives also possess the therapeutic potential
to treat autoimmune diseases, as well as fungal and bacterial infections [133]. Syringic
acid shows a wide range of therapeutic applications in the prevention of diabetes, CVDs,
cancer, and cerebral ischemia, as well as antioxidant, antimicrobial, anti-inflammatory,
antiendotoxic, neurologic, and hepatoprotective activities [134]. High salicylate in diets has
proven health benefits, such as lower risks of cancer, heart disease, and diabetes. Ellagic
acid has been reported to have antimutagenic on bacteria and in mammalian systems as
well. It has also shown strong antioxidant, anti-inflammatory, and anticarcinogenic activ-
ities, as well as a better preservative effect against oxidative stress when compared with
vitamin E [135]. PCA is a major metabolite of anthocyanin. The pharmacological actions of
PCA have been shown to include strong in vitro and in vivo antioxidant activity. In in vivo
experiments using rats and mice, PCA has been shown to exert anti-inflammatory as well
as antihyperglycemic and antiapoptotic activities [136]. β-resorcylic acid has antimicrobial
activity [137]. Finally, gentisic acid possesses fibro growth factor inhibition, antimicrobial,
antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective activities [138].
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Figure 7. Impact of BAs concentrations (µg g−1 FW) under control, LSCS, MSCS, and SSCS in
A. gangeticus accession; (n = 6), different letters in columns are varied significantly by DMRT (p < 0.01).

Sodium chloride stress predominately augmented all the BA compositions. At SSCS,
all the BAs displayed the maximum contents, while the minimum BA contents were
obtained from the control treatment. From control to SSCS, VA, β-RA, p-HBA, and SYA
ranged from 12.24 to 37.15, 8.26 to 16.48, 8.55 to 14.23, and 7.36 to 11.52 µg g−1 FW,
respectively (Figure 7). VA, β-RA, p-HBA, and SYA progressively augmented in the order:
Control < LSCS < MSCS < SSCS (Figure 7). VA, β-RA, p-HBA, and SYA under LSCS, MSCS,
and SSCS were predominately augmented by 20%, 28%, 204%; 14%, 79%, 100%; 15%, 46%,
and 66%; and 8%, 30%, and 57% than control, respectively (Figure 8).

SA, GAA, and PCA contents had no statistical variations at the control and LSCS level;
however, three acids were augmented remarkably from LSCS to SSCS with a range from
23.83 to 45.82, 15.76 to 22.46, and 11.95 to 23.42 µg g−1 FW, respectively (Figure 7). In MSCS
and SSCS, SA, GAA, and PCA contents were augmented by (37% and 92%), (12% and 43%),
and (41% and 96%), respectively (Figure 8). GA and ellagic acid (EA) ranged from 12.68 to
22.58 and 5.08 to 6.55 µg g−1 FW. GA and EA had no statistical variations between control
and LSCS levels and between MSCS and SSCS levels; however, the contents of these acids
were augmented remarkably from control condition or LSCS to MSCS or SSCS level (26%
and 77%) (Figures 7 and 8).

All the CA contents were sharply augmented under sodium chloride levels. All the
CAs showed the highest contents under the SSCS level, whereas the control treatment
exhibited the lowest CA contents. From control to SSCS, CHA, m-COA, and p-coumaric
acid (p-COA) ranged from 14.38 to 27.35, 7.87 to 21.36, and 4.16 to 8.75 µg g−1 FW, respec-
tively, (Figure 9). Identified Cinnamic acids (CAs) have important biological activities. For
instance, Caffeic acid (CA) and its derivatives have antioxidant, anti-inflammatory, and
anticarcinogenic activity [139]. Chlorogenic acid was effective in preventing weight gain,
inhibiting the development of liver steatosis, and blocking insulin resistance induced by a
high-fat diet [140]. p-coumaric acid decreases low-density lipoprotein (LDL) peroxidation,
shows antioxidant and antimicrobial activities, and plays an important role in human
health [141]. Ferulic acid has low toxicity and possesses many physiological functions
(anti-inflammatory, antioxidant, antimicrobial activity, anticancer, and antidiabetic effects).
It has been widely used in the pharmaceutical, food, and cosmetics industries [142]. Sinapic
acid shows antioxidant, antimicrobial, anti-inflammatory, anticancer, and anti-anxiety activ-
ity [143]. Cinnamic acids have been identified as interesting compounds with antioxidant,
anti-inflammatory, and cytotoxic properties [144].
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Figure 8. Comparison of BAs composition over control in A. gangeticus accession.
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Figure 9. Response of CAs composition (µg g−1 FW) under control, LSCS, MSCS, and SSCS in
A. gangeticus accession; (n = 6), different letters in columns are varied significantly by DMRT (p < 0.01).

CHA, m-COA acid, and p-COA were progressively augmented in the order of
control < LSCS < MSCS < SSCS (Figure 9). In LSCS, MSCS, and SSCS, CHA, m-COA acid,
and p-COA were predominately augmented by 13%, 42%, 90%; 25%, 74%, 171%; and 23%,
65%, 110% compared with the control condition, respectively (Figure 10). Trans-CA and
SIA contents at control condition were statistically similar to the LSCS level; however, these
two acids’ contents were remarkably augmented from LSCS to SSCS with a range from
9.85 to 18.62 and 11.35 to 12.56 µg g−1 FW, respectively (Figure 9). In MSCS and SSCS,
Trans-CA and SIA contents were augmented by 41% and 89%; and 6% and 11%, respectively
(Figure 10). FA and CFA ranged from 8.20 to 20.45 and 6.56 to 7.62 µg g−1 FW, respectively.
FA and CFA contents at the control condition were statistically similar to the LSCS level,
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and at the MSCS level were statistically similar to the SSCS level. However, the contents of
these acids were remarkably augmented from the control condition or LSCS to MSCS or
SSCS level (47% and 16%) (Figures 9 and 10).

Antioxidants 2022, 11, x FOR PEER REVIEW 13 of 21 
 

 
Figure 9. Response of CAs composition (µg g−1 FW) under control, LSCS, MSCS, and SSCS in A. 
gangeticus accession; (n = 6), different letters in columns are varied significantly by DMRT (p < 0.01). 

CHA, m-COA acid, and p-COA were progressively augmented in the order of control 
< LSCS < MSCS < SSCS (Figure 9). In LSCS, MSCS, and SSCS, CHA, m-COA acid, and p-
COA were predominately augmented by 13%, 42%, 90%; 25%, 74%, 171%; and 23%, 65%, 
110% compared with the control condition, respectively (Figure 10). Trans-CA and SIA 
contents at control condition were statistically similar to the LSCS level; however, these 
two acids’ contents were remarkably augmented from LSCS to SSCS with a range from 
9.85 to 18.62 and 11.35 to 12.56 µg g−1 FW, respectively (Figure 9). In MSCS and SSCS, 
Trans-CA and SIA contents were augmented by 41% and 89%; and 6% and 11%, respec-
tively (Figure 10). FA and CFA ranged from 8.20 to 20.45 and 6.56 to 7.62 µg g−1 FW, re-
spectively. FA and CFA contents at the control condition were statistically similar to the 
LSCS level, and at the MSCS level were statistically similar to the SSCS level. However, 
the contents of these acids were remarkably augmented from the control condition or 
LSCS to MSCS or SSCS level (47% and 16%) (Figures 9 and 10). 

 
Figure 10. Comparison of CAs over control in A. gangeticus accession. 

b

d

d

b d

c
c

b

c

c
b

c
c

c
a

b

b

a

b
b

b

a

a

a

a a

a

a

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Caffeic acid Chlorogenic
acid

p-coumaric
acid

Ferulic acid m-coumaric
acid

Sinapic acid Trans-cinnamic
acid

Ci
nn

am
ic 

ac
id

s c
om

po
sit

io
n

Control LSCS MSCS SSCS

0

50

100

150

200

250

300

Caffeic acid Chlorogenic
acid

p-coumaric
acid

Ferulic acid m-coumaric
acid

Sinapic acid Trans-cinnamic
acid

%
 o

f t
he

 va
lu

e 
of

 co
nt

ro
l

Cinnamic acids composition
Control LSCS MSCS SSCS

Figure 10. Comparison of CAs over control in A. gangeticus accession.

All the PA fractions were sharply and remarkably augmented under sodium chloride
stress. All the PA fractions exhibited the highest contents under SSCS level, whereas the
control treatment had the lowest PA fractions. From control to SSCS, total BAs, total CAs,
and total PAs ranged from 105.71 to 200.21, 62.37 to 116.71, and 168.08 to 316.92, µg g−1

FW, respectively (Figure 11).
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Total BAs, total CAs, and total PAs were progressively augmented in the order
control < LSCS < MSCS < SSCS (Figure 11). In LSCS, MSCS, and SSCS, total BAs, total
CAs, and total PAs were predominately augmented by 7%, 52%, and 89%), (8%, 52%, and
87%), and (7%, 52%, and 89%), compared with control condition, respectively (Figure 12).
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significantly by DMRT (p < 0.01). 

Total BAs, total CAs, and total PAs were progressively augmented in the order con-
trol < LSCS < MSCS < SSCS (Figure 11). In LSCS, MSCS, and SSCS, total BAs, total CAs, 
and total PAs were predominately augmented by 7%, 52%, and 89%), (8%, 52%, and 87%), 
and (7%, 52%, and 89%), compared with control condition, respectively (Figure 12).  

 
Figure 12. Comparison of phenolics acid fractions (total BA, total CAs, and total PAs) over control in
A. gangeticus accession.

Petropoulos et al. [99] reported the salinity-induced augmentation of PAs in C. spinosum.
Klados and Tzortzakis [145] showed a progressive increment of total PAs under increased
sodium chloride stress in C. spinosum. Alam et al. [101] reported salt-induced amelioration
of phenolics in purslane. Ahmed et al. [103] reported a salinity-induced increment of PA
profiles in barley. In contrast, Neffati et al. [146] stated the reduction of PA profiles with an
increment of sodium chloride concentrations in coriander.

The cost is very low to maintain salt stress by adding sodium chloride to the plants.
Furthermore, we suggested cultivating in salt-prone areas where there are no salt suscep-
tible crops grown successfully. So, those areas will be efficiently utilized for amaranth
leafy vegetable cultivation to meet the demand for the leafy vegetable of that locality, as
leafy vegetables are too susceptible to salinity stress as amaranth is a salinity-tolerant leafy
vegetable with up to 200 mM salt concentration. It can produce enough biomass and
perform optimal photosynthesis at 100 mM saline stress. Amaranth is highly tolerant to
salinity. It can tolerate 200 mM NaCl [147]. As amaranth is salt tolerant, it increases all
enzymatic and non-enzymatic antioxidants, and metabolites, to detoxify ROS and cope
with salt stress.

4. Conclusions

Sodium chloride stress remarkably augmented the energy, ash, carbohydrates, protein,
calcium, dietary fiber, magnesium, S, Fe, Mo, Mn, Na, Cu, B, Zn, and ARP of A. gangeticus
leaves. All the nutrients, phytochemicals, PA profiles, and ARP of A. gangeticus leaves under
MSCS and SSCS levels were superior to the control. It can be utilized as a valued product
for human consumption and health benefits. Salt-treated A. gangeticus leaves had abundant
nutrients, phytochemicals, PA profiles, and ARP. Phytochemicals, PA profiles, and ARP
scavenge ROS that would be advantageous for human health benefits as these bioactive
compounds have potent antioxidants. Furthermore, sodium chloride-stressed A. gangeticus
contributed with excellent quality in the end users for nutrients, phytochemicals, PA
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profiles, and ARP. It can be cultivated as a promising substitute crop in sodium chloride-
affected areas of the world.
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