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Abstract: Nicotinamide phosphoribosyl transferase (NAMPT) is required to maintain the NAD+

pool, among which extracellular (e) NAMPT is associated with inflammation, mainly mediated by
macrophages. However, the role of (e) NAMPT in inflammatory macrophages in ulcerative colitis
is insufficiently understood. Here our analyses of single-cell RNA-seq data revealed that the levels
of NAMPT and CYBB/NOX2 in macrophages were elevated in patients with colitis and in mouse
models of acute and chronic colitis. These findings indicate the clinical significance of NAMPT
and CYBB in colitis. Further, we found that eNAMPT directly binds the extracellular domains
of CYBB and TLR4 in activated NLRP3 inflammasomes. Moreover, we developed a recombinant
12-residue TK peptide designated colon-targeted (CT)-conjugated multifunctional NAMPT (rCT-
NAMPT), comprising CT as the colon-targeting moiety, which harbors the minimal essential residues
required for CYBB/TLR4 binding. rCT-NAMPT effectively suppressed the severity of disease in DSS-
induced acute and chronic colitis models through targeting the colon and inhibiting the interaction of
NAMPT with CYBB or TLR4. Together, our data show that rCT-NAMPT may serve as an effective
novel candidate therapeutic for colitis by modulating the NLRP3 inflammasome-mediated immune
signaling system.

Keywords: NAMPT; TLR4; CYBB; NLRP3 inflammasome; colitis

1. Introduction

Inflammatory bowel diseases (IBDs) including Crohn’s disease as well as ulcerative
colitis (UC) are characterized by abnormalities in intestinal homeostasis, which result in
chronic inflammation [1,2]. Biological drugs (anti-TNFα therapy and/or immune modula-
tors) are effective for treating many people with IBD. However, many patients with severe
disease fail to achieve remission because of a poor responsiveness to drugs, unavailability
of mechanism-specific targeted therapy, or serious adverse effects requiring treatment [3,4].
Therefore, highly sensitive and specific predictive biomarkers along with novel therapeutic
strategies are required to implement effective therapeutic strategies.

Nicotinamide phosphoribosyltransferase (NAMPT) acts as a catalyst of the rate-
determining step of the nicotinamide adenine dinucleotide (NAD) recovery pathway
and thus regulates intracellular NAD concentrations [5]. Many cell types secrete NAMPT,
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including monocytes and macrophages [6–8]. Accumulating evidence suggests that extra-
cellular (e) NAMPT (visfatin) acts as a novel soluble factor with activities similar to those of
cytokines, adipokines, and DAMPs [9–11]. Further, eNAMPT contributes to metabolic and
inflammatory disorders such as obesity, diabetes, cancer, and particularly IBD [6,12–14].
The cellular and serum levels of eNAMPT are increased in patients with IBD who are
unresponsive to anti-TNFα treatment (adalimumab or infliximab); and eNAMPT levels
decrease in responsive patients to values comparable with those of healthy controls [15,16].
These findings support the conclusion that because eNAMPT levels correlate with a worse
prognosis, this enzyme will serve as a potential target of drugs for effectively and safely
treating IBD.

The effect of eNAMPT is mainly associated with the activation of inflammatory signals
in macrophages, suggesting that the potent activation of TLR4-mediated NF-kB signaling
occurs through direct binding to TLR4 [14,17–19]. In addition, changing intracellular NAD
levels with NAMPT inhibitors or NAD precursors alters TLR4-mediated NF-kB activation
and NLRP3 inflammasome activity, establishing a relationship between intracellular NAD
levels and inflammation [20]. Further, eNAMPT may be associated with the activation of
NADPH oxidase (NOX) to stimulate NOX-derived reactive oxygen species (ROS) through
lipid-raft clustering, which in turn activates the NLRP3 inflammasome via TXNIP [21,22].
Therefore, activation of the NLRP3 inflammasome through the redox signaling pathway
likely may occur through NF-kB signaling (priming) and interactions (activation) through
the NAMPT-NOX association.

Intensive research focused on colonic-targeted drug delivery systems for topical treat-
ment of colonic disease shows that they cause fewer systemic side effects and improve
the effectiveness of oral delivery of therapeutic agents susceptible to acidic and enzymatic
breakdown in the upper gastrointestinal tract [23,24]. A targeting moiety often enhances
gene therapy. The inflamed colon can be targeted using a 12-residue peptide (TWYKI-
AFQRNRK; designated “CT” for colonic-targeting); it interacts with high affinity with the
integrin α6β1, which is generated from the COOH-terminal globular domain belonging to
the laminin-1 α1 chain [23,24]. Thus, the CT peptide may serve as a promising moiety for
ameliorating colonic inflammation.

Our present data, which were acquired from genome-wide association studies of
NAMPT in humans and mouse models of colitis, identified key driver genes in macrophages
associated with IBD. Notably, we found that eNAMPT interacted with TLR4 or CYBB/NOX2
in IBD tissues. Moreover, recombinant multifunctional NAMPT (rCT-NAMPT) linked to
the CT peptide that harbors the essential minimal residues required for binding CYBB and
TLR4, may serve as a platform for developing safe and effective treatments of IBD.

2. Materials and Methdos
2.1. Analysis of Public Single-Cell RNA-Seq Data for Ulcerative Colitis

Dataset used: We used two datasets, SPC259 [25], available from the human cell
atlas, and GSE182270 [26]. Table 1 shows a brief summary of the datasets. Although there
are several datasets other than these two, e.g., GSE162335 [27] and GSE125527 [28], for
ulcerative colitis, we chose these two since other datasets do not contain sufficient numbers
of macrophage and T cells, which are our main focus in this study. Since the number of
macrophages is limited in GSE182270, we used it only as supplementary data for DEG and
GSE analysis to verify the main results from SCP259.
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Table 1. Datasets used for the study.

Dataset Tissue
Condition and Number of Samples Total Number

of Cells
Cell Type

AnnotationHealthy Inflamed Non-Inflamed

SCP259 Colon
(LP and Epi) 12 18 18 365 K Available

GSE182270 Colon (LP) 4 5 - 32 K Not available

LP: lamina propria, Epi: Epithelium.

DEG and GSEA: We performed differentially expressed gene (DEG) analysis as well
as gene set enrichment analysis (GSEA) individually on the selected cells for the two
datasets. Specifically, macrophage, regulatory T cells, other CD4+ T cells and cytotoxic
T cells were analyzed. The latest version of Seurat package [29] was used for the DEG
analysis and FGSEA package [26,29] was used for GSEA. Since the number of cells in
GSE182270 is much smaller than that in SCP259, we performed the analysis as follows.

(1) DEG: DEGs were identified separately for the two datasets with a p-value cutoff of
0.05. Rather than using an adjusted p-value, we used a non-adjusted one to obtain as
many DEGs as possible.

(2) Selection of common DEGs: We then selected those DEGs that have the same sign
of log-fold change in the two datasets and then took the intersection of the two sets of
DEGs, which is used for the GSEA.

(3) GSEAs with common DEGs: GSEA analyses were performed with the selected DEGs
with the log-fold changes for SCP259, since it might provide a better result when
using a greater number of cells.

2.2. Mice, and Tissue-Culture

Wild-type C57BL/6 mice were supplied by Samtako Bio Korea (Osan, Korea). Primary
bone marrow–derived macrophages (BMDMs) were harvested from mice and cultured
in DMEM in the presence of M-CSF (R&D Systems, 416-ML) for 3–5 d, as described
previously [30,31]. HEK293T cells (ATCC-11268; American Type Culture Collection) were
cultured in in DMEM (Gibco) containing 10% FBS (Gibco), nonessential amino acids,
sodium pyruvate, streptomycin (100 µg/mL) and penicillin G (100 IU/mL).

2.3. Reagents and Antibodies

LPS (Escherichia coli O111:B4, tlrl-eblps), Adenosine 5′-triphosphate (ATP, tlrl-atpl),
Nigericin and DSS (Dextran Sulfate Sodium) were purchased from Invivogen.

Antibodies specific for NAMPT (ab236874) were purchased from Abcam. NAMPT
(E-3), TLR4 (25), CYBB (54.1), CYBA (E-11), Actin (I-19), ASC (N-15-R), IL-18 (H-173-Y),
caspase-1 p10 (M-20), HA (12CA5), Flag (D-8), GST(B-14), Myc (9E10), His (H-3) and V5
(C-9) were procured from Santa Cruz Biotechnology. Specific Abs against IkBα (L35A5) and
Phospho-IkBα (14D4) were supplied by Cell Signaling Technology (Danvers, MA, USA).
IL-1β (AF-401-NA) and NLRP3 (AG-20B-0014) were from R&D Systems and Adipogen,
respectively.

2.4. Plasmid Construction

GST-NAMPT, Myc-NAMPT and Flag-TLR4 plasmids were sourced from Addgene.
The full-length (FL) CYBB and mutant plasmids were previously described [32]. Plasmids
encoding different regions of NAMPT (1-491, 10-116, 188-455, 456-491) were amplified by
PCR from full-length NAMPT cDNA and subcloned into a pEBG derivative that codes for
an N-terminal GST epitope tag flanked by the BamHI and NotI sites. Plasmids encoding
different regions of TLR4 (1-811, 25-696, 717-811) were produced via PCR amplification
from FL TLR4 cDNA and subcloned into a pEF derivative encoding a C-terminal Flag-tag
between the BamHI and NotI sites. The pEBG-GST mammalian fusion vector and the pEF-
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IRES-Puro expression vector were used to create all transient constructs in mammalian cells.
All constructions were sequenced using an ABI PRISM 377 automated DNA sequencer to
ensure that they were 100% identical to the original sequence.

2.5. Peptides

Tat-conjugated NAMPT or NAMPT peptides were commercially produced and pu-
rified in acetate salt form to circumvent undesirable responses in the cells by Peptron
(Daejeon, Republic of Korea). The endotoxin level was determined by the Limulus ame-
bocyte lysate test (Charles River Endosafe® Endochrome-K™, R1708K, Wilmington, MA,
USA) and was less than 3–5 pg/mL at the concentrations of the peptides employed in
experiments.

2.6. Recombinant Protein

To obtain recombinant rCT-NAMPT proteins, colon-targeting sequences of NAMPT
amino acids (57–65), NAMPT amino acids (52–65), and CT peptides (TWYKIAFQRNRK)
were cloned with an N-terminal 6xHis tag into the pRSFDuet-1 Vector (Novagen) and
induced, harvested, and purified from Escherichia coli expression [30,31], in accordance
with the standard protocols recommended by Novagen. The rVehicle, rCT, or rCT-NAMPT
proteins were dialyzed through a permeable cellulose membrane and tested for lipopolysac-
charide contamination using a Limulus amebocyte lysate assay (Bio-Whittaker) and con-
tained <20 pg/mL at the concentrations of rVehicle, rCT, or rCT-NAMPT proteins used in
the experiments.

2.7. GST Pulldown, Immunoblot, and Immunoprecipitation Analysis

293T and BMDMs were treated as specified and subjected to GST pull-down, Western
blotting, and co-immunoprecipitation analysis, as previously reported [31–34].

293T cells were collected and lysed in NP-40 buffer supplemented with a full pro-
tease inhibitor cocktail (Roche, Basal, CH), for GST pull-down. After centrifugation, the
supernatants were pre-cleared for 2 h using protein A/G beads at 4 ◦C. Pre-cleared lysates
were combined with a 50% slurry of glutathione-conjugated Sepharose beads (Amersham
Biosciences, Amersham, UK), and the binding reaction was incubated at 4 ◦C for 4 h. The
precipitates were thoroughly rinsed with lysis buffer. Proteins bound to glutathione beads
were eluted by boiling for 5 min in Sodium Dodecyl Sulfate (SDS) loading buffer.

Cells were collected and lysed in NP-40 buffer supplemented with a full protease
inhibitor cocktail (Roche, Basal, CH) for immunoprecipitation. Whole-cell lysates were
immunoprecipitated with the indicated antibodies after pre-clearing with protein A/G
agarose beads for 1 h at 4 ◦C. In general, 1 mL of cell lysates was treated with 1–4 µg of
commercial antibody for 8 to 12 h at 4 ◦C. After 6 h of incubation with protein A/G agrose
beads, the immunoprecipitates were thoroughly washed with lysis buffer and eluted with
SDS loading buffer by boiling for 5 min.

Polypeptides were separated by SDS–polyacrylamide gel electrophoresis and then
transferred to a PVDF membrane for immunoblotting (IB) (Bio-Rad, Hercules, CA, USA).
Achieving immunodetection required specific antibodies. Chemiluminescence (ECL; Mil-
lipore, Burlington, MA, USA) was used to visualize an antibody bound to a target, and
a Vilber chemiluminescence analyzer was used to detect it (Fusion SL 3; Vilber Lourmat,
Collégien, France).

2.8. Flow Cytometry

Flow cytometry was used to quantify intracellular ROS levels in cells cultivated in
serum-free media and loaded with the redox-sensitive dyes 2 µM dihydroethidium (DHE
for O2−; Calbiochem) or 1 µM 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA for
H2O2; Calbiochem) [32]. mAbs were incubated at 4 ◦C for 20–30 min to determine cell
surface protein expression, and cells were fixed using Cytofix/Cytoperm Solution (BD
Biosciences) and, in certain cases, followed by mAb incubation to detect intracellular
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proteins. [35]. The mAb clones that were used were the following: ITGA6 (GoH3, BD
Pharmingen™) and ITGB1 (HM β1-1, BD Pharmingen™). The cells were washed com-
pletely and quickly with pulse spinning before being analyzed in a FACSCalibur (BD
Biosciences, San Jose, CA, USA). CellQuest software (BD Biosciences) was used to visualize
the data, and FlowJo software was used to analyze it (Tree Star, Ash-land, OR, USA).

2.9. Enzyme-Linked Immunosorbent Assay

TNF-α, IL-6, IL-1β and IL-18 levels were measured in cell culture supernatants and
mouse serum using the BD OptEIA ELISA system (BD Pharmingen). All assays were
carried out exactly as the manufacturer instructed.

2.10. Lentiviral shRNA Production

For silencing murine ITGA6 and ITGB1 in primary cells, pLKO.1-based lentiviral
CaMKKb shRNA constructs (sc-38952-SH) and LKB1 shRNA constructs (sc-35817-SH) were
obtained from Santa Cruz Biotechnology. GIPZ Lentiviral Mouse Itga6 shRNA constructs
(RMM4431-200328849, RMM4431-200410349 and RMM4431-200411464) and GIPZ Lentivi-
ral Mouse Itgb1 shRNA constructs (RMM4431-200340920, RMM4431-200350229, RMM4431-
200386104 and RMM4431-200400706) were procured from Open Biosystems. Lentiviruses
were generated via transient transfection utilizing packaging plasmids (pMDLg/pRRE,
pRSV-Rev, and pMD2.VSV-G, sourced from Addgene) after Lipofectamine 2000-mediated
transient transfection into HEK293T cells, as reported previously. At 72 h after transfec-
tion, the virus-containing medium was collected and concentrated by ultracentrifugation.
Lentiviral vector titration was calculated using 293T cells, and the resulting lentiviruses
were transduced into BMDMs, as previously described [32].

2.11. In Vivo Lentivirus Transduction

As previously stated, concentrated lentiviral particles were frozen at 4 ◦C and diluted
in PBS and polybrene (8 g/mL final concentration; Sigma) to give a dose of 1× 10 [10] pfu in
a 100 L injection volume [32]. Mice were intravenously injected with a lentivirus expressing
nonspecific shRNA (shNS) or shRNA specific for ITGA6 (sh ITGA6) or ITGB1 (shITGB1) 2
times and then orally administered DSS (Acute or chronic Colitis) and rCT-NAMPT; then,
desired experiments were performed.

2.12. Mouse Model of Colitis

As previously described, DSS-induced acute or chronic colitis mouse models were
developed using 6-week-old C57BL/6 female mice (Samtako, Osan, Republic of Korea) [36].
To assess the trigger of acute colitis, mice were treated with 3% (w/v) dextran sodium sulfate
(molecular weight: 36,000–50,000 kDa, MP Biomedicals, Santa Ana, CA, USA) dissolved
in drinking water that was given ad libitum. An acute colitis model was transduced with
Lenti-shNS or Lenti-shITG virus (1 × 1011 pfu/kg) on days -7 and -14 via i.v. before
DSS treatment. While the mice were treated with 3% DSS for 6 days, rVehicle, rCT or
rCT-NAMPT (50 µg/kg) was i.p. injected 8 times. The survival of mice was tracked for
12 days; mortality was recorded for n = 15 mice per group. The survival of the mice model
transduced with Lenti-shNS had similar effects to the WT control. A chronic colitis model
was treated with 3% DSS for 7 days at 3 cycles and water for 14 days in the interval of the
cycle. The rVehicle, rCT or rCT-NAMPT (50 µg/kg) was i.p. injected at 2 cycles together
with DSS treatment. The survival of mice was followed for 9 weeks; mortality was recorded
for n = 15 mice per group. To calculate causality, account for perturbations, and reduce
bias, a randomization method was used to randomly assign mice to either a treatment
group or a control group (or multiple intervention groups). The DSS solutions were freshly
prepared every two days. The non-DSS-fed mice in the control group had access to sterile
distilled water. The humane endpoint for body weight loss (euthanasia required) is 20%
(as compared to the original body weight of an animal). Without an approved exception
request, body weight loss could not exceed 20%.
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2.13. Clinical Score and Histology

Body weight, occult or gross blood loss per rectum, and stool consistency were mea-
sured every other day during the colitis induction to obtain the clinical score. The clinical
score was determined by two trained investigators who were not aware of the treatment.
Mouse distal colon tissues were fixed in 10% formalin and embedded in paraffin for im-
munohistochemistry. Four-millimeter paraffin slices were cut and stained with hematoxylin
and eosin (H&E). As previously mentioned, a board-certified pathologist (Dr. Min-Kyung
Kim, Kim Min-Kyung Pathology Clinic, Seoul, Korea) independently scored each organ
segment without prior knowledge of the therapy groups [36].

2.14. Statistical Analysis

All data are reported as mean ± SD and were analyzed using the Student’s t-test with
a Bonferroni adjustment or ANOVA for multiple comparisons. The statistical software
program SPSS (Version 12.0) was used to conduct the analyses (SPSS, Chicago, IL, USA).
At p 0.05, differences were judged to be significant. Data for survival were graphed and
analyzed using the Kaplan–Meier product limit method, with the log-rank (Man-tele-Cox)
test for comparisons in GraphPad Prism (version 5.0, La Jolla, CA, USA).

3. Result
3.1. Overexpressed eNAMPT and CYBB May Cause Chronic Inflammation in IBD

Analysis of the datasets SCP259 and GSE182270 revealed that overexpressed NAMPT
and CYBB (the latter also known as NOX2 and gp91Phox) may cause chronic activation of the
NLRP3 inflammasome in UC (Figure 1A and Figure S1). The gastrointestinal macrophage
participates in chronic inflammation in IBD, and we therefore used common macrophage-
specific DEGs to check the pathways, utilizing the pathway view tool [37]. The NAMPT–
CYBB interaction is associated with downstream inflammatory signaling [22]. eNAMPT
stimulates the NOX-mediated redox regulatory pathway, and NAMPT associates with
TLR4 [11,17,18], possibly leading to upregulation of NLRP3 and pro-IL1β expression via the
NF-κB signaling pathway (Figure 1A). Overexpression of eNAMPT triggers the M1-skewed
transcriptional program in macrophages [22]. These and our findings on the overexpression
of NAMPT and CYBB in inflamed tissues of patients with UC led us to analyze single-cell
RNA-seq data in more detail, focusing on the pathways associated with activation of the
NLRP3 inflammasome through the interaction of eNAMPT with NOXs.

Table 2 shows the DEGs associated with NLRP3 inflammasome activation via the
redox signaling pathway (activation), with focus on the NAMPT–NOX association and
NF-κB signaling (priming). Violin plots (Figure 1B,C) show the expression of these genes
in macrophages (Figure 1A). An increase in ROS via the NAMPT–NOX interaction is
evident, because ROS-related genes such as SOD2, NEAT1, and HIF1A are overexpressed
in inflamed UC samples (p < 0.05). The percentages of macrophages expressing NAMPT
were similar in inflamed and control tissues, and their expression levels were higher in
inflamed vs. control samples. Although the adjusted p-value for the fold-change in NAMPT
expression in GSE182270 was not statistically significant, this may be explained by the
relatively small number of macrophages.

The gene set enrichment results (Table S1) show that in macrophages, many of the
immune signals are upregulated in UC compared with those in the healthy colon. These
signals include interleukin (IL)s, the innate immune system, Toll-like receptor cascades,
TNFα signaling via NF-κB, inflammatory responses, cytokine signaling in the immune
system, and IL-4 and IL-13 signaling (Figure 1A). These signaling events are involved in
NLRP3 activation and in priming signaling pathways (Figure 1A). Further, genes associated
with IFNγ signaling, antigen processing and presentation, as well as MHC Class II antigen
presentation, were downregulated. Taken together, these data indicate that eNAMPT
contributes to UC and that macrophages in UC transmit higher levels of innate immune
signals associated with NAMPT–CYBB-driven signaling pathways.
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Figure 1. eNAMPT plays a key role in ulcerative colitis (A) NAMPT’s association with TLR4 or
NADPH oxidase-driven NLRP3 inflammasome activation. (B) Violin plots for the expression of key
genes in macrophages around NLRP3 inflammasome activation in SCP259. (C) Violin plots for the
expression of key genes around NLRP3 inflammasome activation in GSE182270.
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Table 2. Macrophage DEG analysis result summary for the genes involved in the NLRP3 inflammasome activation via the redox signaling pathway.

Genes
SCP259 (# Macrophages: 13888) GSE182270 (# Macrophages: 555)

p.val p.val.adj logFC pct.test pct.ctrl p.val p.val.adj logFC pct.test pct.ctrl

NAMPT 2.64 × 10−13 4.80 × 10−09 0.72 0.36 0.34 0.0011 1 0.32 0.88 0.82

CYBB 7.57 × 10−21 1.37 × 10−16 0.71 0.39 0.34 4.19 × 10−06 0.141 0.62 0.66 0.48

NCF1 3.79 × 10−65 6.87 × 10−61 −0.43 * 0.29 0.53 0.049602 1 −0.27 * 0.39 0.51

NCF2 7.77 × 10−11 1.41 × 10−06 0.53 0.24 0.20 0.001618 1 0.54 0.51 0.37

NCF4 1.7 × 10−132 3.1 × 10−128 −0.86 * 0.21 0.49 0.001578 1 −0.53 * 0.33 0.47

P2RY6 6.00 × 10−87 1.1 × 10−82 −0.67 0.09 0.26 2.23 × 10−05 0.752 −0.59 0.21 0.41

SOD2 6.58 × 10−12 1.2 × 10−07 0.489 0.51 0.522 5.89 × 10−19 1.9 × 10−14 1.074 0.901 0.653

N × AT1 0 0 1.171 0.798 0.585 3.21 × 10−12 1.1 × 10−07 0.467 0.971 0.874

HIF1A 1.63 × 10−16 2.9 × 10−12 0.790 0.196 0.135 0.002 1 0.624 0.48 0.358

TXNIP 7.71 × 10−70 1.4 × 10−65 0.985 0.455 0.312 0.025 1 −0.323 * 0.417 0.505

TXN Not available 3.74 × 10−05 1 0.569 0.764 0.695

NLRP3 1.54 × 10−05 0.279 0.420 0.067 0.044 Not available

CASP1 0.026 1 0.298 0.329 0.346 Not available

IL1B Not available 0.008 1 0.402 0.728 0.705

NFKB1 0.038 1 0.504 0.159 0.153 0.013 1 0.543 0.422 0.316

TNFAIP8 0.024 1 0.377 0.156 0.146 0.024 1 0.473 0.453 0.368

TNFAIP8L2 6.22 × 10−18 1.13 × 10−13 −0.306 0.131 0.212 0.001 1 −0.599 0.253 0.421
TNFRSF1B 3.36 × 10−17 6.11 × 10−13 0.714 0.277 0.218 0.011 1 0.611 0.436 0.368

P.val: p-value, P.val.adj: adjusted p-value, logFC: log fold change, pct.test/pct.control: ratio of the cells expressing the gene in the test and control group. * Not agree with the result from
the other dataset, SCP259.
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3.2. eNAMPT Interacts with CYBB and TLR4

We further analyzed NAMPT and CYBB expression in colon tissue sections from
normal subjects and patients with UC. The mRNA and protein levels of NAMPT and CYBB
were approximately three to four times higher in the colon tissues of patients with UC
compared with those of controls (Figure 2A). Further, the expression of NAMPT and CYBB
markedly increased in association with increased disease severity in normal mice or those
with acute or chronic colitis (Figure 2B).

Figure 2. eNAMPT directly binds with CYBB or TLR4 (A) Normal human cases alongside UC patients
were employed for IB with αNAMPT and αCYBB. WCLs (whole cell lysates) were utilized for IB
with αActin (upper). Representative gel images derived from five independent healthy controls and
patients are shown. NAMPT mRNA and CYBB mRNA expression measured by quantitative real-time
PCR (lower). Five of ten normal human and UC patients’ data are shown. Statistical significance
was evaluated by the Student’s t-test coupled with the Bonferroni adjustment (*** p < 0.001) versus
human normal. (B) Colon of normal, acute and chronic colitis mouse were analyzed for IB with
αNAMPT and αCYBB. WCLs were used for IB with αActin. Biological replicates (n = 10) for each
condition were performed. (C) BMDMs were activated with LPS (100 ng/mL) for the durations
indicated (left), then primed with LPS (100 ng/mL) for 4 h before being stimulated with ATP (1 mM)
for the times indicated (right). IB in supernatant (SN) with αNAMPT and WCL with αNAMPT or
αActin. (D,E) BMDMs were primed with LPS and stimulated with ATP (left) or incubated with
rNAMPT (1 µg/mL) for 2 h (right). BMDMs were treated with IP with αNAMPT or αHis, trailed by
IB with αTLR4, αCYBB or αCYBA (D) and IB with αASC or αNLRP3 (E). WCLs were used for IB
with αTLR4, αCYBB, αCYBA, αASC, αNLRP3 or αActin. (F) Titration of fluorescently labeled TLR4
or CYBB with unlabeled NAMPT, using curve fit analysis to determine Kd (219 and 896 nM). The
data come from five independent experiments that yielded comparable results.

To confirm a role for eNAMPT in activating the NLRP3 inflammasome in macrophages,
we examined whether the interaction of eNAMPT with TLR4 or CYBB was involved. A
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two-signal model was proposed to explain activation of the inflammasome by NLRP3 [22].
Signal 1 is a priming signal created by microbial components or endogenous cytokines
that mediates NF-κB activation and subsequent increase of NLRP3 and prointerleukin-1β
levels. Various molecules, including extracellular ATP and pore-forming toxins, transmit
inflammatory activation signals (signal 2). Several molecular or cellular events activate the
NLRP3 inflammasome, such as ion flux, mitochondrial dysfunction, ROS generation, and
lysosomal damage [22,38].

First, we found that NAMPT expressed by TLR4 (LPS) or an NLRP3 inflammasome
inducer (LPS/ATP) increased intracellular (i) NAMPT expression and markedly increased
extracellular (e) NAMPT expression in macrophages (Figure 2C). Further, eNAMPT inter-
acted with TLR4 or CYBB in the presence of LPS; and eNAMPT treated with recombinant
NAMPT protein interacted with TLR4 or CYBB in macrophages. In contrast, the NAMPT
interaction with CYBA was negligible in macrophages (Figure 2D). Further, an interaction
between NAMPT and NLRP3 or ASC was undetectable (Figure 2E). Furthermore, the
in vitro interaction between NAMPT and TLR4 or CYBB, as evaluated by a fluorescence
binding experiment with recombinant proteins and fluorescently labeled TLR4 or CYBB
with NAMPT, revealed a sufficiently high affinity (TLR4, 219 nM; CYBB, 896nM) (Figure 1).
Together, the data suggest that the interaction of eNAMPT with TLR4 or CYBB mediates
the activation of the NLRP3 inflammasome in inflammatory colitis, which indicates the
potential clinical importance of these events.

3.3. NAMPT Amino Acid Sequence Essential for Binding TLR4 and CYBB

To identify the amino acid (aa) residues in NAMPT that interact with TLR4 and
CYBB, and we constructed vectors that express full-length and mutant NAMPT, TLR4,
and CYBB. NAMPT comprises N-terminal, middle (NAPRTase), and C-terminal domains
(Figure 3A). To identify the domain required for the interaction between NAMPT and TLR4,
we employed constructs tagged with GST or Myc–NAMPT and Flag–TLR4. In 293T cells,
the N-terminus of NAMPT bound TLR4 and the extracellular leucine-rich region (LRR
domain) of TLR4 were essential for the interaction with NAMPT (Figure 3A).

The cell-penetrating TAT peptide (GRKKRRQRRRPQ) overcomes the lipophilic barrier
of cellular membranes and thus delivers large molecules as well as small particles into
the cell where they exert their activities [39]. To investigate in detailed the sequence of
the N-terminus of NAMPT, we constructed TAT–NAMPT peptides (separated by 20 aa)
included in the stretch aa 10-116 of NAMPT. We incubated the TAT–NAMPT peptides with
Myc–NAMPT and Flag–TLR4 expressed in 293T cells and immunoprecipitated (IP) the
complexes with a Flag antibody. Treatment with TAT–NAMPT (aa 40–69) diminished the
binding of NAMPT to TLR4, indicating that this region binds TLR4 (Figure 3B left). To
determine the minimum aa sequence necessary for NAMPT–TLR4 binding, we utilized
the PredictProtein software (https://predictprotein.org; accessed on 9 July 2022), which
predicts elements of protein function and structure using database searches, homology-
based inference, machine learning, and artificial intelligence. [40]. PredictProtein predicted
that aa 57–65 of NAMPT were required for binding TLR4, consistent with findings that
NAMPT–TLR4 binding in 293T cells was diminished by TAT–NAMPT (aa 57–65) in a
concentration-dependent manner (Figure 3B right).

Next, we investigated the region of NAMPT that bound CYBB in 293T cells. The
N-terminus of NAMPT bound CYBB, and extracellular domain 2 of CYBB was required for
its interaction with NAMPT (Figure 3C). Further, aa 40–69 of NAMPT, the TLR4 binding
residues, bound CYBB (Figure 3D left). PredictProtein predicted that NAMPT aa 52–56
as those that that bind CYBB, consistent with the decrease in NAMPT–CYBB binding in
293T cells co-expressing TAT–NAMPT (aa 52–56) in a concentration-dependent manner
(Figure 3D right).

https://predictprotein.org
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Figure 3. NAMPT (aa 57-65 and aa 52-65) is an essential region for binding to TLR4 and CYBB.
(A) Schematic diagram of the structures of NAMPT and TLR4 (upper). The 293T cells were transfected
with GST-NAMPT or its mutants and Flag-TLR4. 293T cells were subjected to GST pull-down,
followed by IB with αFlag. WCLs were used for IB with αGST, αFlag or αActin (lower, left). The 293T
cells were transfected with Flag-TLR4 or its mutants and Myc-NAMPT. The 293T cells were used
for IP with αMyc, followed by IB with αFlag. WCLs were used for IB with αMyc, αFlag or αActin
(lower, right). (B) 293T cells were transfected with Myc-NAMPT and Flag-TLR4 and treated NAMPT
peptide or its mutants for 6 h (5 µM, left; 1, 5, 10 µM, right). The 293T cells were used for IP with
αFlag, followed by IB with αMyc. WCLs were used for IB with αMyc, αFlag or αActin. (C) Schematic
diagram of the structures of CYBB (upper). The 293T cells were transfected with GST-NAMPT or its
mutants and V5-CYBB (lower, left). The 293T cells were transfected with GST-CYBB or its mutants
and Myc-NAMPT (lower, right). The 293T cells were subjected to GST pull-down, followed by IB
with αV5 or αMyc. WCLs were used for IB with αGST, αMyc, αV5 or αActin. (D) 293T cells were
transfected with Myc-NAMPT and V5-CYBB and treated NAMPT peptide or its mutants for 6 h
(5 µM, left; 1, 5, 10 µM, right). The 293T cells were used for IP with αV5, followed by IB with αMyc.
WCLs were used for IB with αMyc, αFlag or αActin. (E) BMDMs were incubated with rNAMPT (1, 5,
10 µg/mL) for 2 hr. BMDMs were subjected to IP with αHis, followed by IB with αTLR4, αCYBB or
αCYBA. WCLs were used for IB with αTLR4, αCYBB or αCYBA, αHis or αActin. The data come from
seven independent experiments that yielded comparable results (A–E). Ref star: Binding domain
with binding partners.

We next tested whether TAT–NAMPT aa 57–65 or aa 52–56 inhibited binding of
eNAMPT to TLR4 or CYBB in macrophages. Consistent with the blockade of iNAMPT–
TLR4 by TAT–NAMPT (aa 57–65) and iNAMPT–CYBB by TAT–NAMPT (aa 52–56), TAT–
NAMPT (aa 57–65) specifically inhibited eNAMPT–TLR4 binding, and TAT–NAMPT
(aa 52–56) specifically inhibited eNAMPT–CYBB binding (Figure 3E). Moreover, TAT–
NAMPT (aa 52–65) inhibited the eNAMPT–TLR4 and eNAMPT–CYBB binding interactions.
These findings show that NAMPT aa 57–65 and aa 52–56 are necessary for interacting with
TLR4 or CYBB, respectively, demonstrating that NAMPT interactions with TLR4 and CYBB
are genetically separate.

3.4. An NAMPT Peptide Inhibits Activation of the NLRP3 Inflammasome

To determine the effect of NAMPT peptides related to signal 1 for the NLRP3 inflam-
masome in macrophages, we exposed LPS-treated BMDMs to different concentrations of
NAMPT peptides (aa 57–65, aa 52–56, or aa 52–65). NAMPT peptides aa 57–65 and aa



Antioxidants 2022, 11, 2376 12 of 20

52–56 partially inhibited the activation of NF-κB, generation of ROS, and production of
cytokines; however, NAMPT peptides aa 52–65 markedly inhibited the generation of ROS
and NF-κB-induced cytokine production (Figure 4A–C). Further, TAT–NAMPT peptides aa
52–65, but not TAT–NAMPT peptides aa 57–65 and aa 52–56, partially inhibited NLRP3
inflammasome activation signal 1 (Figure S2A). Thus, the TAT–NAMPT peptide was less
likely to inhibit the interaction of eNAMPT with TLR4 or CYBB.

Figure 4. NAMPT peptides inhibit the signal 1 and 2 activation of the NLRP3 inflammasome.
(A–C) BMDMs were stimulated with LPS for 4 h, pretreated with rNAMPT for 1 h (A,B) or 18 h
(C). (A) WCLs were used for IB with αIkB-α, αP-IkB-α or αActin. (B) FACS analysis for H2O2

(probe for 2′, 7′-dichlorofluorescin diacetate) or O2- (probe for Dihydroethidium). Quantitative
analysis of mean fluorescence intensities of H2O2 and O2- (upper). NADPH oxidase activity (lower).
(C) Culture supernatants were harvested and analyzed for cytokine ELISA. (D,E) LPS-primed BMDMs
were treated with rNAMPT for 1 h, and then activated with ATP for 30 min. (D) ELISA for IL-1β and
IL-18. (E) IB in SN with αIL-1β p17, αIL-18 p18 or αCasp1 p10 and WCL with αPro-IL-1β, αPro-IL-18,
αPro-Casp1, or αActin. The data come from seven independent experiments that yielded comparable
results (A,E). The data come from three independent experiments that yielded comparable results.
(B–D). Data are given as means ± SD of three experiments. Significant differences (* p < 0.05;
** p < 0.01; *** p < 0.001) versus LPS + PBS.

We therefore explored if NAMPT peptides have a special role in the modulation of
signal-2 activation of the NLRP3 inflammasome. We found that NAMPT peptide aa 52–65
efficiently inhibited the maturation of IL-1β and IL-18, as well as ATP-induced caspase-1
cleavage and nigericin or DSS stimulation (Figure 4D upper, Figure 4E left and Figure S2B).
We found that the NAMPT peptide aa 52–65 specifically inhibited the action of eNAMPT
(Figure 4D lower, Figure 4E right). These findings indicate that NAMPT’s actions in the
TLR4-mediated signaling pathway and in CYBB-containing NOXs are functionally and
genetically separable. Together, these data provide evidence that the NAMPT peptide
aa 52–65 is an essential negative regulator of signal 1 and signal 2 in response to NLRP3
inflammasome activation.
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3.5. Recombinant Multifunctional CT-NAMPT Protein Designed to Target the Pathologically
Inflamed Colon

The experiments presented above indicate that NAMPT peptides (aa 57–65 and
aa 52–56) directly blocked the binding of eNAMPT to the extracellular domains of CYBB
and TLR4 and subsequently attenuated the activation of the NLRP3 inflammasome in
macrophages. We used the peptide TWYKIAFQRNRK (designated TK), derived from the
COOH-terminal globular domain of laminin-1 α1 chain, as a vehicle for targeted drug
delivery to the colon. Thus, TK interacts with integrin α6β1, with high affinity for colonic
tissue [23,41]. Accordingly, we developed a recombinant 12-residue TK peptide (CT) con-
jugated to a multifunctional NAMPT (rCT-NAMPT) in which CT targets the colon and
harbors the essential and minimal aa residues required for CYBB/TLR4 binding. The
authenticity of the predicted product was confirmed using SDS–polyacrylamide gel elec-
trophoresis and immunoblotting (Figure 5A left). There were no significant differences
compared with the vehicle control associated with rCT-NAMPT-induced cytotoxicity in
BMDMs (Figure 5A right).

Figure 5. rCT-NAMPT targets the inflamed colon. (A) Schematic illustration of rCT-NAMPT (upper).
Bacterially purified 6xHis-rCT-NAMPT, rVehicle or rCT were analyzed by Coomassie Blue staining
or IB with αHis (lower, left). BMDMs were treated with rVehicle, rCT, or rCT-NAMPT for the
periods and concentrations stated, and cell viability was determined using the MTT test (lower, right).
(B) DSS-induced model for colitis. Mice were subjected to 3% DSS for 6 days and were evaluated at
day 6 (left). Colon harvests were used for IB with αITGA6, αITGB1 or αActin and analysis of the
number of ITGA6+ or ITGB1+ cells by FACS. (C) The scheme of the acute colitis model transduced
with Lenti-shNS or Lenti-shITG virus and treated with 3% DSS. Intraperitoneal administration of
rCT-NAMPT conjugated with Cy5.5 for 1 h and colon harvest (left). Colon harvests were used for IB
with αITGA6, αITGB1 or αActin and analysis of the number of ITGA6+ or ITGB1+ cells was done by
FACS. The data come from three independent experiments that yielded comparable results (A–C).

We employed a mouse model of DSS-induced colitis to further investigate the physio-
logical significance of rCT-NAMPT in inflammatory colitis (Figure 5B,C). We found that
the expression of ITGA6 (integrin α6) and ITGB1 (integrin β1), which bind to TK peptides
(CT), was significantly increased in the colon of mice with acute colitis (Figure 5B). Next,
to evaluate the specificity of rCT-NAMPT, we generated ITGA6- or ITGB1-knockdown
mice through sh-Lentiviral transduction. The mice were treated with DSS and adminis-
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tered rCT-NAMPT/Cy5.5 via intraperitoneal injection on day 6. The rCT or rCT-NAMPT
specifically targeted colonic tissues in mice with acute colitis, but not in other organs, in a
concentration-dependent manner (Figure 5C and Figure S3, and data not shown). These
results show that rCT binds to colonic tissues, which raises the possibility of designing
colon-targeted drug delivery systems for use as pharmaceutical applications for treating
DSS-induced acute colitis.

3.6. rCT-NAMPT Relieves Acute and Chronic DSS-Induced Colitis in a Mouse Model

We next evaluated the medicinal effects of rCT-NAMPT on mouse models in DSS-
induced acute and chronic colitis. For this purpose, we generated ITG (ITGA6 and ITGB1)-
knockdown mice through sh-Lentiviral transduction on days -7 and -14 via i.v. before
DSS treatment. While the mice were treated with 3% DSS for 6 days, rVehicle, rCT or
rCT-NAMPT (50 µg/kg) was i.p. injected 8 times. rCT-NAMPT significantly increased
the survival rates of Lenti-shNS-transduced mice with DSS-induced colitis, but not those
of Lenti-shITG-transduced mice. Neither rVehicle or rCT detectably affected mortality,
suggesting that NAMPT peptides contribute to the regulation of the inflammatory response
(Figure 6A). Furthermore, body-weight loss in Lenti-shNS-transduced mice treated with
rCT-NAMPT was reduced by roughly 20% when compared to rVehicle- or rCT-treated mice.
Body weights of Lenti-shITG-transduced mice were higher than in Lenti-shNS-transduced
mice, but there was no significant difference (Figure 6B).

The colitis scores of mice were markedly decreased in Lenti-shNS-transduced mice
treated with rCT-NAMPT (Figure 6C). After 12 days, we measured the length of the
colon, which is an indication of colitis. Colon length recovered in rCT-NAMPT-treated
Lenti-shNS-transduced mice, but remained unchanged in Lenti-shITG-transduced mice
(Figure 6D). Further, we tested whether rCT-NAMPT exerted pharmacological activity
in vivo. For example, the in vivo detection of interactions between the NAMPT and TLR4-
mediated signaling pathways and CYBB-containing NOXs may prove to be important for
the evaluation of rCT-NAMPT to identify drugs that treat lethal inflammatory disease. For
this purpose, we analyzed the binding of NAMPT, ROS levels, and cytokine production
in the colon. The interaction of NAMPT with TLR4 or CYBB was detected only in the
colon of DSS-treated Lenti-shNS-transduced mice, but not in Lenti-shITG-transduced mice
(Figure 6E). Cellular ROS levels decreased in Lenti-shNS-transduced mice treated with
rCT-NAMPT, but not in Lenti-shITG-transduced mice (Figure 6F).

Moreover, the activity of myeloperoxidase involved in the production of TNF-α, IL-1β,
IL-6, and IL-18 as well as the activation of NLRP3 inflammasome was measured (Figure 6G).
The histological scores of colitis (H&E staining) revealed that the rVehicle- and the rCT-
treated colon was disrupted by DSS in Lenti-shNS-transduced mice, and the addition of
rCT-NAMPT restored the colonic barrier. Further, ITGA6/ITGB1-knockdown had no effect
on rCT-NAMPT because of loss of colon-targeting ability (Figure 6H). Notably, rCT-NAMPT
has a partially therapeutic effect against acute DSS-induced colitis in TLR4−/− or CYBB−/−

mice compared with WT mice (Figure S4).
We then investigated the therapeutic effect of rCT-NAMPT on chronic colitis, subject-

ing mice to DSS and rCT-NAMPT for 66 days (Figure 7A). rCT-NAMPT, like acute colitis,
boosted mouse survival rates by roughly 90%. (Figure 7B). Body weights fluctuated in
the rVehicle- and rCT-treated mice, although rCT-NAMPT-treated mice maintained their
body weights (Figure 7C). Further, the lengths of the colons of rCT-NAMPT-treated mice
were restored compared with those of DSS-treated mice, which were significantly damaged
(Figure 7D). H&E colon examination demonstrated that rCT-NAMPT dramatically im-
proved colon vitality in DSS-treated mice (Figure 7E). These findings suggest that rCT-
NAMPT has a therapeutic effect against DSS-induced colitis through inhibiting the NAMPT–
TLR4 or –CYBB interaction in vivo.
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Figure 6. rCT-NAMPT has a medicinal effect against acute DSS-induced colitis in mice. (A) Scheme
of the acute model of colitis transduced with Lenti-shNS or Lenti-shITG virus and subjected to
3% DSS with rCT-NAMPT (50 µg/kg) (upper). The survival of mice was monitored for 12 days;
mortality was measured for n = 15 mice per group (lower). The statistical differences between the
rVehicle-treated animals are noted (log-rank test). The data come from two different experiments
that yielded comparable results. (B) Weight loss (n = 8). (C) Colitis scores were obtained from clinical
parameters (weight loss, stool consistency, bleeding) (n = 8). (D) Image (upper) and length (lower)
of colon in 3% DSS-treated mice with rVehicle, rCT or rCT-NAMPT (n = 8). (E) Colon was used for
IP with αHis or αNAMPT, followed by IB with αTLR4, αCYBB or αCYBA. WCLs were used for
IB with αTLR4, αCYBB, αCYBA, αHis or αActin. (F) FACS analysis for cellular ROS from colon
(n = 8). (G) Levels of cytokines and MPO activity in colon homogenates (n = 10). (H) Hematoxylin
and eosin (H&E) staining of the colon (left) (n = 10): representative imaging Histopathology scores
were assessed in 3% DSS-treated mice with rVehicle, rCT, or rCT-NAMPT using H&E staining, as
indicated in techniques (Materials and Methods). Statistical significance was assessed using the
Student’s t-test with the Bonferroni correction (*** p < 0.001) in comparison to rVehicle.
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Figure 7. rCT-NAMPT relieves chronic DSS-induced colitis in a mouse model. (A) Scheme of the
chronic colitis model subjected to 3% DSS with rCT-NAMPT (50 µg/kg). (B) Mice survival was
tracked for 9 weeks, and mortality was calculated for n = 15 mice per group. The statistical differences
between the rVehicle-treated animals are noted (log-rank test). The data come from two different
experiments that yielded comparable results. (C) Weight loss of rVehicle, rCT or rCT-NAMPT in mice
(n = 15). (D) Image (upper) and length (lower) of colon in 3% DSS-induced chronic colitis mice with
rVehicle, rCT or rCT-NAMPT. (E) H&E staining of the colon (left) (n = 8): a representative image.
H&E staining was used to evaluate histopathology scores in 3% DSS-induced chronic colitis mice
with rVehicle, rCT, or rCT-NAMPT. The Student’s t-test with the Bonferroni adjustment was used to
establish statistical significance when compared to rVehicle (*** p < 0.001).

4. Discussion

Here we show that rCT-NAMPT served as an effective novel candidate therapeutic
for colitis by modulating the NLRP3 inflammasome-mediated immune signaling system
through negative regulation of signals 1 and 2 in response to NLRP3-inflammasome acti-
vation. This finding represents a major paradigm shift in the treatment of colitis and an
urgently needed therapeutic intervention. The main results of this study are as follows:
(1) Analyses of two single-cell RNA-seq datasets, patients with colitis, and mouse models
of acute and chronic colitis show that NAMPT significantly contributes to the pathology
of UC. (2) Specifically, in macrophages, eNAMPT directly interacted with CYBB causing
increased production of ROS and activation of the NLRP3 inflammasome in conjunction
with the activation of the TNFα and NF-κB signaling pathways through direct stimulation
by the eNAMPT–TLR4 interaction. (3) Amino acid residues aa 57–65 and aa 52–56 in
NAMPT were essential for the interaction of NAMPT with TLR4 and CYBB, respectively.
(4) A colon-targeting peptide designated TK was designed, and when conjugated to a
multifunctional NAMPT peptide, targeted the inflamed colon in vivo. Further, the rCT-
NAMPT-induced peptide inhibited NLRP3 inflammasome activation in vitro and in vivo.
(5) rCT-NAMPT showed potential for treating acute and chronic DSS-induced colitis in mice.
Collectively, these observations serve as a proof-of-concept for designing host-oriented
therapeutic strategies and further demonstrate an engineered eNAMPT-induced NLRP3
inflammasome network associated with colitis.

The present data contribute several key insights into the role and therapeutic perspec-
tives of macrophage-derived eNAMPT within the inflammatory response, particularly in
the context of IBD. First, we found that macrophages distributed throughout the body,
in contrast to T cells, serve as gatekeepers of tissue homeostasis and mediate innate and
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adaptive immune responses [42,43]. The present analyses of single-cell RNA-seq datasets
show that compared to activated macrophages, T cells may be deactivated as suggested by
(1) the overpopulation of regulatory T cells and (2) negative enrichment scores for most of
the inflammatory signaling pathways in T cells. It is unclear if deactivation of T cells led to
overactivated macrophages, or the opposite. Further, we are unable to explain why P2RY6
was not detectably or infrequently expressed in macrophages derived from inflamed UC
samples. Nevertheless, blockade of the eNAMPT–CYBB interaction, reduction of ROS
production, or both, in macrophages may ameliorate UC by relieving the activation of
NLRP3 inflammasome. These two issues require further in-depth studies to enhance our
knowledge of the pathogenesis of UC and other autoimmune diseases.

Second, this is the first report, to our knowledge, showing that macrophage-specific
eNAMPT functions as a protective factor to alleviate the severity of colitis through inhibiting
the binding by macrophages of CYBB and TLR4 to circulating eNAMPT. Recent studies
have shown that NAMPT produced by macrophages binds to the C-C motif chemokine
receptor type 5 in vivo, providing a stem cell activation niche that promotes muscle repair
and regeneration [44]. Further, inhibition of NAMPT by the pharmacological inhibitor
FK866 or genetic ablation of Nampt (Nampt mKO) may abrogate proliferation-inducing cues
required for the injury-induced repair response in DSS-induced colitis [8]. However, as
mentioned in this study [8], whether eNAMPT secreted by macrophages promotes colon
repair and regeneration has not been determined. These findings [8], together with the
comprehensive evidence of the present study, support the conclusion that macrophage-
specific eNAMPT alleviates the severity of colitis. The preclinical work of Colombo et al.
underlines that eNAMPT has a role in the etiology of some inflammatory illnesses via the
effect of eNAMPT on macrophage inflammation. Furthermore, RNA-seq investigation of
peritoneal macrophages reveals that eNAMPT activates an M1-distorted transcriptional
program and preferentially promotes IFN-driven transcriptional activation in macrophages
and human monocyte-derived macrophages via STAT1/3 phosphorylation [43].

Third, we show here that the eNAMPT–CYBB and –TLR4 axes contribute to the
pathogenesis of colitis. Increased production of NOXs generates ROS, which are required
for phagocytosis [8,32]. In this regard, our present findings highlight the important role
of a metabolic axis composed of eNAMPT, NOX and ROS in maintaining the phagocytic
activity of macrophages. Further, TLR4 serves as an alternative receptor for eNAMPT, as
indicated by SPR studies and then confirmed by additional evidence [17]. For example,
in human monocytes, a TLR4-neutralizing antibody reduces eNAMPT-mediated NF-kB
activation [18].

Molecular docking studies on a minimized model of the NAMPT–TLR4 complex
reveal a role for NAMPT-positive patches and the presence of stabilizing electrostatic
interactions between K48, K68, K71, K73 with the negatively charged carboxyl moieties of
TLR4 [40]. We show here that the amino acid residues 57–65 of NAMPT interacted with
the LRR of TLR4. However, recent results demonstrate that eNAMPT exerts IFNγ-induced
macrophage polarization independently of the TLR4-independent pathway [43]. KEGG
analysis, a previous study, and our present data reveal the consistent enrichment of TLR
signaling [45,46]. We therefore believe that it is reasonable to conclude that eNAMPT
activity is TLR receptor- and ligand-specific and that the receptor may belong to the TLR
family. Therefore, targeting these interactions may represent a promising therapeutic
strategy designed to inhibit eNAMPT-induced inflammatory responses.

Fourth, rCT-NAMPT shows promise as a potential therapeutic. For example, nu-
merous studies show that peptide-based biological agents have significant potential as
immunotherapeutic agents against inflammatory diseases [30,31,33–35]. Colonic-targeted
drug delivery systems for macromolecules may provide therapeutic benefits such as im-
proved patient compliance (due to its painlessness and self-administration) and lower
costs. pH-dependent systems, enzyme-inducing systems, receptor-mediated systems, and
magnetically driven systems are among the strategies used to achieve more efficient colonic
drug delivery for local or systemic effects [24,47].
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Ligands are an essential component of targeted drug delivery systems, and the selec-
tion of ligands with high affinity is of considerable interest [23,24,47–49]. Here, we used
TK peptides as suitable targeting ligands with potential applications for colon-targeted
therapy [23]. Further studies must focus on different approaches to designing colonic-
targeted drug delivery systems as well as on pharmaceutical applications and formulation
technologies.

Notably, these rCT-NAMPTs do not fulfill the requirements of direct NAMPT enzy-
matic activities, which represent feasible alternatives to the conventional chemotherapy
of colitis. Furthermore, the unknown specificities and selectivity of rCT-NAMPTs make it
impossible to link their effects to host immune systems, and a shortcoming of an animal
experimental model is whether it truly replicates human pathophysiology Other limitations
include safety data, potential feasibility, unknown off-target effects, and pharmacokinetics
for in vivo proof-of-concept studies.

Our results show that the NAMPT, TLR4, and CYBB genes associated with mouse
colitis share functions with those of humans. It is believed that molecular biology and
immunological results from mouse model systems can be translated into insights into
human biology and health through interpretation based on mouse experimental data.
Therefore, additional studies are warranted to establish whether rCT-NAMPTs can be
translated to the clinic and whether their effects can be confirmed in individuals with
colitis.

In conclusion, to effectively maximize the anti-inflammatory effectiveness of im-
munotherapies targeted to the activated NLRP3 inflammasome, it is important to combine
the specificity of the eNAMPT effect on macrophages as well as its efficacy for colonic
targeting. The prospects for the treatment of colitis with next-generation peptide im-
munotherapeutic depend on the results of future translational and clinical trials.
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