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Abstract: Interleukin-33 (IL-33) acts as an ‘alarmin’, and its role has been demonstrated in driving
immune regulation and inflammation in many human diseases. However, the precise mechanism
of action of IL-33 in regulating neutrophil and macrophage functioning is not defined in advanced
atherosclerosis (aAT) patients. Further, the role of IL-33 in neutrophil extracellular trap (NET) for-
mation in aAT and its consequent effect on macrophage function is not known. In the present study,
we recruited n = 52 aAT patients and n = 52 control subjects. The neutrophils were isolated from
both groups via ficoll/percoll-based density gradient centrifugation. The effect of IL-33 on the NET
formation ability of the neutrophils was determined in both groups. Monocytes, isolated via a
positive selection method, were used to to differentiate them into macrophages from each of the study
subjects and were challenged by IL-33-primed NETs, followed by the measurement of oxidative stress
by calorimetric assay and the expression of the proinflammatory molecules by quantitative PCR
(qPCR). Transcript and protein expression was determined by qPCR and immunofluorescence/ELISA,
respectively. The increased expression of IL-33R (ST-2) was observed in the neutrophils, along with
an increased serum concentration of IL-33 in aAT compared to the controls. IL-33 exacerbates NET
formation via specifically upregulating CD16 expression in aAT. IL-33-primed NETs/neutrophils
increased the cellular oxidative stress levels in the macrophages, leading to enhanced macrophage
necroptosis and the release of atherogenic factors and matrix metalloproteinases (MMPs) in aAT com-
pared to the controls. These findings suggested a pathogenic effect of the IL-33/ST-2 pathway in aAT
patients by exacerbating NET formation and macrophage necroptosis, thereby facilitating the release
of inflammatory factors and the release of MMPs that may be critical for the destabilization/rupture
of atherosclerotic plaques in aAT. Targeting the IL-33/ST-2-NETs axis may be a promising therapeutic
target for preventing plaque instability/rupture and its adverse complications in aAT.

Keywords: Interleukin-33; NETs; necroptosis; advanced atherosclerosis; myeloperoxidases (MPO);
macrophages

1. Introduction

Cardiovascular disease (CVD) is considered to be the leading cause of morbidity
and mortality globally, and the culprit cause is atherosclerosis [1]. Atherosclerosis is
characterized by dysfunction in the endothelial cells, lipid deposition and oxidation, and
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inflammatory cell infiltration, leading to plaque formation followed by arterial wall thicken-
ing and a narrowing of the lumens in the arteries [2]. These features of atherosclerosis cause
clinical complications, such as ischemic heart disease, stroke, myocardial infarction, and
peripheral arterial disease [1,2]. The most abundant immune cells are neutrophils, and their
role has been implicated in the pathogenesis of various autoimmune and inflammatory
diseases, including atherosclerosis [3–5]. Neutrophils are generally known as the primary
immune cells that are critical in host defense against pathogenic microorganisms via micro-
bial uptake and phagocytosis [6]. The neutrophil extracellular traps (NETs) or NETosis is a
recently identified cell death mechanism (distinct from apoptosis and necrosis), and NETs
are formed in response to pathogens and under the influence of myriad of inflammatory
factors [6,7]. However, the phenomenon of extracellular trap formation is not limited to
neutrophils, and recent studies have demonstrated a similar mechanism in other immune
cells (macrophages, eosinophils, mast cells, etc.) [8–10].

The NET armamentarium mainly includes decondensed chromatin fibers complexed
with histone protein, along with various inflammatory molecules (HMGB1, cathepsin,
myeloperoxidase, etc.) and antimicrobial peptides (cathelicidin, calgranulin, defensins, pen-
traxin, etc.) [6,7]. In recent years, substantial studies reported the involvement of NETs in
the development and progression of atherosclerosis [11–13]. Warnatsch et al. demonstrated
that NETs induced by cholesterol crystals have the potential to activate the inflammatory
Th17 cells, priming the macrophages to secrete the proinflammatory cytokines, leading
to the progression of atherosclerotic plaques [12]. NETs are also reported to activate en-
dothelial cells, endothelial damage, platelet activation, monocyte adhesion, and foam cell
formation, which are considered to be characteristic features of atherosclerosis [14–17].

Further, interleukin (IL)-33 (IL-1 family cytokine) has recently been identified as
an endogenously produced molecule called “alarmins” that acts as a danger signal and
possesses potent inflammatory properties [18,19]. When considering its alarmin function,
it is often referred to as a damage-associated molecular pattern (DAMP) molecule and
is released after tissue or cell injury as a result of necrosis [19,20]. Expression of IL-33 is
reported in various immune (eosinophils, dendritic cells, macrophage, mast cells, T cells,
and innate lymphoid cells) epithelial and endothelial cells, and its secretion is stimulated by
infectious and inflammatory conditions [21–25]. However, its role has also been suggested
in augmenting sterile inflammation [20], where pattern recognition receptors (PRRs) and
pathogen-associated molecular patterns (PAMPs) are activated by non-microbial signals,
and sterile inflammation is considered as one of the causative factors in the atherosclerosis
etiology [26,27]. IL-33 exerts its function after engagement with its receptors, i.e., IL-33R
(ST-2) and sST-2 (membrane-bound and soluble isoforms), and the full-length IL-33 is the
biologically active form [21]. The role of IL-33 has been implicated in various cardiovascular
diseases, including atherosclerosis [24]. An elevated concentration of serum IL-33 and ST2,
along with the increased expression of IL-33 and IL-33 receptors (IL-33R), were reported in
vulnerable plaques, which, in turn, corroborate with a degree of infiltration of inflammatory
cells (in the plaques) [28]. However, contradictory studies were also reported where its
protective role had been suggested in atherosclerosis [29].

Macrophages are predominant immune cells that are involved in atherosclerotic lesion
development and progression [30]. The stability of advanced plaques is associated with
macrophage cell death (via apoptosis, necrosis, etc.), which is considered responsible for the
formation of necrotic cores and the destabilization of plaques in advanced atherosclerosis
(aAT) [30,31]. The role of necroptosis has gained wide attention, and its role has been
suggested in various cardiovascular diseases, including atherosclerosis [32,33]. Unlike
necrosis, necroptosis occurs in a programmed manner, and it is regulated by RIPK (receptor-
interacting protein kinases)-1, RIPK3, and MLKL (mixed-lineage kinase and domain-like
pseudokinase). Necroptosis is triggered by a variety of stimuli, including cytokines and
other endogenous factors [32], but the role of IL-33 and NETs in triggering the necroptosis
in the macrophages of aAT is not defined. Further, the role of IL-33 in NET induction in
advanced atherosclerosis is also not understood. Therefore, the present study aimed to de-
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fine the role IL-33 in augmenting NETs and the effect of IL-33-primed NETs in macrophage
necroptosis induction, followed by an investigation of the status of oxidative stress and the
release of atherogenic inflammatory molecules and matrix metalloproteinase (MMPs) from
macrophages in aAT.

2. Materials and Methods
2.1. Patient and Control Groups

A total of 52 (n = 43 males and n = 9 females) advanced atherosclerosis (≥70% stenosis)
patients were referred for coronary artery bypass grafting (CABG) after complete clinical
evaluation, and 52 (n = 42 males and n = 10 females) controls were recruited in the study
(Table 1). Blood samples were collected from the patient and control groups. Additionally,
we collected n = 18 carotid endarterectomy plaques from patients who underwent CABG
surgery. None of the study subjects (in both groups) were treated with any systemic
corticosteroids or other immunosuppressive therapy, preceding one month before blood
collection. The control subjects did not have any inflammatory, autoimmune, or infectious
disorders and had not taken any medication (topical or oral) in the preceding (one) month.
Patients and controls having any past or current history of smoking, alcohol, and drug
usage were excluded. The study was approved by the institutional ethics committee, and
written informed consent was obtained from each of the study subjects.

Table 1. Demographic detail of the patient and control groups.

Clinical Parameters Advanced Atherosclerotic
Patients Healthy Controls

Total number of subjects
Age in years (Mean ±

standard deviation (SD)) n = 52 (58.9 ± 21.4) n = 52 (55.5 ± 22.5)

Number of Male (Age in
years, Mean ± SD) = n = 43 (58.6 ± 25.8) n = 42 (52.7 ± 21.2)

Number of Female (Age in
years, Mean ± SD) = n = 9 (61.6 ± 26.3) n = 10 (48.70 ± 22.4)

Hypertension n = 21
(Male = 16; Female = 5) None

Diabetes Mellitus n = 16
(Male = 12; Female = 4) None

Family history of
cardiovascular diseases

n = 12
(Male = 10; Female = 2) None

Percentage of carotid stenosis
(>70%) n = 52

None (No symptoms of
angina and any other

cardiovascular diseases,
normal electrocardiogram)

Cholesterol (mg/dL) 123.1 ± 58.5 113.4 ± 28.2

Triglyceride 148 ± 67.3 111 ± 39.1

LDL 82.8 ± 27.6 44.2 ± 21.6

VLDL 16.8 ± 8.9 14.2 ± 7.9

HDL 35.5 ± 8.1 57.3 ± 28.5
LDL = Low-density lipoprotein, VLDL = Very-low-density lipoprotein, HDL = High-density lipoprotein.

2.2. Neutrophil Extracellular Trap Formation

Neutrophils were isolated from all the study subjects in the patient and control groups
by density gradient centrifugation using Histopaque 1119 (Sigma-Aldrich, St. Louis,
MO, USA) and a percoll (Sigma-Aldrich, St. Louis, MO, USA) gradient, as described by
Brinkman et al. [34]. Isolated neutrophils were plated onto 24-well culture plates in RPMI
media, supplemented with 2% human serum albumin, and were allowed for adherence for
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one hour, followed by treatment with rIL-33 (100 ng/mL; Sigma-Aldrich, St. Louis, MO,
USA) for 4 h in a CO2 incubator at 37 ◦C. For the immunofluorescence-related experiments,
the cells were cultured on sterile 13 mm round glass cover slip.

2.3. Monocyte Isolation, Macrophage Culture and Stimulation

The peripheral blood mononuclear cells (PBMCs) were isolated by density gradient-
centrifugation using Histopaque-1077 (Sigma-Aldrich, St. Louis, MO, USA), followed by
monocytes enrichment by positive selection using EasySep™ Human Monocyte Isolation
Kit (Stem Cell Technologies Inc., Vancouver, BC, Canada) as per the manufacturer’s instruc-
tions. Briefly, 80–100 million PBMCs were incubated for 10 min with a cocktail of selection
antibody (100µL/mL), followed by 5 min incubation with RapidSpheres (100 µL/mL,
StemCell Technologies Inc., Vancouver, BC, Canada)). The cells were placed in “The Big
Easy”EasySep™ Magnet (StemCell Technologies Inc., Vancouver, BC, Canada) for 3–4min;
the supernatant (negative for monocytes) was removed, and the monocytes resuspended
in buffer (PBS with 1mM EDTA and 2% fetal calf serum). Isolated monocytes (2 × 106)
were differentiated into macrophages by culturing them in differentiation media, i.e.,
RPMI-1640 supplemented with 10% FCS (fetal calf serum), 1× antibiotic-antimycotic (peni-
cillin, streptomycin, and amphotericin-B) solution (Himedia Laboratories, Mumbai, India),
10 ng/mLM-CSF (macrophage colony-stimulating factor) (Sigma-Aldrich, St. Louis, MO,
USA), and 1 ng/mLGM-CSF granulocyte-macrophage colony-stimulating factor (Sigma-
Aldrich, St. Louis, MO, USA) for 4–5 days. Macrophages were co-cultured with IL-33
primed NETs (neutrophils) and 50% NETs supernatant for 24 h.

2.4. Quantitative Polymerase Chain Reaction (qPCR)

The qPCR was performed as described previously [35]. Briefly, the total RNA was
isolated using TRIzolTM (Thermo Fisher Scientific, Carlsbad, CA, USA) from cells (neu-
trophils/macrophages), according to the manufacturer’s instructions. RNase free kit
(ThermoFisher Scientific, Carlsbad, CA, USA) with DNase I was used to remove the con-
taminating DNA. Complementary DNA (cDNA) was synthesized using the RevertAid first
strand cDNA synthesis kit (Thermo Fisher Scientific, Carlsbad, CA, USA). Quantitative
polymerase chain reaction (PCR) was performed using the Maxima SYBR Green qPCR
Master Mix (Thermo Fisher Scientific, Carlsbad, CA, USA) in CFX96 Real-time PCR System
(BioRad, Hercules, CA, USA) as per the MIQE guidelines. The PCR settings used were
initial denaturation at 95 ◦C for 10 min, and 40 cycles of 15 s of denaturation at 95 ◦C,
and 30s of primer annealing (at optimized temperature), and extension at 72 ◦C. Samples
were run in triplicates (average Ct values was used for analysis), and β-actin served as the
internal control for normalization. Primers were purchased from Sigma-Aldrich. The genes
and their primer pairs were listed in Table 2. Gene expression data were expressed as 2−∆Ct

for the patient and control groups.

Table 2. List of genes and their respective forward and reverse primers.

Genes Gene Accession Number Forward Primers (5′-3′)
Reverse Primers (5′-3′)

β-ACTIN NM_001101 GCGTGACATTAAGGAGAAG
GAAGGAAGGCTGGAAGAG

IFN-γ NM_000619 GCAGAGCCAAATTGTCTCCT
ATGCTCTTCGACCTCGAAAC

TNF-α NM_000594 CCATCAGAGGGCCTGTACCT
GTGGGTGAGGAGTACATGGG

IL-1β NM_000576 CCAAACCTCTTCGAGGCACA
AGCCATCATTTCACTGGCGA

IL-6 NM_001371096 CCACCGGGAACGAAAGAGAA
TCTCCTGGGGGTATTGTGGA
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Table 2. Cont.

Genes Gene Accession Number Forward Primers (5′-3′)
Reverse Primers (5′-3′)

IL-10 NM_000572 TCTCCGAGATGCCTTCAGCAGA
TAGCATCTCGGCTGGACTTCGA

IL-12B NM_002187 TCCCTGGTTTTTCTGGCATCT
CATTTCTCCAGGGGCATCCG

IL-18 NM_001386420 GCTGAAGATGATGAAAACCTGGA
GAGGCCGATTTCCTTGGTCA

IL-23 NM_016584 CCCAAGGACTCAGGGACAAC
TGGAGGCTGCGAAGGATTTT

IL-33 NM_033439 AATCAGGTGACGGTGTTG
ACACTCCAGGATCAGTCTTG

IL-33R
(ST-2/IL1RL1) NM_016232 ATGTTCTGGATTGAGGCCAC

GACTACATCTTCTCCAGGTAGCAT

GM-CSF NM_000758 AATGTTTGACCTCCAGGAGCC
TCTGGGTTGCACAGGAAGTTT

MCP-1 NM_002982 GACCATTGTGGCCAAGGAGA
TTGGGTTTGCTTGTCCAGGT

MPO NM_000250 TTTGACAACCTGCACGATGAC
CGGTTGTGCTCCCGAAGTAA

RIPK1 NM_003804 GGAGACTAGGTGGCAGGGT
CCAGTTCTGCACTCTCCAGG

RIPK3 NM_006871 TGGCCCCAGAACTGTTTGTT
GGATCCCGAAGCTGTAGACG

MLKL NM_152649 GAGGGCACTGGACAGAAACA
ACTCTGCTGACTGTACCGGA

CD16 NM_000569 ATCTTCAAGCAGGGAAGCCC
TGTTGCTTTGCTGTGAGGGA

NLRP1 NM_033004 GGACCAGTATCGAGAGCAGC
GAGGTGAGGATGGGTCTCCT

NLRP3 NM_183395 CCTGAGCAGCCTCATCAGAA
GCAAGTGCTGCAGTTTCTCC

NLRC4 NM_001199138 GAACTCGAGGCCTCACTGAA
GGGCTCGGCTATTGTCCTTT

AIM2 NM_004833 TAGGTTATTTGGGCATGCTCTC
ACAACTTTGGGATCAGCCTCC

TIMP1 NM_003254 GGGGACACCAGAAGTCAACC
GGGTGTAGACGAACCGGATG

TIMP2 NM_003255 CAGCTTTGCTTTATCCGGGC
ATGCTTAGCTGGCGTCACAT

TIMP3 NM_000362 ATGGCAAGATGTACACGGGG
ATGCAGGCGTAGTGTTTGGA

TIMP4 NM_003256 CTGCCTCCCAAACCCCATTA
ACATTCGCCATTTCTCCCCT

MMP-1 NM_00242 CTGTTCTGGGGTGTGGTGTC
GGGCCACTATTTCTCCGCTT

MMP-2 NM_001127891 TGTGTTGTCCAGAGGCAATG
ATCACTAGGCCAGCTGGTTG

MMP-3 NM_002422 AAAGACAGGCACTTTTGGCG
CTTCATATGCGGCATCCACG

MMP-7 NM_002423 TACCCATTTGATGGGCCAGG
AGACTGCTACCATCCGTCCA

MMP-9 NM_004994 TTCCAAACCTTTGAGGGCGA
CTGTACACGCGAGTGAAGGT
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Table 2. Cont.

Genes Gene Accession Number Forward Primers (5′-3′)
Reverse Primers (5′-3′)

MMP-12 NM_002426 AACCAACGCTTGCCAAATCC
TTTCCCACGGTAGTGACAGC

MMP-13 NM_002427 GCACTTCCCACAGTGCCTAT
AGTTCTTCCCTTGATGGCCG

MMP-14 NM_004995 CCGATGTGGTGTTCCAGACA
TCGTATGTGGCATACTCGCC

2.5. Oxidative Stress Estimation

The oxidative stress was analyzed by estimating the concentration of 8-hydroxy 2 de-
oxyguanosine (8-OHdG) (Abcam, Cambridge, UK, ab201734), malondialdehyde (MDA)/lipid
peroxidation (Abcam, Cambridge, UK, ab118970), GSH+GSSG (total glutathione)/GSH (re-
duced glutathione) (Abcam, Cambridge, UK, ab239709), superoxide dismutase (SOD) activity
(Elabscience Biotechnology Inc., Houston, TX, USA, E-BC-K019-M) and Catalase activity (Elab-
science Biotechnology Inc., Houston, TX, USA, E-BC-K031-M) in the cultured macrophages
of patients and control groups as explained above. All the steps were performed as per the
manufacturer’s instruction, and colorimetric detection method was used in all assays.

2.6. Immunofluorescence

For immunofluorescence study, the macrophages were cultured on 13 mm coverslips
and treated as mentioned above, followed by fixation in 4% paraformaldehyde. Plaque
samples were fixed in 4% paraformaldehyde, followed by incubation in decalcifying
solution (Sigma Aldrich, St. Louis, MO, USA), washed and dehydrated under an increasing
gradient of alcohol, and embedded in paraffin. Consecutive sections (5 µm thickness)
were cut and transferred on poly-L-lysine coated slides (Sigma Aldrich, St. Louis, MO,
USA). Sections were deparaffinized and incubated in an antigen retrieval buffer (sodium
citrate, pH 6). Fixed cells and plaque sections were washed and permeabilized (only for
intracellular markers) using 0.2% Triton (Bio-Rad, Hercules, CA, USA), and blocked in 5%
normal goat serum (Abcam, Cambridge, UK). After blocking, the cells were incubated with
primary antibodies, polyclonal goat anti-myeloperoxidae (MPO) (1:200, R & D Systems),
rabbit anti-CD16 (1:200, Abcam, Cambridge, UK), Rabbit polyclonal IL-33R (ST2) (1:100,
Abcam, Cambridge, UK), rabbit anti- RIPK-1(1:200, Abcam, Cambridge, UK), rabbit anti-
RIPK-3 (1:200, Abcam, Cambridge, UK) and, rabbit anti-MLKL (phospho S358) (1:200,
Abcam, Cambridge, UK) overnight at 4 ◦C. Cells were washed with 0.025% Tween-20
(in 1XPBS), followed by incubation with corresponding secondary antibodies, i.e., FITC-
conjugated rabbit anti-goat (1:500, Abcam, Cambridge, UK), FITC-conjugated goat anti-
rabbit (1:500, Abcam, Cambridge, UK), and TRITC-conjugated goat anti-rabbit (1:500,
Abcam, Cambridge, UK) for 45 min at room temperature. Cells were washed, and the nuclei
were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma Aldrich, St. Louis,
MO, USA). Cells and plaque sections were mounted on glass slides with Vectashield
antifade mounting medium (Vector Laboratories, Newark, CA, USA), and images were
acquired using a fluorescence microscope (20×/40× magnification) with NIS-Elements
F3.2 software (Nikon, Tokyo, Japan). The mean fluorescence intensity (MFI) was quantified
using ImageJ software (NIH, Bethesda, Maryland, USA) for each marker. The intensity
threshold levels of the background and signal were determined for at least 5 different fields
with the highest signal intensity using the threshold tool. The average threshold values were
obtained, and the threshold settings were applied to all images. Then mean fluorescent
intensity (MFI) was calculated via the measuring tool for the background and signals,
followed by subtracting the MFI of the background from that of the signal. The resulting
values of the 5 different fields (in triplicates) were then averaged (normalized with control
to obtain fold change of pixel intensities), and the same was used for statistical analysis.
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2.7. Enzyme Linked Immunosorbent Assay (ELISA)

Protein quantification was performed by ELISA for MPO (sensitivity = <10 pg/mL, Abcam,
Cambridge, UK), and IL-33R (ST-2) (sensitivity = 22 pg/mL, Abcam, Cambridge, UK) (in plaque
homogenates); RIPK1 (sensitivity = 0.063 ng/mL, ELK Biotechnology, Wuhan, China), RIPK3
(sensitivity = 0.122 ng/mL, ELK Biotechnology), and MLKL (sensitivity = 0.112 ng/mL, ELK
Biotechnology) (in treated macrophage cell lysates). All the steps were performed as per the
manufacturer’s instructions, and measurements of optical densities were determined at 450 nm
using microplate reader (BioRad, Hercules, CA, USA). The concentrations were expressed as pg
(picogram)/mL(milliliter) or ng (nanogram)/mL.

2.8. Statistical Analysis

All statistical analyses were performed, and the graphs were generated using STATA
software version 14 (StataCorp LP, College Station, TX, USA) and Graph Pad Prism 5
(GraphPad Software, Inc., San Diego, CA, USA). In the present study, the nonparametric
datasets (qPCR, calorimetric assays, and ELISA data) were analyzed using Mann–Whitney
U testing (represented as a boxplot graph). The immunofluorescence data (except for
Figure 1c, where Mann–Whitney U testing was used) was analyzed using the student’s t
test as the data were parametric. p value of <0.05 was set as significant. We also compared
the data for effect size analysis (i.e., Cohen’s ‘d’ effect size) (95% class interval) for all the
datasets, and the same was presented in Supplementary Table S1.
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Figure 1. (a) Immunofluorescence-based expression of interleukin (IL) –33R (red arrows) in the
neutrophils; (b) transcript expression of IL–33R in neutrophils; (c) quantification (relative mean fluo-
rescent intensity) of IL–33R protein; (d) immunofluorescence based localization of MPO (myeloperox-
idase) and IL–33R in endarterectomy plaques; (e) serum IL–33 levels in aAT patients and controls;
(f) MPO and IL–33R protein quantification in plaque homogenates by ELISA, and correlation of MPO
and IL–33R expression in plaques.
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3. Results

The role of IL-33 has been reported in atherosclerosis, but the precise mechanism is not
known, particularly its effect on neutrophil and macrophage function. In the present study,
we observed significant (p < 0.05) increased expression (transcript and proteins) of IL-33
receptor (IL-33R or IL1RL1 or ST-2) in the neutrophils of the aAT patients compared to the
controls (Figure 1a–c). Myeloperoxidase (MPO) is abundantly expressed in neutrophils,
and MPO, along with IL-33R, was found to be immunolocalized by immunofluorescence in
the endarterectomy plaques of aAT patients suggesting the role IL-33 in the pathogenesis
of aAT (Figure 1d,f). We also measured the concentration of MPO and IL-33R in the
plaque homogenates by ELISA; the corresponding protein was detected in all the studied
plaque samples, but no significant correlation was observed between MPO and IL-33R
(r = 0.292, p = 0.239). Further, we found a significant increase in concentration for the IL-33
in the serum of the aAT patients compared to the controls (p < 0.05) (Figure 1e). Next, we
determined the effect of rhIL-33 on NET formation potential in the isolated neutrophils
of both the groups, where we found a significant increase (p < 0.05) in the percentage of
NETotic cells in aAT compared to the controls (Figure 2). Furthermore, we found that the
enhanced NET formation was mainly associated with CD16+MPO+ neutrophils (Figure 2a)
via the upregulation of CD16 expression in the aAT group compared to the controls.
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Figure 2. (a) Effect of IL-33 on in vitro neutrophil extracellular trap (NET) formation potential of MPO
(myeloperoxidase) + neutrophils in aAT patients and controls (MPO = green, CD16 = red, and nucleus
= blue (DAPI counterstain)); (b) quantification of NETotic cells (right); (c) quantification (relative
mean fluorescent intensity) of MPO and CD16 proteins; (d) MPO and CD16 transcript expression in
IL–33–treated neutrophils of aAT patients and controls.

Furthermore, when isolated macrophages were cocultured with IL-33-primed neu-
trophils/NETs, increased macrophage necroptosis was evident by the significant increased
(p < 0.05) expression level (protein and mRNA) of RIPK-1, RIPK-3, and MLKL (Figure 3a–d).
Since the exacerbation of NETs is associated with an increase in the magnitude of cellular
oxidative stress, we estimated the status of oxidative stress in the macrophages treated with
IL-33-primed neutrophils/NETs using various markers of oxidative stress. The concentra-
tion of8-OHdG and malondialdehyde (MDA) (lipid peroxidation) were significantly higher
(p < 0.05),and an increase (p < 0.05) in the ratio of GSH+GSSG (total glutathione)/GSH
(reduced glutathione) was reported in the treated macrophages of aAT compared to the
controls (Figure 4). Additionally, the activity of antioxidant enzymes, i.e., superoxide
dismutase (SOD) activity and catalase activity, were found to be lowered in NETs-treated
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macrophages of the aAT group compared to the controls (Figure 4), which is indicative of
redox imbalance.
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Figure 3. (a) Effect of IL–33–primed neutrophils/NETs on the necroptosis of the cultured macrophages
in aAT patients and controls; (b) qPCR-based transcript expression of necroptosis markers (RIPK–1,
RIPK–3, and MLKL); (c) quantification (relative mean fluorescent intensity) of necroptosis markers in
the treated macrophages of the aAT patients and controls; (d) RIPK–1, RIPK–3, and MLKL protein
quantification by ELISA in cell lysates.
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In order to further understand the IL-33-mediated neutrophil-macrophage cross-talk,
we determined the transcript levels of the proatherogenic markers in the treated (IL-33
primed neutrophils/NETs) macrophages; we found significantly increased (p < 0.05) expres-
sion of all the studied markers, i.e., IFN (interferon)-γ, TNF (tumor necrosis factor)-α, IL-1β,
IL-6, IL-12B, IL-18, IL-23, IL-33, MCP (monocyte chemoattractant protein-1)-1/CCL-2, and
GM-CSF(Granulocyte-macrophage colony-stimulating factor), except for IL-10, which was
not statistically significant between the groups (p > 0.05) (Figure 5). The release of inflam-
matory factors by macrophages was known to be associated with inflammasome activation,
and in the present study, we found increased expression of IL-1β and IL-18 (Figure 5),
which were indicative of inflammasome activation. We next investigated the expression
of common inflammasomes: NLRP1, NLRP3, NLRC4, and AIM2 (Figure 6). No significant
difference was observed in the transcript expression of the studied inflammasome markers,
except for NLRP3 expression, which was found to be significantly higher in the treated
macrophages of the patients when compared to controls, suggesting the NLRP3-mediated
activation of inflammasome. Furthermore, we investigated the mRNA expression levels of
the tissue inhibitors of metalloproteinases (TIMPs), i.e., TIMP1, TIMP2, TIMP3, and TIMP4,
where TIMP3 (p < 0.05) was found to be significantly decreased in the treated macrophages
of the patients when compared to the controls; a similar trend was observed for TIMP1, but
the difference was not statistically significant (p = 0.061) (Figure 6). The role of the MMPs
secreted by macrophages was known to be involved in plaque destabilization, along with
inflammatory cytokines; therefore, we extended our study to investigate the transcript
expression of selective MMPs, i.e., MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12,
MMP-13, and MMP-14. We found increased expression of MMP-3, MMP-9, and MMP-12
(p < 0.05), but no significant difference was observed for MMP-1, MMP-2, MMP-7, MMP-12,
and MMP-14 (p > 0.05) (Figure 6).
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4. Discussion

In the present study, we identified a novel mechanism mediated by IL-33 whereby it
binds to its membrane-bound receptor, IL-33R, on neutrophils and triggers a potential NET
formation response by up-regulating CD16 expression. The IL-33-primed NETs further
induced macrophage activation via NLRP3 inflammasome, facilitating the release of athero-
genic inflammatory mediators and MMPs. All these events eventually increased the cellular
oxidative stress in the macrophages, leading to macrophage necroptosis. The involvement
of the IL-33/ST-2 axis has been reported in various cardiovascular diseases, like coronary
artery disease, atrial fibrillation, heart failure, systemic hypertension, etc. [36,37]. In our
present study, we found increased serum levels of IL-33 in the aAT group compared to
the controls, along with detectable staining for IL-33R (ST-2) in the atherosclerotic plaques,
suggesting the role of the IL-33/ST-2 axis in aAT patients. IL-33 acts as an alarmin and
the role of IL-33 has been reported in the activation and migration of neutrophils [38]. In
recent years, the role of NETs has been widely implicated in the pathogenesis of cardiovas-
cular diseases, including atherosclerosis [39]; however, the impact of IL-33 on neutrophil
function, particularly on NET formation, has not been defined in aAT patients. Endothelial
dysfunction is the hallmark feature in the development of early atherosclerotic lesions,
and IL-33 has been reported to be involved in endothelial cell activation, leading to an
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exacerbation of inflammation [40]. The protein and mRNA levels of IL-33 and ST2 were
detected in human carotid atherosclerotic plaques [40], and our study also revealed the
expression of IL-33R and MPO in almost all the studied endarterectomy plaques. In the
present study, we observed the significantly increased expression of IL-33R mRNA and
proteins in the neutrophils of aAT compared to the controls. These observations prompted
us to investigate the effect of hrIL-33 on the NET formation ability of neutrophils, and we
found enhanced NETotic cells in aAT compared to the controls. We identified a unique
finding that NET formation is associated with the upregulation/retention of CD16 (FCγRIII)
expression on MPO+ neutrophils, as evident by the proximity of the NET filaments with
CD16+ expressing neutrophils, and the significantly increased expression of the CD16
protein was observed in the MPO+ neutrophils of the aAT patients compared to the con-
trols. We further hypothesized that CD16+MPO+ neutrophils were the major neutrophils
involved in NET formation, and this is specifically regulated by IL-33 in aAT. However, this
hypothesis needs further validation, and it is the subject of our future investigations.

Macrophages are one of the primary sentinels of innate immunity, and their dysfunc-
tion is extensively reported in atherosclerosis due to defective lipid metabolism [30–33].
Neutrophils are predominant leukocytes in the blood, but their role has been underes-
timated in the pathogenesis of atherosclerosis. In recent years, the participation of neu-
trophils, particularly NETs, has been widely reported in the development and progression
of atherosclerosis [11–13]. However, the IL-33-mediated dialogue between neutrophils and
macrophages was not defined in the aAT patients. After challenging the macrophages with
IL-33-primed NETs, we observed the increased expression of RIPK-1, RIPK-3, and MLKL in
the macrophages of the aAT patients compared to the controls, indicating the macrophage
death via the activation of necroptosis pathway in the macrophages. Further, enhanced
necroptosis resulted in the release of reactive oxygen species, which are considered as the
driver of inflammation and cellular oxidative stress. In order to support this notion, we
evaluated the status of cellular oxidative stress by measuring the levels of 8-OHdG, MDA,
GSH+GSSG/GSH ratios in the isolated macrophages (challenged with IL-33-primed NETs)
of the individual study subjects from each group; the levels of all these markers were signif-
icantly elevated in the patient group compared to the control group. Further, the activity of
free radical scavenging enzymes was determined in the NET-treated macrophages of both
groups, and the activities of both these enzymes were found to be severely compromised
in the aAT patients compared to the controls. These observations revealed that the IL-33
induced the oxidative stress in the macrophages via triggering the NETs in the neutrophils.
Further, in a similar experimental setup, we observed the increased transcript expression
of atherogenic molecules that are highly inflammatory and may lead to the amplification
of NETs and macrophage necroptosis. Increased gene expression of NLRP-3, IL-1β, and
IL-18 suggested the involvement of the IL-33-NETs axis in inflammasome activation in the
macrophages. The role of MMPs was reported in plaque instability [41], and in the present
study, we reported the increased expression of MMP-3 (stromelysin-1), MMP-9 (gelatinase
B), and MMP-12 (metalloelastase) genes via the stimulation of the macrophages with IL-33-
primed NETs/neutrophils. Further, a fine balance is required between the MMPs (enzymes
degrading extracellular matrix proteins) and TIMPs (biological inhibitors of MMPs) to
maintain a steady-state, but we found enhanced MMPs expression and decreased TIMP3
gene expression in the treated macrophages of aAT. These findings suggested that the IL-33-
primed NETs caused the deregulation of the MMP–TIMP balance in the macrophages, and
the release of more MMPs may play a vital role in plaque destabilization in aAT patients.
Therefore, IL-33 appeared to be pathogenic in its function, which orchestrates the vicious
cascade of potent inflammatory and atherogenic factors in the aAT patients. However,
there were studies that demonstrated the protective role of IL-33 in atherosclerosis [29,39],
where the development of atherosclerosis was significantly reduced in ApoE−/− mice
administered with IL-33 through Th1-to-Th2 switching [29]. The IL-33-mediated inhibi-
tion of atherosclerosis-associated genes, like MCP-1 and ICAM-1 (intercellular adhesion
molecule 1), was also reported in the macrophages, and this anti-atherogenic action of
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IL-33 involved various signaling pathways, i.e., p38α, ERK1/2, JNK1/2, PI3Kγ, and NF-
κB [42]. All these observations are indicative of the dual function of IL-33, i.e., as a pro- and
anti-inflammatory, that may be spatiotemporal dependent in aAT.

5. Conclusions

In summary, the present study defined the increased expression of IL-33R on the
surface of the neutrophils of aAT patients, and IL-33 played a pathogenic role in the aAT
patients via the exacerbation of the NETs. We also identified a novel mechanism whereby
IL-33 specifically triggered the up-regulation of CD16 expression on the neutrophils, and
the CD16+MPO+ neutrophils were the dominant neutrophil populations involved in NET
formation in the aAT patients. The IL-33-primed NETs have the potential to activate
macrophages, thereby facilitating the NLRP3 inflammasome-mediated release of pro-
inflammatory molecules that were atherogenic in their function. The elevated expression of
MMP-3, MMP-9, and MMP-12 and the decreased expression of TIMP3 in the inflamma-
tory milieu may play a critical role in plaque instability. Further, the IL-33-primed NETs
induced macrophage necroptosis by enhancing cellular oxidative stress. The IL-33-driven
mechanism (IL-33/ST-2/NETs-axis) eventually culminates in endothelial dysfunction and
the localized amplification of inflammation in the intima of the arteries, leading to plaque
destabilization. These findings were schematically represented in Figure 7. Therefore,
IL-33/ST-2/NETs-axis-driven dialogue between the neutrophils and macrophages may act
as a culprit in the destabilization of atherosclerotic plaques, and further investigation using
a robust in vivo model is highly warranted in this direction.
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Figure 7. Schematic representation of the mechanism of action of IL-33 in triggering NET formation,
macrophage activation and necroptosis, augmenting the release of atherogenic factors and matrix
metalloproteinases (MMPs), and increased oxidative stress, collectively leading to endothelial dys-
function and the exacerbation of the disease by plaque destabilization (? = not clearly defined) (refer
to the conclusion section for details).
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