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Abstract: Flavanones and their biochemical precursors, chalcones, are naturally occurring compounds
and consist of privileged scaffolds used in drug discovery due to their wide range of biological
activities. In this work, two novel flavanones (3 and 4), the arylidene flavanone 5, and the chalcone
6, displaying structural analogies with butylated hydroxytoluene (BHT), were synthesized via an
aldol reaction. According to the antioxidant activity studies of the synthesized flavanones, the
arylidene flavanone 5 was the most potent antioxidant (70.8% interaction with DPPH radical and
77 4% inhibition of lipid peroxidation). In addition, the ability of the synthesized compounds to
bind with ctDNA was measured via UV-spectroscopy, revealing that chalcone 6 has the strongest
interaction with DNA (Ky, = 5.0 x 103 M~1), while molecular docking was exploited to simulate the
compound-DNA complexes. In an effort to explore the conformational features of the novel synthetic
flavanones (3 and 4), arylidene flavanone 5, and chalcone 6, theoretical calculations were applied and
the calculation of their physicochemical properties was also performed.

Keywords: flavanones; arylidene flavanone; chalcone; aldol reaction; antioxidant activity;

conformational analysis

1. Introduction

Flavanones (2-phenyl-2,3-dihydrochromen-4-ones) and their biochemical precursors,
chalcones (Figure 1), belong to the flavonoid family of natural products. Chalcones (1,3-
diaryl-2-propen-1-ones) are characterized by the presence of an ,3-unsaturated carbonyl
system and an extensive structural diversity. A vast number of chalcones have been
isolated from plant species and have been shown to possess antioxidant, anti-inflammatory,
antibacterial, and enzyme inhibitory activity, as well as neuroprotective properties [1-6].

Two structural features, the absence of the C2-C3 double bond and the presence of a
chiral center at the 2-position, characterize flavanones. Although at first these natural prod-
ucts were considered as “minor flavonoids”, the constantly growing number of flavanones
isolated from plants has “promoted” them to major flavonoids. Citrus fruits, tomatoes, and
mint are rich sources of flavanones, such as hesperetin, naringenin, eriodictyol, isosaku-
ranetin, and their respective glycosides (Figure 2) [7]. Flavanones are attracting increased
attention due to the wide array of biological activity that they possess, such as antioxidant,
anticancer, anti-inflammatory, antibacterial, anti-HIV, and others [7-10]. Furthermore, in
the recent work published by the research group of Fang et al., naringenin and the simplest
flavanone molecule, with no substituents on the aromatic rings, were shown to be good
candidates for the development of antipsoriatic agents, as they showed enhanced skin
permeation and anti-inflammatory activity [10-12].
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Chalcone Flavanone Arylidene flavanone

Figure 1. General structure and numbering scheme of the flavanones, chalcones, and arylidene
flavanones framework.
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Figure 2. General structure of hesperetin, naringenin, eriodictyol, and isosakuranetin.

Regarding the antioxidant activity of flavanones, it seems that there is an exten-
sive study in the literature investigating their potential activity through several in vitro
techniques, such as the DPPH (2,2-Diphenyl-1-picrylhydrazyl), AAPH (2,2"-Azobis(2-
amidinopropane) dihydrochloride), ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid), cupric reducing antioxidant capacity, hydroxyl radical, hydroxyl peroxide, or su-
peroxide anion radical assays [13-18].The structural features that enhance the activity of
flavanones, as well as other phenolic compounds such as flavones, are multiple pheno-
lic groups, especially the ortho-dihydroxy (catechol) configuration at the B ring and the
4-carbonyl group at the C ring [19].

The plausible mechanisms that explain the antioxidant activity of flavonoids have
been studied and reviewed by several research groups [7,20-22], and it seems that they
are greatly affected by the number of the hydroxyl groups and their configuration [23].
One of the best proposed mechanisms of action describes the capacity of flavonoids to
scavenge or reduce reactive oxygen species (ROS) by donating a hydrogen atom or an
electron [20,24]. Additionally, flavonoids can act as antioxidant agents through an indirect
mechanism, in which they interact with proteins or enzymes that play a major role in the
defense mechanism of the cells against oxidative stress [20,23].

3-Arylidene flavanones belong to homoisoflavonoids, a small and much less studied
group of natural products [25], which possess an exocyclic double bond at position 3 of the
heterocyclic ring of the flavanone moiety. Sappanone A (Figure 3), isolated from the heart-
wood of the plant Caesalpinia sappan, is a characteristic example of a 3-arylidene flavanone.
It is an inhibitor of viral neuraminidases [26] and also possesses anti-inflammatory [27],
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antioxidant [28], and anti-ageing [29] activities. Other examples of naturally occurring
3-arylidene flavanones are bonducellin, 8-methoxybonducellin, intricatinol, and eucomin,
that were isolated from the methanolic extract of the roots of Caesalpinia digyna [30,31].
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Figure 3. General structure sappanone A and bonducellin.

Butylated hydroxytoluene (BHT, Figure 4) is a synthetic phenolic antioxidant widely
used as a food additive. BHT inhibits lipid peroxidation and is a powerful free radical
scavenger. The characteristic structural features of BHT are the two bulky, electron-donating
tert-butyl groups at ortho-positions of the phenolic OH. These tert-butyl groups increase
the lipophilic character of the molecule and stabilize the phenoxy radical formed after the
interaction of BHT with an oxidative species and prevent the prooxidant effect of BHT [32].

CH,

(CH,);C C(CHj3);
OH

Figure 4. General structure of butylated hydroxytoluene (BHT).

The synthesis of 2/-hydroxy-chalcone analogues and their hybrids has been the focus
of our research [3,4,33], as these compounds are privileged structures and, as such, they
are a “canvas” for the synthetic chemist, providing various opportunities for structural
modifications. In this context, we set out to investigate the aldol reaction between 2-
hydroxy-acetophenone and 3,5-di-tert-butyl-4-hydroxybenzaldehyde in order to synthesize
chalcones and flavanones displaying structural analogies with BHT.

The antioxidant activity of the synthesized compounds was evaluated in terms of
their ability to scavenge the stable free radical DPPH and their ability to inhibit lipid
peroxidation. The first technique describes a fast, simple, and cost-effective antioxidant
assay based on electron-transfer that produces a violet solution. The free DPPH radical,
which is stable at room temperature, is reduced in the presence of an antioxidant compound,
decolorizing the solution. The interaction of the tested molecules with the free radical
indicates their scavenging ability in an iron-free system [4,34]. The second method is based
on the ability of the compounds to inhibit lipid peroxidation of linoleic acid, induced by
AAPH, which is a thermal free radical producer. This technique has been developed as a
quick and reliable assay. AAPH generates free radicals in the solution, which cause the
oxidation of linoleic acid, and the technique estimates how effectively antioxidants protect
against lipid peroxidation in vitro [4,34].

Furthermore, the ability of the compounds to bind with ct-DNA was evaluated. Con-
formational analysis and the prediction of the main physicochemical characteristics of the
compounds were also performed.

In the pharmaceutical industry, DNA is one of the most studied pharmacological
targets, owing to its major role in cell functions. Small molecules are able to bind with DNA
and alter its function depending on the way that each molecule interacts with the double
helical structure of DNA [35,36]. There are two different ways of DNA-drug binding: the
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covalent and the non-covalent. The covalent mode of binding has an irreversible effect on
DNA function, since it leads to the total inhibition of DNA processes and, therefore, cell
death [35]. The non-covalent mode of binding is reversible, is considered less cytotoxic than
the covalent mode, and it includes three different types of interaction: intercalation, groove
binding, and external static electronic effects [35-38]. Compounds that act as intercalators
stack between adjacent DNA base pairs. Intercalation occurs perpendicular to the axis
of the helix, without disrupting the form of the DNA; however it affects many biological
functions. Compounds that act as groove-binding drugs can either bind to the minor or
to the major groove by van der Waals interactions and hydrogen bonds, resulting to no or
small structural modifications of the DNA core. Compounds that act as external ligands
interact electrostatically with the DNA phosphate backbone, which is negatively charged.
Since the interactions with DNA have attracted scientific interest, many techniques have
been established in order to study drug-DNA binding. In this context, UV-visible absorption
spectroscopy was employed to investigate the ability of the synthesized compounds to
bind with DNA, while the molecular docking technique was also utilized for a more in
depth study of this phenomenon.

2. Materials and Methods
2.1. Synthesis and Characterization

The synthesized compounds were structurally elucidated using a Varian 300 MHz
NMR spectrometer (Palo Alto, CA, USA) using DMSO-dg and CDClj3 at 99.9% D. Coupling
constants (J) are expressed in hertz (Hz). Chemical shifts (J) are reported in parts per
million (ppm) units relative to the reference (TMS). Mass spectrometry (MS) analysis was
performed on a Varian 500 MS ion trap mass spectrometer using electrospray ionization
(ESI). NMR and MS spectra of compounds 36 are available in the Supplementary materials.

Melting points are determined on a Gallenkamp MFB-595 melting point apparatus
(London, UK) and are uncorrected.

All commercially available starting materials and solvents were used without further
purification.

General Procedure for the Synthesis of Flavanones 3-5

Equimolar amounts of 2-hydroxy-acetophenone (1a—c) and 3,5-di-(tert-butyl)-4-hydr-
oxybenzaldehyde (2) are added to dry methanol saturated with hydrogen chloride gas. The
mixture is stirred at room temperature. After the completion of the reaction, the product
precipitates in the reaction mixture and, after cooling, the solid is filtered and obtained
upon crystallization.

6-bromo-2-(3,5-di-tert-butyl-4-hydroxyphenyl) chromane-4-one (3)

According to the general procedure, equimolar amounts of 5-bromo-2-hydroxy-aceto-
phenone (1b) (300.0 mg, 1.39 mmol) and 3,5-di-(tert-butyl)-4-hydroxybenzaldehyde (2)
(326.9 mg, 1.39 mmol) are added to 7.60 mL of dry methanol saturated with hydrogen
chloride gas. The mixture is stirred for 4 h at room temperature. The product precipitates in
the reaction mixture and, after cooling, the solid is filtered off and washed with methanol.
The product is obtained as a light-yellow powder. Yield: 93%; m.p.: 240-243 °C; TH NMR
(300 MHz, CDCl3) 6 ppm 8.05 (d, ] = 2.5 Hz, 1H, H-5), 7.58 (dd, ] = 8.7, 2.5 Hz, 1H, H-7),
7.27 (s, 2H, H-2' and H-6'), 6.97 (d, | = 8.8 Hz, 1H, H-8), 5.39 (m, 2H, H-2 and 4’-OH),
3.15 (dd, ] = 17.0, 13.6 Hz, 1H, H-3a), 2.86 (dd, ] = 17.0, 2.8 Hz, 1H, H-3b), 1.47 (s, 18H,
2xC(CH3)3). 13C NMR (75 MHz, CDCl3) § ppm 191.3, 160.7, 154.5, 138.6, 136.4, 129.5, 128.6,
123.5,122.2,120.3,114.1, 80.7, 44.1, 34.5, 30.2 MS: m/z = 431 [M + 1]* and 433 [M + 1 + 2]".

6-chloro-2-(3,5,-di-tert-butyl-4-hydroxyphenyl) chromane-4-one (4)

According to the general procedure, equimolar amounts of 5-chloro-2-hydroxy-acetop-
henone (1c) (270.2 mg, 1.58 mmol) and 3,5-di-(fert-butyl)-4-hydroxybenzaldehyde (2)
(370.3 mg, 1.58 mmol) are added to 8.62 mL of dry methanol saturated with hydrogen
chloride gas. The mixture is stirred for 4 h at room temperature under an inert atmosphere.
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The product precipitates in the reaction mixture and, after cooling, the solid is filtered
off and obtained upon recrystallization from methanol-dichloromethane as a pale brown
powder. Yield: 70 %; m.p.:231-234; TH NMR (300 MHz, CDCl3) & ppm 7.88(d, ] =2.3 Hz,
1H, H-5), 7.43 (dd, ] = 8.8, 2.3 Hz, 1H, H-7), 7.27 (s, 2H, H-2' and H-¢'), 7.01 (d, ] = 8.8 Hz,
1H, H-8) 5.39 (m, 2H, H-2 and 4’-OH), 3.17 (dd, | = 16.9, 13.6 Hz, 1H, H-3a), 2.88 (dd,
] =16.7, 2.4 Hz, 1H, H-3b), 1.49 (s, 18H, 2xC(CHj3)3). 13C NMR (75 MHz, DMSO-dg): &
(ppm) 191.6, 154.8, 147.8, 139.6, 136.1, 129.7,127.1, 125.7, 123.9, 123.1, 120.9, 80.5, 43.5, 30.7,
30.6. MS: m/z387.6 [M + 1]* and 389.7 [M + 1 + 2]*.

3-(4-hydroxy-3',5'-di-tert-butylbenzylidene)-4"-hydroxy-3",5"-di-tert-butyl-flavanone (5)

According to the general procedure, equimolar amounts of 2-hydroxy-acetophenone
(1a) (204.6 mg, 1.50 mmol) and 3,5-di-(tert-butyl)-4-hydroxybenzaldehyde (2) (352.0 mg,
1.50 mmol) are added to 8.18 mL of dry methanol saturated with hydrogen chloride. The
mixture is stirred for 4 h at room temperature under an inert atmosphere. After the reaction
is completed, the product precipitates and, after cooling, the solid is filtered off and is
recrystallized from methanol-dichloromethane as a light-yellow powder. Yield: 65%; m.p.:
196-199 °C (m.p. [39]: 206207 °C); 1H NMR (300 MHz, CDCl3)  ppm 8.07 (s, 1H, C=CH/),
7.94 (dd, ] = 7.8, 1.4 Hz, 1H, H-5), 7.38 (td, 1H, H-6), 7.25 (s, 2H, H-2" and H-6"), 7.09
(s, 2H, H-2" and H-6'), 6.95 (t, ] = 7.5 Hz, 1H, H-7), 6.89 (d, ] = 8.2 Hz, 1H, H-8), 6.55 (s,
1H, H-2), 5.49 (s, 1H, 4”-OH), 5.19 (s, 1H, 4’-OH), 1.37 (s, 18H, 2x[-C(CHj3)3]), 1.31 (s, 18H,
2x[-C(CH3)3]). ¥C NMR (75 MHz, DMSO-de) § (ppm) 181.2, 158.4, 156.2 154.1, 139.8,
139.1,138.9, 136.1, 129.0, 128.3, 127.9, 126.8, 124.9, 124.0, 121.9, 121.7, 118.6, 78.4, 34.5, 34.5,
30.1,29.9 MS: m/z =569.4 [M + 1]*.

2/ A-Dihydroxy-3,5-di-(tert-butyl)-chalcone (6)

Equimolar amounts of 2-hydroxy-acetophenone (1a) (300.0 mg, 2.2 mmol) and 3,5-
di-(tert-butyl)-4-hydroxybenzaldehyde (2) (516.4 mg, 2.2 mmol) are added to 12.0 mL of
dry MeOH saturated with hydrogen chloride. The mixture is stirred for 3 h at 40 °C under
an inert atmosphere. After the reaction is completed, the product precipitates and, after
cooling, the solid is filtered off and recrystallized from methanol-dichloromethane as a
light-yellow powder. Yield: 35%; m.p.: 170-173 °C (m.p. [39]: 173-174 °C); 'H NMR
(300 MHz, CDCl3) 6 ppm 12.97 (s, 1H, 2’-OH), 7.92 (d, ] = 15.3 Hz, 1H, H,, overlapping
with the signal of H-4'),7.95-7.90 (m, 1H, H-4), 7.49 (d, | = 14.0 Hz, 1H, H,, overlapping
with the signals of H-2, H-6, H-6'), 7.51-7.47 (m, 3H, H-2, H-6, H-6'), 7.03 (d, ] = 8.4 Hz,
1H, H-3'),6.95 (t, ] = 7.6 Hz, 1H, H-5'), 5.64 (s, 1H, 4-OH), 1.52 (s, 18H, 2x[-C(CHj3)3]). 3C
NMR (75 MHz, CDCl3) § ppm 193.7, 163.5, 156.9, 147.1, 136.6, 136.0, 129.5, 126.3, 126.1,
120.2,118.7,118.6,116.7, 34.4, 30.2 MS: m/z = 353.7 [M + 1]*, 354.6 [M + 2]*.

2.2. In Vitro Assays
2.2.1. DPPH Radical Scavenging Ability
The scavenging effect of the synthesized compounds on the DPPH radical was eval-

uated following the method described in references [4,33]. The results are presented in
Table 1.

2.2.2. Inhibition of AAPH Induced Linoleic Acid Oxidation

The ability of the synthesized compounds to inhibit AAPH induced linoleic acid
oxidation was evaluated following the method described in the reference [40]. The results
are presented in Table 1.
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Table 1. In vitro antioxidant evaluation of flavanones 3 and 4, arylidene flavanone 5, and chalcone 6,
through the DPPH scavenging ability and the inhibition of linoleic acid lipid peroxidation assays.

% Inhibition of DPPH Free

% Inhibition of Lipid
Radical (100uM) rbtion ot L1pt

Compound Structure Peroxidation of Linoleic Acid
30 min 60 min Induced by AAPH Radical (100 uM)
3 29.3 28.2 21.1
4 32.0 39.6 59.3
5 70.8 60.2 77.4
6 61.1 39.9 54.6
TROLOX 82.4 83.4 81.4

2.2.3. DNA Binding Studies Using UV-Vis Spectroscopy

The ability of the synthesized compounds to bind with DNA was evaluated following
the method described in the reference [37], slightly modified. Lyophilized calf-thymus
DNA (ctDNA) was dissolved in Tris-HCl buffer solution (10 mM and pH 7.4) to a con-
centration of 10mM and left overnight at 4 °C. The absorbance ratio Ajgp/Asgy of DNA
was found in the range of 1.8-1.9, indicating that the DNA is sufficiently free of protein.
The concentration was determined from the absorbance at 260 nm, using an extinction
coefficient of 6600 M~ cm~!. The tested compounds were dissolved in DMSO to a con-
centration of 10 mM. An amount of 1 puL of the prepared solutions was added to 999 uL
solutions of ctDNA of different concentrations (0-100 uM), incubated for 5 min at 37 °C,
and the absorbance of the occurring samples was measured. The binding constant K}, was
determined via the Benesi-Hildebrand Equation (1):

1 1 1

A—A, ~ A —A, T (A —A)x K, x [DNA]|

)

All tests were undertaken on three replicates, and the results presented in Table 2 were
averaged and compared with the standard Methyl Green.
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Table 2. Binding constants of the synthesized compounds.

Compound Structure Ky, M1

3 0.1 x 103
4 24 x 103
5 34 x 103
6 5.0 x 103
Rhodamine B 2.2 % 104
Methyl Green 2.0 x 10°

2.3. Molecular Docking

The study of the interaction mode and binding affinity docking studies has been
performed with the crystal structure of the DNA (PDB ID: 1bna), was obtained from the
B-DNA dodecamer sequence (PDB ID: 1BNA), and was obtained from the protein data
bank (https://www.rcsb.org, accessed on 19 October 2022). In order to perform blind
docking calculations between the tested compounds and the DNA sequence, MGL tools
1.5.4 (The Scripps Research Institute, La Jolla, CA, USA) were employed. Receptor (DNA)
and ligand (synthesized compounds) files were provided using AutoDock Tools (The
Scripps Research Institute, La Jolla, CA, USA). The docking process was executed after
the removal of water molecules and the addition of polar hydrogen atoms and Kollman
charges. The receptor and the ligand were enclosed in a 126x126x126 grid box with a
grid spacing of 0.375 A. Docking calculations were performed via the Lamarckian genetic
algorithm, while all other parameters were on default settings. For each docking case
performed, the lowest energy docked conformation, according to the AutoDock (The
Scripps Research Institute, La Jolla, CA, USA) scoring, was selected as the binding mode.
The docked structures and interactions were visualized using the Discover Studio visualizer
4.1 software (BIOVIA, Dassault Systemes, Vélizy-Villacoublay, France) and the Pymol
molecular graphics program.

2.4. Conformational Analysis

The synthesized compounds were initially sketched in 2D and were subjected to
energy minimization (Macromodel program—Schrodinger Release 2020-3: MacroModel;
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OH O CHO dry MeOH
saturated
+ with HCI(g)
(CHa)sC C(CHy); rt
R OH

1a. R=H
1b. R=Br
1c. R=CI

Schrodinger, LLC: New York, NY, USA, 2020) [41] with an OPLS_2005 force field [42]
in chloroform (CHCl3) solvent. For all synthesized compounds, a local minimum was
identified, applying the following parameters: PRCG (Polak-Ribier Conjugate Gradient)
method [43], maximum number of iterations equal to 10,000 and 0.001 kcal - mol~1-A-1
as energy tolerance.

A conformational search (Macromodel program - Schrodinger Release 2020-3: Macro-
Model; Schrodinger, LLC: New York, NY, USA, 2020) [41] was performed to produce
random conformers for all synthesized compounds, using the mixed torsional/low mode
sampling method. In the present method the torsional sampling (MCMM method), which
includes random changes in torsion angles and/or molecular position, is combined with
the low steps derived from the LMOD method. This method is effective, and its main ad-
vantage is that rings and variable torsion angles are not specified. Regarding the described
conformational search, 1000 and 100 steps were set as the maximum number of steps and
the number of steps per rotatable bonds, respectively. The energy window was defined as
equal to 100 kJ - mol ! and the RMSD cut-off was 0.5 A.

A coordinate scan (Macromodel program - Schrodinger Release 2020-3: MacroModel;
Schrodinger, LLC: New York, NY, USA, 2020) [41] was implemented to record the favorable
torsion angles, corresponding to conformers that present the minimum energy and energy
limitations of the novel synthesized flavanones (compounds 3 and 4). During this process,
conformations were created by varying specified torsion angles. An increment of 5°
(compounds: 3 and 4) was applied for a single bond rotation, respectively.

Hydrophilic and hydrophobic surfaces were calculated for the low energy conformers,
using the Maestro surfaces panel [44].

2.5. Calculation of Physicochemical Properties

Molecular descriptors and properties of the examined compounds were generated
utilizing the QikProp program—Schrodinger Release 2020-3: QikProp; Schrodinger, LLC:
New York, NY, USA, 2020 [45] of Schrodinger Suite (Release 2020-3).

3. Results
3.1. Chemistry

The aldol reaction, and especially the Claisen-Schmidt type between an acetophenone
and a benzaldehyde, is commonly performed in alkaline conditions (for example, aqueous
KOH in ethanol). However, in alkaline conditions, 3,5-di-tert-butyl-4-hydroxybenzaldehyde
(2) is in equilibrium with the corresponding quinone methide anion, which predominates
and significantly lowers the electrophilic character of the benzaldehyde [39,46]. As is very
nicely explained in the work of Adams [40], in acidic conditions, the protonation of the
aldehyde group enhances its electrophilic character and the benzenoid tautomers are more
stable than the quinoid tautomer, which is unreactive. Thus, we decided to perform the
reaction in acidic conditions and used dry methanol saturated with hydrogen chloride
(Scheme 1).

C(CH3); 3.R=Br
O 4.R=Cl
OH

C(CHg3); OH

[o}

H O o O C(CH3)3| —— O
OH

C(CH3);

2

R

Scheme 1. Synthetic procedure of flavanones 3—4 and arylidene flavanone 5.
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OH

(0

+

CHO dry MeOH
saturated
with HCI(g)

(CH3);C C(CH3)3
OH 40°C
2

The reactions were performed using equimolar amounts of the reactants and stirring at
room temperature (approximately 22 °C) for 4 h. In all cases, a single product was obtained,
as indicated by NMR spectroscopy, in the form of a solid, which precipitated from the
reaction medium. Although we chose to further purify the products via recrystallization,
this step could have been omitted, as the purity of the products was satisfactory after the
filtration of the solid and washing with methanol.

The presence of a halogen substituent at the starting 2-hydroxy-acetophenone (1b
and 1c) was crucial for the progress of the reaction: in these cases, the obtained products
were exclusively the flavanones 3 and 4, in very good yields (>70% after recrystallization).
On the other hand, the reaction of 2-hydroxy-acetophenone (1a) with 3,5-di-tert-butyl-4-
hydroxybenzaldehyde (2) produced only the corresponding arylidene flavanone 5, which
is the product of a further condensation reaction between the intermediate flavanone and
another molecule of 3,5-di-tert-butyl-4-hydroxybenzaldehyde.

In all cases, the reaction proceeds via an aldol condensation to form a chalcone, which
was not isolated, followed by an intramolecular Michael addition reaction to produce the
flavanone. The presence of the electron-withdrawing Br or CI substituents at the aromatic
ring of the 2-hydroxy-acetophenone did not prevent the hydroxyl group from acting as a
Michael donor. The same observation has been reported by Zhang et al. [47] who studied
the enantioselective cyclization of 2’-hydroxy-chalcone to a flavanone in the presence of
organocatalysts.

The arylidene flavanone 5 was the only product when 2-hydroxy-acetophenone (1a)
was the reactant. No traces of the corresponding chalcone or flavanone were observed
at the conditions that we used to perform the reaction (MeOH saturated with HCI (g),
stirring at room temperature for 4 h). However, Adams et al. [39] reported all of the three
possible reaction products under analogous conditions (EtOH saturated with HCl (g),
stirring at room temperature for 2 h). A plausible explanation is the longer reaction time of
our experiments, as well as the different isolation procedures (arylidene flavanone 5 was
insoluble in the reaction mixture and precipitated, thus the reaction equilibrium shifted
towards this product).

Although the formation of the two new flavanones, 3 and 4, as well as the arylidene
flavanone 5, in high yields and purity exhibited very gratifying results, we were still
interested in synthesizing chalcone 6 (Scheme 2), thus we performed the reaction between
1a and 2 at 40 °C. After 3 h, a yellow solid precipitated, which was filtered and washed
with ethanol. The NMR spectrum verified the structure of the desired chalcone. To our
knowledge, only two references exist in the literature concerning the synthesis of this
molecule, indicating that its preparation is not trivial [39,48].

Scheme 2. Synthetic procedure of chalcone 6.

The 'H NMR spectrum of chalcone 6 has the characteristic peaks attributed to the a,b-
unsaturated carbonyl system, which confirms the structure of the synthesized compound.
The signals of the vinylic protons H, and Hy, appear as doublets at 7.92 ppm and 7.49 ppm,
respectively, with | ~ 14-15 Hz, indicative of the E-geometry of the double bond [3]. In
addition, the signal of the 2’-OH proton is present at low field, 12.97 ppm, indicating a
strong hydrogen bond with the carbonyl oxygen.
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3.2. Antioxidant Activity

The antioxidant activity of the new flavanones 3 and 4, the arylidene flavanone 5,
as well as the chalcone 6, was evaluated by measuring the ability of the compounds to
scavenge the stable free radical DPPH (2,2-Diphenyl-1-picrylhydrazyl) and the ability to
inhibit the AAPH induced lipid peroxidation of linoleic acid. The results are presented in
Table 1. Trolox was used as the reference compound.

The best DPPH radical scavenging ability is shown by arylidene flavanone 5 (70.8%
after a 30 min interaction with a DPPH radical), probably due to the presence of two
3,5-di-tert-butyl-4-hydroxyaryl-substituents, and it is marginally reduced from 30 to 60 min
(60.2%). Flavanones 3 and 4, which possess one 3,5-di-tert-butyl-4-hydroxyaryl-substituent
on the aromatic ring B and one halogen substituent at position 6 of the aromatic ring
A, exhibit significantly lower activity (29.3% and 32.0% after a 30min interaction with a
DPPH radical, respectively) than arylidene flavanone 5. However, flavanone 4, possessing
a chlorine substituent, is slightly more potent than flavanone 3, which possesses a bromide
one, probably due to the highest electronegativity of chlorine. Furthermore, it seems that
the antioxidant activity of flavanone 4 is slightly increased during the time (from 32.0%
after 30min interaction to 39.6% after 60 min), while the activity of flavanone 3 does not
seem to be time dependent.

As far as chalcone 6 is concerned, it shows a good DPPH radical scavenging activity
(61.1% after a 30min interaction with a DPPH radical), higher than flavanones 3 and 4, which
also possess one 3,5-di-tert-butyl-4-hydroxyaryl-moiety. 2’-Hydroxy-chalcone analogues
that have been synthesized and studied in our previous works [3,4], especially those
without other hydroxyl substituents at rings A and B, show very low or zero interaction
with the DPPH radical. The 2/-OH is not able to efficiently interact with DPPH, as it
participates in a strong hydrogen bond with the neighboring carbonyl group. Therefore,
the enhanced activity of chalcone 6 should be attributed to the presence of the 3,5-di-tert-
butyl-4-hydroxyaryl-substituent.

Regarding the lipid peroxidation inhibitory ability of the tested compounds, again,
arylidene flavanone 5 demonstrated the best activity (77.4%), indicating that the presence of
a 3,5-di-tert-butyl-4-hydroxyaryl moiety enhances anti-lipid peroxidation, since flavanones
3 and 4, which possess only one 3,5-di-tert-butyl-4-hydroxyaryl-substituent on the aromatic
ring B, exhibit lower inhibitory activity (21.1 and 59.3% respectively). Interestingly, fla-
vanone 4, bearing a chloro-substituent, presents a significantly higher ability to inhibit lipid
peroxidation than flavanone 3, which is in accordance with the DPPH results, concluding
that the insertion of the chloro substituent renders the flavanone a more potent antioxidant.
Furthermore, chalcone 6 showed a moderate lipid peroxidation inhibition of 54.5%, similar
to flavanone 4.

3.3. Binding Studies with ct-DNA Using UV Spectroscopy

The interaction of the synthesized compounds with calf thymus-DNA was determined
via UV spectroscopy. This method is based on the delocalization of the ctDNA band,
located at 260-280 nm, in the presence of increasing amounts of ctDNA, when the latter
interacts with a chemical entity. Slight changes in the absorbance of ctDNA have been
correlated with the different types of binding modes [35]. More specifically, when DNA
binds with compounds that act as intercalators, hypochromism is usually observed, while
on the other hand, hyperchromism is detected in the case where the compounds interact
with ctDNA by groove binding or electrostatic interaction. Furthermore, researchers have
reported that compounds that result in bathocromism, or red shift, i.e., shifting of the
maximum absorption to greater wavelengths, tend to stabilize the double helix of DNA,
whereas compounds that result to blue shift have the exactly opposite effect [37,38]. In this
work, based upon the changes in absorbance, the binding constant K;, was determined
for each compound via the Benesi-Hildebrand equation, and the results are presented
in Table 2. The binding of Rhodamine B (minor groove binder) and methyl green (major
groove binder) was also studied [49,50].



Antioxidants 2022, 11, 2273

11 0f 19

The recorded spectra for the four synthesized compounds are depicted in Figure 5. In-
creasing amounts of ctDNA resulted in an increased absorption intensity (hyperchromism),
followed by a red shift of the Anayx, for all of the tested compounds, suggesting the for-
mation of a ctDNA binding complex and the stabilization of ctDNA. According to the
binding studies, binding constants range from 0.1 x 1073 to 5.0 x 1073 M~!, which
indicates a moderate interaction of the compounds with the macromolecule. Among
the tested compounds, chalcone 6 demonstrated the strongest interaction with ctDNA
(Kp, =5 x 1073 M), followed by arylidene flavanone 5 (K}, = 3.4 x 1073 M~1), while the
presence of a bromo substituent in the flavanone moiety (3) significantly reduces the bind-
ing constant (K}, = 0.1 x 1073 M~1), and thus the interaction with ctDNA, in comparison
with flavanone 4, bearing a chloro-substituent (K}, = 0.24 x 1073 M1,
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Figure 5. Absorption spectra of the synthesized compounds in tris—HCI with increasing concentra-
tion of ctDNA. Arrow refers to the hyperchromic effect.

3.4. Molecular Docking

Molecular docking plays a crucial role in drug design that facilitates in the minimiza-
tion of the cost and the experiments needed for the development of compounds with
pharmaceutical properties and in a better understanding of bioactivity mechanisms. In an
attempt to comprehend the mode of interaction and the binding affinity of the synthesized
compounds, molecular docking studies were employed in which the DNA-compound
complex is simulated, selecting the conformer with the minimum binding energy each
time.

The docked complexes are shown in Figure 6. It is observed that all of the synthesized
compounds bind in the major groove region of the DNA, and especially in the A-T-rich
region. The simulated binding energy for the synthesized compounds is presented in
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Table 3. The negative sign depicts that the interaction of the compounds with DNA is
spontaneous and thermodynamically favored.

Figure 6. Docked pose of flavanones 3 (a) and 4 (b), arylidene flavanone 5 (c), and chalcone 6 (d)
with B-DNA.

Table 3. Docking energy values for the synthesized compounds-DNA complexes.

Binding Energy Inhibition vdW + Bond + Electrostatic
Compound (kcal/mol) Constant K: Desolve Energy Energy
! (kcal/mol) (kcal/mol)
3 —9.01 250.10 nM —10.10 —0.10
4 —8.97 316.49 nM —9.97 —0.09
5 —6.35 22.11 uM —8.64 —0.10
6 —9.06 229.64 nM —11.52 +0.07

The docked complex of flavanone 3-DNA and its docked interactions are demonstrated
in Figures 6a and 7a, respectively. In the complex, the hydrogen of the hydroxyl group of the
3,5-di-tert-butyl-4-hydroxyphenyl substituent forms a hydrogen bond with the nucleotide
B:DT20 at a distance of 5.50 A, while carbon C-2 of the flavanone moiety participates in a
carbon-hydrogen bond with nucleotide A:DT$ at a distance of 5.76 A.

Similar results are observed for the docked complex of flavanone 4-DNA and its
docked interactions, presented in Figures 6b and 7b, respectively. In the docked complex,
the hydrogen of the hydroxyl group of the 3,5-di-tert-butyl-4-hydroxyphenyl substituent
forms a hydrogen bond with nucleotide B:DT20 at a distance of 5.51 A, while carbon C-2 of
the flavanone moiety participates in a carbon-hydrogen bond with the nucleotide A:DT8 at
a distance of 5.75 A.

The docked complex of arylidene flavanone 5-DNA and its docked interactions are
demonstrated in Figures 6¢ and 7c, respectively. In the docked complex, the oxygen of
the hydroxyl group of the 3,5-di-tert-butyl-4-hydroxyphenyl substituent connected to C-2
and the hydrogen of the hydroxyl group of the BHT moiety connected to C-3 interact with
a carbon-hydrogen bond and a hydrogen bond with nucleotides A:DA6 at a distance of
5.67 A and A:DT7 at a distance of 5.52 A, respectively. In addition to that, the aromatic ring
A of the arylidene flavanone interacts electrostatically with nucleotide B:DG22 at a distance
of 945 A, a pi-anion bond, i.e., the non-covalent interaction between a m-acidic aromatic
system and an anion.

The docked complex of chalcone 6-DNA and its docked interactions are demonstrated
in Figures 6d and 7d, respectively. In the complex, the hydrogen of the 2’-hydroxyl group
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DC
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of the chalcone has a hydrogen bond interaction with the nucleotide B:DA18 at a distance
of 5.21 A. Furthermore, the carbonyl oxygen interacts with two hydrogen bonds with the
nucleotides A:DT7 and A:DT8 at distances of 6.22 and 4.04 A, while it binds with the
nucleotide B:DT19 via a carbon-hydrogen bond at a distance of 6.51 A. In addition to that,
the aromatic ring A of the chalcone interacts electrostatically with nucleotide B:DT20 at a
distance of 5.59 A via a pi-anion bond.
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Figure 7. Docked interactions of flavanones 3 (a) and 4 (b), arylidene flavanone 5 (c), and chalcone 6
(d) with B-DNA.

3.5. Conformational Analysis of the Synthesized Compounds

In an effort to explore the conformational features of the novel flavanones (3 and 4),
arylidene flavanone 5, and chalcone 6, theoretical calculations were applied, including
random and systematic conformational searches. Specifically, the flavanones 3 and 4
(including their enantiomeric forms R and S), were subjected to energy minimization,
followed by a random sampling conformational search. The conformational space of the
flavanones 3 and 4 depends on the orientation of the 3,5 di-tert-butyl-4-hydroxyphenyl ring
relative to the heterocyclic ring, as well as the rotation of the hydroxyl groups.

The generated conformers of each stereoisomer were classified into low energy clusters
according to the number of their heavy atoms. In continuation, the members of each cluster
that indicate the lowest energy values were further explored. In the case of compound 3,
two favorable conformations for both enantiomeric forms, namely 3-1R, 3-2R, 3-1S, and 3-2S,
were generated and are illustrated in Figure 8A. The results indicated that all low energy
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3-1R
E =-9.30 kcal - mol*

4-1R
E =-10.29 kcal - mol*

5-Z-S

E = 14.89 kcal - mol?*

conformers adopt an extended conformation without any formation of intramolecular
hydrogen bonds. Similar results were obtained for compound 4, where its lowest energy
conformers are depicted in Figure 8B. In a step further, the torsional angle t; was studied
for the flavanones 3 and 4 using systematic search (coordinate scan—macromodel) on the
lowest energy conformers [42]. The results indicate two energetic minima (90° and 270°,
Appendix A Figure A1), which confirm the extended conformation mentioned above.

3-2R
E =-11.06 kcal - mol?

3-15
E =-9.39 kcal - mol? E =-11.05 keal - mol*

3-25

4-15 4-25

4-2R 4-15 4-25
E = -10.30 kcal - mol? E =-8.61 kcal - mol*

E =-8.60 kcal - mol*

Figure 8. Representative low energy conformers of (A) compound 3 and (B) compound 4.

In the case of arylidene flavanone 5, the existence of a chiral center (2-position) and
of a double bond, leading to four low energy conformations groups (5-Z-S, 5-Z-R, 5-E-S,
and 5-E-R), produced from a random sampling conformation search (Figure 9). The results
indicated that in both cis-type low energy conformers (5-Z-S and 5-Z-R), the aromatic ring
D is oriented towards the carbonyl (-CO) group of flavanone ring C, while the aromatic
ring B is in spatial proximity with the oxygen (-O) atom of the flavanone ring C. On the
other hand, in both trans-type low energy conformers (5-E-S and 5-E-Z), the aromatic rings
D and B are placed in a spatial vicinity (Figure 9). Additionally, the comparison of the
energy value between trans and cis type conformers highlights the crucial role of trans-type
double bond.

5-E-S 5-E-R
E = 9.24 kcal - mol? E = 9.34 kcal - mol*

5-Z-R
E = 14.87 kcal - mol*

Figure 9. Representative low energy conformers of compound 5.

The described procedure was repeated for the synthesized chalcone 6 and the proposed
low energy conformers are presented in Figure 10. Two favorable low energy conformations
were proposed, both belonging to the S-cis-type of the chalcone conformers. Particularly,
in the first conformer, the hydroxyl (-OH) group of ring A and the carbonyl (-CO) group
are placed on the opposite side, while in the second conformer, a strong intramolecular
H-bond is formed between the hydroxyl (-OH) group of ring A and the carbonyl group
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E =9.90 kcal - mol*

3-2R
E =-11.06 kcal - mol?*
Hydrophobic Area = 96.946 A
Hydrophilic Area = 10.467 A

of the chalcone. This finding is in accordance with 'H NMR spectroscopy results for
chalcone 6, where the 2'-OH proton appears as a sharp singlet at 12.97 ppm, indicating a
significant deshielding due to hydrogen bond formation. Results are also in accordance
with a previous conformational analysis study on the bioactive flavanone naringenin [51].

6-2
E = 9.49 kcal - mol?

Figure 10. Representative low energy conformers of compound 6. The intramolecular H-bond is
depicted with yellow lines.

Finally, the generated polar surface maps presented higher hydrophobic (brown) areas
compared to hydrophilic (blue) ones for the case of flavanones [44] and arylidene flavanone,
which may improve the cellular permeability and biological response of these molecules,
while the hydrophobic/philic maps of chalcone 6 exhibit a more amphoteric character
(Figure 11).

<a
3-25 4-1R 4-15
E =-11.05 kcal - mol?* E =-10.29 kcal - mol* E =-10.30 kcal - mol?
Hydrophobic Area = 82.109 A Hydrophobic Area = 94.466 A Hydrophobic Area = 92.720 A
Hydrophilic Area = 20.148 A Hydrophilic Area = 11.703 A Hydrophilic Area = 27.069 A

5-Z-R

E = 14.87 keal - mol?
Hydrophobic Area = 96.133 A
Hydrophilic Area = 26.861 A

5-E-S 6-2
E =9.24 kcal - mol?* E = 9.49 kcal - mol?*
Hydrophobic Area = 139.320 A Hydrophobic Area = 27.905 A
Hydrophilic Area = 25.045 A Hydrophilic Area = 14.266 A

Figure 11. Hydrophobic (brown) and hydrophilic (blue) surface area representation for the lowest
energy conformers of synthesized flavanones 3 and 4, arylidene flavanone 5, and chalcone 6 [41].

3.6. Calculation of Physicochemical Properties

The physicochemical properties of the studied flavonoids analogues were predicted,
utilizing the Qikprop program [35] of Schrodinger Suite (Release 2020-3) in order to unravel
the crucial (and also conformation dependent) properties which can be used as descriptors
for QSAR analysis. The calculated properties are presented in Table 4.
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Table 4. Physicochemical properties of the flavanones 3 and 4, the arylidene flavanone 5, and the

chalcone 6.
Physicochemical Compounds
Property
3 4 5 6
Dipole 497 5.26 5.87 481
SASA 687.00 681.97 893.34 680.30
FOSA 412.17 412.12 642.62 378.37
FISA 57.75 57.76 49.28 90.75
PISA 139.80 140.52 201.43 211.18
WPSA 77.33 71.58 0 0
volume 1256.42 1247.51 1852.64 1231.98
donorHB 1 1 2 1
accptHB 3.5 3.5 4.25 2.5
clip2 /V 0.019641 0.0222095 0.0186334 0.0187806
QPpolrz 43.54 43.19 64.77 40.03
QPlogPC16 12.06 11.94 17.30 12.02
QPlogPoct 17.94 17.83 26.99 15.87
QPlogPw 6.99 6.98 8.92 5.57
QPlogPo/w 5.77 5.69 8.90 5.60
QPlogSs —7.36 —7.24 —-9.49 —6.46
1P(eV) 9.04 9.03 8.88 8.86
EA(eV) 0.79 0.77 0.71 0.88
PSA 47.40 47.40 57.11 58.20

(a) Computed dipole moment of the molecule (dipole); (b) total solvent accessible
surface area (SASA) in square angstroms using a probe with a 1.4 A radius, (c) hydrophobic
component of the SASA (FOSA); (d) hydrophilic component of the SASA (FISA); (e) p
component of the SASA (PISA); (f) weakly polar component of the SASA (halogens, P, and
S) (WPSA); (g) total solvent-accessible volume in cubic angstroms using a probe with a
1.4 A radius (volume); (h) estimated average number of hydrogen bonds (taken over a
number of configurations) that would be donated by the solute to water molecules in an
aqueous solution (HBd); (i) estimated average number of hydrogen bonds (taken over a
number of configurations) that would be accepted by the solute from water molecules
in an aqueous solution (HBa); (j) square of the dipole moment divided by the molecular
volume (dip?/V), a relevant parameter for the energy of solvation of a dipole of volume V;
(k) hexadecane/gas partition coefficient (QPlogPC16); (1) octanol/gas partition coefficient
(QPlogPoct); (m) water/gas partition coefficient (QPlogPw); (n) octanol/water partition
coefficient (QPlogPo/w); (0) aqueous solubility in mol dm_3 (QPlogS); (p) conformation-
independent predicted aqueous solubility (CIQPlogS); (q) PM3 calculated ionization poten-
tial (IP(ev)); (r) PM3 calculated electron affinity (EA(eV)); (s) van der Waals surface area of
polar nitrogen and oxygen atoms (PSA).

4. Conclusions

In this work, two novel flavanones (3 and 4), arylidene flavanone 5, and chalcone (6)
were synthesized via an aldol reaction between 2-hydroxy-acetophenones (la-1c) and 3,5-
di-tert-butyl-4-hydroxybenzaldehyde (2) in acidic conditions. The synthesized compounds
were evaluated for their antioxidant activity, as well as their interaction with ctDNA. The
results of this study indicated that the presence of the 3,5-di—tert-butyl-4-hydroxyphenyl
substituent contributes to the enhanced antioxidant activity of the flavanone framework.
The ctDNA binding studies revealed that all the synthesized compounds tend to stabilize
the double helix of the DNA, with chalcone 6 demonstrating the highest binding constant
value, and thus the strongest interaction with ctDNA. A more in-depth study of the binding
mechanism of the compounds to DNA indicated that the tested compounds bind in the
major groove region of DNA and especially at the A-T-rich region, mainly via hydrogen
bonds, van der Waals interactions, and electrostatic interactions. Furthermore, according
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to the analysis of conformational data, all low energy conformers of flavanones 3 and 4
adopted an extended conformation without forming any intramolecular bond. On the
other hand, in the case of chalcone 6, the conformational analysis indicated that the 2'-
OH interacts with the -CO group of the «,f3-unsaturated carbonyl moiety, forming an
intramolecular hydrogen bond.

Supplementary Materials: The supplementary materials are available online at https://www.mdpi.
com/article/10.3390/antiox11112273/s1.
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Figure A1. Energy minimum plots of (A) compound 3 (R,S) and (B) compound 4 (R,S) conformations,
as obtained from the application of coordinate scan to the t; dihedral [41].
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