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Abstract

:

Sargassum fusiforme (SF) is a popular edible brown macroalga found in Korea, Japan, and China and is known for its health-promoting properties. In this study, we used two sophisticated models to obtain optimized conditions for high antioxidant activity and metabolite profiling using high-resolution mass spectrometry. A four-factor central composite design was used to optimize the microwave-assisted extraction and achieve the maximum antioxidant activities of DPPH (Y1: 28.01 % inhibition), ABTS (Y2: 36.07 % inhibition), TPC (Y3: 43.65 mg GAE/g), and TFC (Y4: 17.67 mg CAE/g), which were achieved under the optimized extraction conditions of X1: 47.67 %, X2: 2.96 min, X3: 139.54 °C, and X4: 600.00 W. Moreover, over 79 secondary metabolites were tentatively identified, of which 12 compounds were reported for the first time in SF, including five phenolic (isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, 3,4-dihydroxyphenylglycol, scopoletin, caffeic acid 4-sulfate, and cinnamoyl glucose), two flavonoids (4’,7-dihydroxyisoflavone and naringenin), three phlorotannins (diphlorethohydroxycarmalol, dibenzodioxin-1,3,6,8-tetraol, and fucophlorethol), and two other compounds (dihydroxyphenylalanine and 5-hydroxybenzofuran-2(3H)-one) being identified for the first time in optimized SF extract. These compounds may also be involved in improving the antioxidant potential of the extract. Therefore, optimized models can provide better estimates and predictive capabilities that would assist in finding new bioactive compounds with improved biological activities that can be further applied at a commercial level.
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1. Introduction


Phenolic compounds, which exhibit numerous biological and pharmacological activities, are among the most interesting in plant fractions [1]. Phenolic compounds from red, green, and brown seaweed have numerous health-promoting properties, including antioxidant, anticancer, antiviral, and anti-inflammatory activities [2]. Among brown seaweeds, Sargassum fusiforme (SF) belongs to the family Sargassaceae and is widely found in the coastal areas of Asia, especially in Korea, China, and Japan [3]. In Korea and Japan, like other marine organisms, SF is consumed as a sea vegetable because it possesses numerous nutritional components, such as proteins, minerals, phenolic compounds, dietary fibers, and polysaccharides [4,5]. The potential applications of these bioactive moieties in the pharmaceutical, food, and chemical industries have led to growing interest in the development and optimization of extraction techniques to isolate bioactive moieties from natural sources, as extraction is the most important step that plays a significant role in the quantity and quality of the result [6,7,8].



Recent advancements in extraction techniques have led to the development of efficient and new approaches for extracting natural bioactive components with improved yields and lower extraction times, temperatures, and solvent use. Numerous non-conventional techniques, such as ultrasound-assisted extraction (UAE) [9,10], pressurized liquid extraction (PLE) [11], supercritical fluid extraction (SFE) [12], and microwave-assisted extraction (MAE) [13], fulfill these requirements. In comparison with other techniques, MAE has its advantages, such as low cost and lower extraction time; thus, it can be categorized as “green technology” according to environmental policies [14,15]. The extraction time, temperature, technique, solid-to-liquid ratio, and solvent concentration are significant variables that, individually or in combination, alter the extraction efficiency. Optimizing the extraction conditions using a traditional methodology (one factor at a time) is a difficult, laborious, and time-consuming procedure. Empirical methods based on statistical or artificial intelligence methodologies have therefore been applied to overcome this problem [10]. RSM is a sophisticated statistical and mathematical approach used in the engineering field to optimize and improve conditions by analyzing the interactions between independent variables and response variables [16]. In RSM, a non-linear equation is used along with other designs, that is, the central composite design (CCD) or Box–Behnken design, to fit the experimental responses. Artificial neural networking (ANN) is a computational and mathematical approach that works based on the principles of the human brain. ANN, in comparison with RSM, is considered a superior and powerful tool because of its ability to adapt itself from the observations and predict the outcome after training on the experimental responses [17]. Moreover, optimized extraction conditions in combination with analytical tools such as high-resolution liquid chromatography-mass spectrometry (HR-LC-MS) have enabled the tentative identification of bioactive compounds in different species.



Previously, there was limited literature available that only focused on the optimization of polysaccharides of SF using RSM [18] without using ANN and green extraction technology, whereas in another trial, Li et al. [19] extracted and identified the phlorotannin fraction without using non-conventional extraction techniques and also without sophisticated statistical models. Therefore, in order to overcome the gaps, the present study was designed to optimize MAE-SF extracts using two sophisticated statistical tools (RSM and ANN) to obtain optimal conditions for exhibiting higher antioxidant activity and to determine the presence of bioactive compounds in SF using high-resolution tandem mass spectrometry (HR-LC-MS).




2. Materials and Methods


2.1. Chemicals and Reagents


Chemicals, reagents, and standards were procured from Sigma-Aldrich (St. Louis, MO, USA). Anhydrous sodium carbonate and acetic acid were acquired from Ducksan Pure Chemicals (Ansan, Republic of Korea), while sodium hydroxide and aluminum chloride hexahydrate were procured from Junsei Chemical (Tokyo, Japan) and Samchun Pure Chemical (Pyeongtaek, Republic of Korea), respectively. Acetic acid and anhydrous sodium carbonate were purchased from Ducksan Pure Chemicals (Ansan, Republic of Korea).




2.2. Sample Collection and Preparation


SF was collected from the coastal areas of Korea in mid-May 2021 and confirmed by a specialist at the Department of Oceanography, Kyungpook National University, Korea. Samples were washed, dried for four days at 37 °C, ground to obtain powder (approximately 800 g), and stored at −20 °C in the polyethylene bags for further analysis.




2.3. MAE Procedure


MAE was performed following the protocol of Kashif et al. [20] using a microwave-assisted extractor (MARS 6; CEM, Matthews, NC, USA) fitted with 50 mL quartz vessels with some minor modifications. Briefly, the SF sample was extracted three times by adjusting the microwave power (150–750 W) and time. Ten g of SF powder was placed in 500 mL Erlenmeyer flasks, and aqueous ethanol (150 mL) was added at different concentrations (25–75%) 30 min before extraction. Extraction was performed using CCD (Supplementary Table S1). After extraction, flasks were allowed to cool at room temperature for 1 h and were filtered (Whatman No. 1; Schleicher & Schuell, Keene, NH, USA), followed by concentration to dryness in a rotary evaporator (Tokyo Rikakikai, Tokyo, Japan) at 40 °C and 50 rpm. In addition, samples were lyophilized using a freezer dryer and stored at −20 °C in Falcon tubes (15 mL) for further analysis.




2.4. Antioxidant Activities


Folin-Ciocalteu reagent was used to assess the total polyphenolic content (TPC) using gallic acid as a reference curve. It is a rapid and easy procedure based on the association between the detected color change and reactive reagent attenuation as a result of phenolic compounds present in the plant matrix. Total flavonoid content (TFC) was determined using the aluminum chloride colorimetric procedure [21]. Similarly, the radical scavenging activity of the SF extracts was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) [22].




2.5. Statistical Modeling and Data Calculation


2.5.1. Response Surface Methodology (RSM)


The RSM was implemented to assess the best possible combination of independent parameters to maximize the output of the dependent variables. The dependent variables DPPH, ABTS, TPC, and TFC were calculated in triplicate, and mean values were employed for regression analysis, as shown in Table 1. Experimental results were analyzed using Design Expert software to predict the optimal extraction conditions, and a second-order polynomial model Equation (1) was used to fit the model between independent and dependent variables. Various other tests, including the coefficient of variation (CV), adjusted coefficient of determination (Adj. R2), lack of fit, and coefficient of determination (R2), were employed to validate the RSM model [23].


  y =  β 0  +   ∑   i = 1  z   β i   X i  +   ∑   i = 1  z   β  i i    X i 2  +   ∑  j    ∑   < i = 2  z   β  i j    X j   X i  +  ε j   



(1)




where y represents the predicted variables; β0, βi, βii, and βij represent the regression coefficients of the intercept coefficient, linear, quadratic, and second-order terms, respectively; Xi and Xj are the independent variables (j and I range from 1–z), z is the number of factors (z = 4); εj is the error.



The Design Expert software package (11 STAT-EASE, Minneapolis, MN, USA) was used for graphical, regression, and experimental designs. ANOVA was used to determine the adequacy of the fitted model, the significance of the independent variables, their association, and the statistical significance of the regression coefficients.




2.5.2. ANN


ANN is a statistical machine learning technique that predicts nonlinear relationships between dependent variables and input parameters [24]. The model was constructed using the deep learning toolbox MATLAB R2020a (Mathworks, Minneapolis, MA, USA). The model was trained, tested, and validated using the experimental outputs obtained from the 27 experimental runs (Table 1). The multilayer perceptron topology is comprised of three layers. The first (input) layer contains four independent parameters, and the middle layer comprises 16 neurons to achieve the optimal conditions to obtain the maximum output results. The third (output) layer contains four dependent variables, as shown in Figure 1A. The hit and trial technique was adopted to train the data and to lower the mean square error (MSE) calculated from Equation (2). The feed-forward and cascade feed-forward networks with the Broyden—Fletcher—Goldfarb—Shanno (BFGS) and Levenberg—Marquardt back-propagation (trainlm) algorithms were used [21,25]. The model exhibits a higher coefficient of determination (R2) calculated from Equation (3), a lower standard error of prediction (SEP) from Equation (4), absolute average deviation (AAD) from Equation (5), and root mean squared error (RMSE) from Equation (6), which are considered optimal ANN models.


  MSE =  1 N    ∑   i = 1  N    (  Y  ANN   −  Y  E x p   )  2     



(2)




where YExp is the experimental data, YANN is the predicted value, and N is the number of samples.


   R 2  = 1 −     ∑   i = 1  n    (  x i  −  x  i k   )  2      ∑   i = 1  n    (  x  i k   −  x z  )  2     



(3)






  RMSE =    1 n    ∑   i = 1  n    (  x i  −  x  i k   )  2     



(4)






  ADD   % =       ∑   i = 1  n       x  i k   −  x i    /  x  i k      n    × 100  



(5)






  SEP   % =   RMSE    y m    × 100  



(6)









2.6. Process Optimization Using RSM-GA, ANN-GA and RSM-DF


To optimize the MAE process, three different techniques were applied to the developed models, i.e., RSM-GA, RSM-DF (desirability functions), and ANN-GA. Data from the developed models (ANN and RSM) were subjected to GA (as initial input) using the optimization toolbox of MATLAB R2020a (Mathworks, Inc., Minneapolis, MA, USA). In GA, the RSM and ANN data were added as a fitness function to achieve the highest results for all the target responses. The initial population size, mutation fraction, evolutionary algebra, and crossover percentage were selected based on the current situation, while the remaining parameters were left at their default settings. The objective function was trained using the model data generated by the RSM-ANN, and the GA was implemented by maximizing the problems [26]. The RSM-DF was achieved by using the “Design Expert” software.




2.7. Cell Viability Assay


The effects of SF extracts on RAW 264.7 cells (American Type Culture Collection, Manassas, VA, USA) were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays described by [27]. Briefly, RAW 264.7 cells were seeded in a 96-well plate and incubated at 37 °C for 18 h. LPS (1 μg/mL) was induced in cells with SF extracts (10–30 mg) and incubated further for 20 h. The medium was sucked and, before incubation at 37 °C for 1 h, cells were treated with 100 μL MTT (10%) solution. Then, 100% dimethyl sulfoxide (DMSO) was added after the removal of the solution, and optical density (OD) was calculated at 590 nm using a microplate reader (Victor3, PerkinElmer, Waltham, MA, USA).




2.8. Intracellular Reactive Oxygen Species (ROS) Measurement


ROS generation as a result of cellular oxidative stress was assessed using the DCFH-DA method following the protocol of [28]. Briefly, RAW 264.7 cells were seeded for 24 h and then treated with samples at different concentrations. After 1 h, the cells were treated with 2, 2′-azobis (2-amidinopropane) dihydrochloride (AAPH) and incubated again for 30 min. With the help of PBS, cells were washed followed by treatment with DCFH-DA (25 µM), the plate was placed in the incubator at 37 °C for 30 min. The fluorescence intensity was determined at both the excited (485 nm) and emitted states (528 nm) using a Victor fluorescence microplate reader (PerkinElmer).




2.9. Western Blotting and Cell Lysate Preparation


Cell lysates were prepared following the standard methodology and then treated with 5X SDS-PAGE (3M Science, Seoul, Republic of Korea) sample buffer, and proteins were denatured by heating it at 95 °C for 10 min. Proteins were separated according to their molecular weight using 10% SDS gel electrophoresis, followed by the transfer of bands to nitrocellulose membranes for 2 h. A 5% bovine serum albumin (BSA) was added to the membrane and incubated overnight at 4 °C with the first antibody, followed by incubation with a secondary antibody (anti-goat IgG). Bands were detected using a chemiluminescence system (PerkinElmer) [29].




2.10. Compounds Identification Using ESI-MS/MS


The SF extract was analyzed to profile the secondary metabolites by following the protocol described by Choi et al. [21] using a Q-Executive Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Briefly, the SF sample was inserted at a rate of 15 μL/min using a 500 μL graduated syringe (Hamilton, Reno, NV, USA) and a syringe pump (Model 11, Harvard, Holliston, MA, USA) in the ESI source. The other parameters of ESI-MS (negative mode) were set as follows: the flow rates of auxiliary gas, sheath gas, and seep gas were set at 0, 5, and 0, respectively, spray voltage was set at 4.20 kV, capillary temperature was set at 320 °C, mass resolution of 140,000 (full width at half maximum, FWHM), S-lens at Rf level, and automatic gain control of 5 × 106. Three different normalized collision energies (10, 30, and 40 eV) were applied stepwise using the same instrument [30].




2.11. Data Processing


The mass spectral data was analyzed with Xcalibur 3.1 with Foundation 3.1 (Thermo Fisher Scientific, Rockford, IL, USA). The detected m/z peaks were identified by comparing the exact masses of monoisotopic (negative mode) masses and ESI-MS/MS breakage patterns from an online database and as in-house MS/MS database. The online databases included FooDB [31], METLIN [32], and CFM-ID 4.0 [33].




2.12. Statistical Analysis


The final results were analyzed using MATLAB and Design Expert 11 software. All data is presented as the mean ± standard deviation of at least three independent experiments (n = 3), where each experiment had a minimum of three replicates for each sample. Differences were considered significant at p < 0.001, p < 0.01, and p < 0.05.





3. Results and Discussion


3.1. RSM Modeling


Table 1 shows a comparison between dependent response variables (DPPH, ABTS, TPC, and TFC) and predicted outcomes of RSM and ANN for all 27 runs obtained after MAE according to CCD as shown in Figure 1C. The DPPH, ABTS, TPC, and TFC contents of SF extracts varied in the ranges of 7.31–32.74% inhibition, 25.36–42.61% inhibition, 20.48–36.08 mg GAE/g, and 6.94–18.95 mg CAE/g, respectively. The ANOVA results are depicted in Table 2. For a well-fitted model, R2 values should be close to 1, and, in our trial, all four variables, that is, DPPH (0.95), ABTS (0.96), TPC (0.95), and TFC (0.97), exhibited higher R2 values, which shows that our model fits the second-order polynomial equation well. Similarly, other factors, including the CV, regression coefficient (β), F-value, adjusted correlation factor (R2), adequate precision, and lack of fit (probability), also contributed to the significance of the model. In the current study, lack of fit (0.09–0.35), F-values (2.18–9.58), Adj R2 (0.89–0.94), adequate precision (12.92–19.08), and CV (4.81–8.90) indicated that the fitness of the RSM model outcomes are in line with Simic et al. [6], as they checked the total polyphenolic compounds in the chokeberries using RSM and ANN. Likewise, Ameer et al. [26] also checked the parameters, including (R2, CV, adeq. Precision) during the recovery of stevioside and rebaudioside-A from Stevia rebaudiana leaves using MAE, which also supports our results. High F-values (p < 0.05) indicate that the lack of fit is non-significant, and our RSM model had higher F-values, showing that it was well-fitted, and these results are similar to Choi et al. [21].



3.1.1. Effect of MAE-SF Parameters on DPPH and ABTS


To better understand the association between the independent and response variables, contour plots were produced, as shown in Figure S1. As shown in Table 2, linear terms of X3 exerted negative effects on ABTS and DPPH. In quadratic terms, X22 and X32 hurt DPPH, whereas, for ABTS, all four quadratic terms showed significant negative effects. In terms of interactions, X1X2, X2X4, and X3X4 had negative effects on both ABTS and DPPH. The maximum activity (32.74 mg GAE/g) for DPPH was calculated at run 25 (X1: 30%, X2: 4 min, X3: 110 °C, X4: 600 W), whereas the ABTS highest activity (42.61 mg CAE/g) was recorded at run 11 (X1: 50%, X2: 3 min, X3: 130 °C, X4: 750 W). The lack of fit for DPPH (0.1138) and ABTS (0.0981) and the coefficients of regression of 0.9543 and 0.9608 for DPPH and ABTS, respectively, suggest that the RSM model fits well. The fitted second-order polynomial equations for DPPH (% inhibition) and ABTS (% inhibition) are shown in Equations (7) and (8) as follows:


      Y 1  = 26.34 + 0.6782  X 1  + 1.72  X 2  − 3.42  X 3  + 1.245  X 4  − 2.99  X 1   X 2  + 0.2740  X 1   X 3  + 2.45  X 1   X 4  + 0.1471  X 2   X 3      − 1.02  X 2   X 4  − 1.43  X 3   X 4  + 0.6328  X 1 2  − 1.07  X 2 2  − 3.42  X 3 2  + 0.2118  X 4 2      



(7)






      Y 2  = 41.84 + 0.9626  X 1  + 0.4558  X 2  − 2.40  X 3  + 3.13  X 4  − 0.6606  X 1   X 2  + 1.44  X 1   X 3  + 0.4581  X 1   X 4  + 1.08  X 2   X 3      + 1.34  X 2   X 4  − 0.4356  X 3   X 4  − 1.47  X 1 2  − 1.72  X 2 2  − 3.60  X 3 2  − 1.54  X 4 2      



(8)








3.1.2. Effect of MAE-SF Parameters on TPC and TFC


Similar to DPPH and ABTS, contour plots were generated for TPC and TFC to determine the relationship between the independent variables by varying the conditions. TPC (36.06 mg GAE/g) and TFC (16.85) exhibited the highest activities in runs 16 and 12, respectively (Table 1). ANOVA results show that TPC had significant effects in terms of linear (X1, X3, X4), interaction (X1X3, X2X3, X2X4), and quadratic relationships (X12, X22, X32, X42). The TFC exhibited significant effects in terms of linear (X1, X2, X3, X4), interaction (X1X2, X1X3, X2X3, X2X4, X3X4), and quadratic relationships (X22, X32) (Table 2). Likewise, the lack of fit for TPC (0.1025) and TFC (0.3556), along with the coefficient of determination for TPC (0.9533) and TFC (0.9745), show that our model could be fitted well. The relationship between TPC, TFC independent, and response variables can be determined using Equations (9) and (10), as follows:


       Y 3  = 35.48 − 0.980  X 1      + 0.1990  X 2  − 1.19  X 3  + 1.99  X 4  + 0.1952  X 1   X 2         + 1.06  X 1   X 3  + 0.7562  X 1   X 4  + 1.41  X 2   X 3  + 1.94  X 2   X 4         + 0.4797  X 3   X 4  − 2.42  X 1 2  − 2.58  X 2 2  − 3.33  X 3 2  − 1.13  X 4 2       



(9)






      Y 4  = 13.26 − 0.4032  X 1    + 1.677  X 2  − 0.6597  X 3  + 1.51  X 4  − 0.5511  X 1   X 2       + 1.01  X 1   X 3  + 0.1127  X 1   X 4  + 1.11  X 2   X 3  + 1.80  X 2   X 4       + 0.6715  X 3   X 4  + 0.1636  X 1 2  − 0.4717  X 2 2  − 1.15  X 3 2  + 0.0652  X 4 2      



(10)









3.2. ANN Modeling


The ANN architecture topology for MAE-SF conditions is shown in Figure 1. For a well-developed model, the testing and training errors should be minimal, and the epochs should be kept optimal. Lower epoch levels result in an under-fitted model, whereas high epochs result in model over-fitting. In this study, an ANN topology of 4–16–4 was found to be sufficient, with the least MSE and a higher R2 for better model reliability and precision, as shown in Figure S2. Figure 1B–E shows the performance of DPPH, ABTS, TPC, and TFC, which gradually reached the best validation performance of 2.54 at epoch 3, 5.70 at epoch 1, 6.09 at epoch 3, and 5.67 at epoch 2, respectively. Figure 1F–I shows a comparison between the experimental response and both the RSM and ANN predictions. Our outcomes are inconsistent with the results reported by Ameer et al. [26] for the recovery of bioactive components from Stevia rebaudiana leaf extracts using ultrasound-assisted extraction conditions with a hybrid RSM-ANN-GA model. Table 3 presents the model validation parameters. For an optimal model, the values of RMSE, SEP, and AAD should be lower, whereas R2 should be higher. In our study, for all four response variables, SEP, RMSE, and AAD values were lower, whereas R2 was higher in the ANN model than in the RSM model, which validated the superiority of the ANN model.




3.3. Process Optimization and Model Validation


The data generated by the RSM and ANN models was used to optimize the extraction conditions by using a genetic algorithm. A scalar technique was used in the objective function instead of using second-or first-order derivatives [34]. GA is adopted by maximizing the outputs of RSM and ANN in the objective function. For the fitness function, the rank method was used, whereas a stochastic uniform was utilized for the selection method. In GA with constraint dependence, 90 population sizes were initially taken, while for the survival of the next generation, the elite count in the reproduction option was put on default. Moreover, for genetic variation and also to achieve new individual formation, constraint dependent mutation and crossover functions were applied (Table S3). A Lagrangian solver was adopted for better accuracy as the nonlinear constraint algorithm, whereas Design Expert software was adopted to achieve the optimal condition by keeping the independent variables in their maximum range. Table 4 depicts the optimized process results for RSM-GA, RSM-DF and ANN-GA. ANN-GA and RSM-DF showed higher values in comparison with RSM-GA. All of the three methods exhibited similar values; however, the ANN-GA conditions were further used to validate the model and make the comparison. The final extraction was also carried out by modifying the conditions as follows: ethanol concentration (50%), extraction time (3 min), extraction temperature (140 °C), and power (600 W) for further confirmation, and the results are presented in Table S2.




3.4. Cell Viability, ROS Scavenging, and Antioxidant Enzyme Activity


SF extracts obtained after optimizing the MAE conditions did not exhibit any RAW 264.7 cellular toxicity up to 300 µg/mL (Figure 2A). Figure 2B shows that ROS production was enhanced by LPS induction; however, SF extracts scavenged ROS in a dose-dependent manner (approximately two-fold). Similarly, SF extracts also increased antioxidant enzyme activity, that is, catalase (CAT), glutathione peroxidase-1 (GPx-1), and superoxidase-1 (SOD-1) levels in a concentration-dependent pattern (Figure 2C). Wang et al. (2022) stated that fermented fucoidan isolated from SF attenuates ROS levels and improves SOD levels in zebrafish induced by H2O2 [35], which is consistent with our results.




3.5. Metabolite Profiling of SF Extracts Using High-Resolution LC-MS/MS


Metabolite profiling of the optimized SF extract (Supplementary Table S2) was conducted in the negative mode of HRLC-ESI-MS/MS. As shown in Table 5, 79 secondary metabolites were tentatively verified, and 12 of them were reported for the first time in SF, which were as follows.



3.5.1. Phenolic Acids


During collisions, phenolic acids exhibit certain breakage patterns and loss-specific molecules, such as methyl (15 Da) and carboxyl (44 Da) [36]. Based on the fragmentation pattern, compounds 1–2 were previously identified as gallic acid and vanillic acid, respectively [21]. Compound 3, reported in Dasya sp., yielded two daughter ions at m/z 179.03 (isopropanol group) and m/z 123.04 by cleaving the α, β carbon–carbon bond, and was identified as isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate [37]. Compound 4 (3,4-dihydroxyphenylglycol) yielded a precursor ion at m/z 169.0506, which was further fragmented into two major daughter ions at m/z 151.03 (losing H2O) and 123.00 (losing CO). Similarly, compound 5 was previously reported in Codium and Grateloupia sp., and produced a parent ion at m/z 191.0352 and was fragmented further by losing methyl (15 Da) ([M-H-CH3]) and carboxyl (44 Da) ([M-H-CH3-COO]) at m/z 175.03 and 147.04, respectively [38]. Compound 6, with a monoisotopic mass [M-H]− at m/z 258.9912, forms fragmentation ions at m/z 215.00 by losing [M-H-CH3-COO], followed by further cleavage into a caffeic acid ion (135.04 Da) by losing SO3 (80 Da). Fragmentation of phenolic acid glycoside started at the glycosidic link and yielded a sugar moiety (−162 Da), which tentatively confirmed the presence of compound 7 (cinnamoyl glucose) in SF by having a characteristic ion at m/z 303.08 [38]. Compounds 3–7 have been reported for the first time in SF extracts.




3.5.2. Flavonoids


Compound 8, previously known as 3′-O-methylcatechin, produced an ion peak at m/z 303.0868 with characteristic peaks at m/z 271.07 and m/z 163.05, corresponding to a loss of 30 Da (CH3O) and 109 Da (C6H5O2), respectively, identified for the first time in this species. Compound 9, previously known as 4’,7-dihydroxyisoflavone, had a precursor ion peak at m/z 253.0500 and fragment peaks at m/z 225.05 and m/z 197.06, owing to the loss of two CO molecules [M-H-2CO], followed by the removal of water molecules from the B ring at m/z 143.03. Similarly, compound 10 (naringenin) was previously found in Ulva intestinalis and tentatively identified by Choi et al. [21]. Naringenin exhibits various biological properties, including anti-inflammatory and anticancer activities [39]. Compounds 9 and 10 were also reported for the first time in SF-optimized extracts.




3.5.3. Tannins and Terpenoids


Compounds 11–16 were tentatively identified as tannins and compounds 17–21 as terpenoids, as shown in Table 5. Tannins have a complex structure and, in seaweeds, this complexity pertains specifically to phlorotannins, including phlorethols, fuhalos, fucols, and eckols. In the SF extract, compounds 11–14 were previously identified as phloroglucinol, fucophlorethol-A, bifuhalol, and diphlorethohydroxycarmalol, respectively [19,40]. Diphlorethohydroxycarmalol exhibits protective effects against oxidative stress in retinal pigment epithelial cells and was tentatively reported for the first time in SF extracts [41]. Compound 15, previously identified in Fucus sp., yielded a monoisotopic mass [M-H]− at m/z 246.9914 with corresponding minor peaks at m/z 202 and 121, indicating that the compound was dibenzodioxin-1,3,6,8-tetraol, which was reported for the first time in SF extracts [42]. Similarly, compound 16 (fucophlorethol), previously reported in Laminaria digitate, was identified for the first time in SF extracts based on the fragment pattern reported by [43]. Compounds 17–20 were previously identified as glycyrrhizin, β-glycyrrhetinic acid, isololiolide, and lupenone, respectively, in SF [44,45].




3.5.4. Carboxylic Acid, Fatty Acids, Sugars, and Amino Acids


Compounds 21–35 were previously reported in a variety of seaweeds and were identified as carboxylic acids based on their fragmentation patterns. Compounds 36–66 were fatty acids, compounds 67–69 were amino acids, and compounds 70–74 were sugars [30,46,47,48,49,50,51], as shown in Table 5. Additionally, compounds 75 and 76 (phenols), and compound 77 (alcohol) were identified. Compound 78 was previously identified in Ascophyllum nodosum as dihydroxyphenylalanine, based on its fragmentation pattern. Dihydroxyphenylalanine is a large neutral amino acid with a catecholamine precursor that has a neuroprotective effect, especially against Parkinson’s disease [52]. Compound 79 (5-hydroxybenzofuran-2(3H)-one) yielded a monoisotopic mass at m/z 149.0238, which represented an aromatic alcohol group. To the best of our knowledge, compounds 78 and 79 have been tentatively reported for the first time for SF.






4. Conclusions


In this study, the effects of MAE parameters on the antioxidant potential of Sargassum fusiforme were investigated using two sophisticated techniques: RSM and ANN-GA. A comparative overview of both statistical models based on SEP, RMSE, R2, and AAD revealed that the ANN-GA models were superior to the RSM model. The optimized MAE conditions (X1: 47.67%, X2: 2.96 min, X3: 139.54 °C, and X4: 600.00 W) exhibited maximum response for four dependent variables: Y1:28.01% DPPH inhibition; Y2:36.07% ABTS inhibition; Y3:43.65 mg GAE/g TPC; Y4:17.67 mg CAE/g TFC content. The optimized extracts showed no toxicity to RAW 264.7 cells up-to 300 µg/mL and had increased CAT, GPx-1, and SOD-1 levels in a dose-dependent manner. After optimizing the MAE conditions, optimized extracts were analyzed by HR-LC-MS and identified 79 secondary metabolites; among them, 12 new bioactive compounds (five phenolic compounds, two flavonoids, three tannins, and two other compounds) were also tentatively reported for the first time in optimized SF extracts. The current investigation may not only provide an alternative statistical technique, but it could also support the preferred extraction technology for identifying important bioactive components that can be used in broad commercial applications as promising ingredients for the development of functional foods and nutraceuticals and in the cosmetic industry, shedding light on the bright side of human health. However, several other aspects that might affect the extractability of bioactive components, including kinetic behavior, type of solvent, pH, ultrasound frequency, and quantitative measurement of bioactive components, should be investigated, as this study provides the basis for further future trials.
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Figure 1. Optimal topology of optimized MAE-assisted SF extracts. Best architecture of a developed MAE-ANN model with the lowest mean square error (MSE) (A); The results of Levenberg-Marquardt algorithm with optimum numbers of neurons for best validation performance compared with training, testing and validation data for dependent variables DPPH (B) ABTS (C), TPC (D), and TFC (E), and comparison among experiment run (*), RSM (blue line), and ANN (red line) for DPPH (F), ABTS (G), TPC (H), and TFC (I) using deep learning toolbox MATLAB software. 
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Figure 2. Cellular viability and antioxidant activity of optimized Sargassum fusiforme (SF) extracts. Cell viability of optimized SF extracts (A), ROS scavenging activity of SF extracts (B), glutathione peroxidase 1 (GPx-1), catalase (CAT), and superoxide dismutase 1 (SOD-1) protein expression (C) in RAW cells were measured as described in materials and methods. Results are expressed as the mean ± SD of three separate experiments. LPS: 1 μg/mL. ** p < 0.01 as compared with LPS alone. 
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Table 1. Central composite design (CCD) for independent variables and corresponding target responses (experimental).
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Run

No

	
Parameter

	
DPPH (% Inhibition)

	
ABTS (% Inhibition)

	
TPC (mg GAE/g)

	
TFC (mg CAE/g)




	
X1

(%)

	
X2

(min)

	
X3

(°C)

	
X4

(W)

	
Experimental

Value

	
RSM Predicted

	
ANN

Predicted

	
Experimental

Value

	
RSM

Predicted

	
ANN

Predicted

	
Experimental

Value

	
RSM

Predicted

	
ANN

Predicted

	
Experimental

Value

	
RSM

Predicted

	
ANN

Predicted






	
1

	
70

	
4

	
140

	
600

	
18.94 ± 2.98

	
20.34

	
19.30

	
37.14 ± 0.54

	
38.87

	
37.08

	
33.88 ± 0.62

	
33.77

	
33.45

	
17.67 ± 0.16

	
18.15

	
17.68




	
2

	
50

	
3

	
130

	
150

	
26.13 ± 3.12

	
25.84

	
25.15

	
28.30 ± 2.13

	
28.51

	
28.20

	
25.40 ± 0.62

	
25.78

	
25.51

	
10.61 ± 0.44

	
9.67

	
9.96




	
3

	
30

	
2

	
110

	
300

	
20.95 ± 1.12

	
19.89

	
21.13

	
36.25 ± 1.87

	
34.58

	
36.20

	
29.55 ± 0.17

	
29.80

	
29.51

	
12.89 ± 0.65

	
13.36

	
12.90




	
4

	
50

	
3

	
130

	
450

	
25.75 ± 2.98

	
26.79

	
25.62

	
40.83 ± 1.35

	
41.80

	
41.61

	
36.02 ± 2.15

	
35.58

	
35.44

	
14.49 ± 0.16

	
14.03

	
14.47




	
5

	
10

	
3

	
130

	
450

	
17.42 ± 1.29

	
19.86

	
20.49

	
29.00 ± 2.34

	
31.46

	
28.96

	
22.29 ± 0.17

	
23.68

	
23.76

	
10.61 ± 0.33

	
9.61

	
10.60




	
6

	
90

	
3

	
130

	
450

	
7.31 ± 1.61

	
6.39

	
6.43

	
25.36 ± 1.77

	
23.30

	
26.08

	
21.50 ± 1.24

	
20.81

	
21.49

	
9.23 ± 0.42

	
8.45

	
9.33




	
7

	
50

	
3

	
130

	
450

	
26.13 ± 2.35

	
26.79

	
25.62

	
41.83 ± 1.35

	
41.80

	
41.61

	
35.05 ± 0.79

	
35.58

	
35.44

	
13.49 ± 0.95

	
14.03

	
14.47




	
8

	
50

	
3

	
90

	
450

	
14.76 ± 1.64

	
16.51

	
15.45

	
30.37 ± 1.51

	
31.39

	
30.26

	
21.44 ± 1.37

	
21.26

	
21.60

	
7.50 ± 0.75

	
7.50

	
7.51




	
9

	
30

	
4

	
110

	
300

	
23.39 ± 2.41

	
21.79

	
23.45

	
34.01 ± 2.07

	
34.03

	
34.68

	
30.55 ± 0.75

	
28.52

	
29.96

	
11.61 ± 0.88

	
11.42

	
11.60




	
10

	
30

	
4

	
140

	
300

	
20.76 ± 2.32

	
21.00

	
20.18

	
29.40 ± 3.70

	
28.78

	
29.39

	
20.48 ± 1.72

	
21.83

	
20.88

	
7.45 ± 0.65

	
8.40

	
7.44




	
11

	
50

	
3

	
130

	
750

	
27.63 ± 2.61

	
29.44

	
28.90

	
42.61 ± 0.63

	
42.80

	
42.49

	
35.99 ± 0.52

	
36.31

	
36.85

	
18.95 ± 0.44

	
18.11

	
18.90




	
12

	
70

	
2

	
140

	
600

	
19.58 ± 2.20

	
19.53

	
19.64

	
34.20 ± 2.40

	
34.47

	
32.69

	
26.99 ± 2.25

	
28.54

	
26.76

	
16.85 ± 0.36

	
17.82

	
17.13




	
13

	
30

	
2

	
140

	
600

	
29.21 ± 2.60

	
29.48

	
28.40

	
42.29 ± 2.38

	
40.85

	
42.16

	
30.94 ± 0.17

	
29.27

	
30.85

	
16.65 ± 0.38

	
17.60

	
17.45




	
14

	
30

	
4

	
140

	
600

	
32.59 ± 1.12

	
29.20

	
31.87

	
39.39 ± 3.39

	
39.50

	
39.31

	
31.44 ± 1.64

	
30.23

	
31.59

	
13.19 ± 1.10

	
13.90

	
13.18




	
15

	
70

	
2

	
110

	
300

	
13.97 ± 2.03

	
15.08

	
13.22

	
25.61 ± 2.02

	
25.61

	
25.66

	
20.74 ± 2.03

	
21.51

	
20.74

	
6.44 ± 1.01

	
6.47

	
6.46




	
16

	
50

	
3

	
130

	
450

	
27.25 ± 1.75

	
26.79

	
25.62

	
41.83 ± 1.35

	
41.80

	
41.61

	
36.08 ± 0.34

	
35.58

	
35.44

	
13.49 ± 0.58

	
14.03

	
14.47




	
17

	
50

	
5

	
130

	
450

	
27.71 ± 2.62

	
28.68

	
29.97

	
38.89 ± 1.59

	
37.40

	
38.84

	
28.55 ± 1.20

	
27.74

	
28.67

	
12.45 ± 0.98

	
11.80

	
12.43




	
18

	
70

	
4

	
140

	
300

	
16.77 ± 2.11

	
17.89

	
15.43

	
28.19 ± 1.90

	
29.89

	
28.21

	
23.41 ± 0.12

	
23.44

	
23.56

	
9.24 ± 0.45

	
9.96

	
9.32




	
19

	
30

	
2

	
140

	
300

	
30.79 ± 3.26

	
31.07

	
30.40

	
32.37 ± 1.35

	
31.97

	
32.25

	
25.23 ± 1.30

	
23.89

	
27.72

	
11.82 ± 0.65

	
12.54

	
11.78




	
20

	
70

	
2

	
110

	
600

	
11.96 ± 2.20

	
11.85

	
11.66

	
27.48 ± 0.97

	
27.40

	
24.64

	
22.63 ± 0.60

	
21.06

	
22.61

	
6.94 ± 0.74

	
7.00

	
8.54




	
21

	
70

	
4

	
110

	
300

	
18.51 ± 0.79

	
18.08

	
19.66

	
30.64 ± 1.78

	
30.82

	
30.56

	
23.41 ± 0.89

	
24.49

	
25.33

	
8.43 ± 0.68

	
8.55

	
8.43




	
22

	
30

	
2

	
110

	
600

	
24.84 ± 1.20

	
22.39

	
27.18

	
38.94 ± 1.05

	
38.11

	
38.90

	
27.56 ± 1.64

	
27.43

	
27.64

	
11.21 ± 0.77

	
11.21

	
11.21




	
23

	
50

	
1

	
130

	
450

	
29.42 ± 2.33

	
29.96

	
27.75

	
32.54 ± 1.60

	
34.43

	
32.56

	
22.55 ± 0.62

	
24.06

	
22.56

	
15.28 ± 0.36

	
14.15

	
15.28




	
24

	
70

	
4

	
110

	
600

	
26.77 ± 1.15

	
24.64

	
26.70

	
34.49 ± 2.10

	
34.44

	
32.63

	
26.55 ± 0.37

	
27.06

	
25.76

	
9.42 ± 0.12

	
9.54

	
9.44




	
25

	
30

	
4

	
110

	
600

	
32.74 ± 1.55

	
34.09

	
32.34

	
39.87 ± 1.16

	
39.39

	
40.81

	
27.88 ± 1.26

	
29.18

	
28.04

	
9.52 ± 0.45

	
9.71

	
9.72




	
26

	
50

	
3

	
150

	
450

	
27.71 ± 2.30

	
26.24

	
27.96

	
39.33 ± 0.64

	
37.81

	
39.19

	
27.67 ± 0.66

	
28.95

	
27.73

	
15.35 ± 0.64

	
15.97

	
15.38




	
27

	
70

	
2

	
140

	
300

	
27.44 ± 1.44

	
28.85

	
27.89

	
27.36 ± 2.30

	
27.33

	
27.32

	
22.80 ± 0.76

	
21.24

	
22.72

	
9.23 ± 0.39

	
10.08

	
9.31
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Table 2. ANVOA analysis for well-fitted RSM model.






Table 2. ANVOA analysis for well-fitted RSM model.













	Source
	DF
	DPPH
	ABTS
	TPC
	TFC



	Model
	14
	1068.95 ***
	804.11 ***
	635.00 ***
	302.80 ***



	Intercept (β0)
	1
	26.34
	41.84
	35.80
	13.26



	Linear terms
	
	
	
	
	



	X1 (β1)
	1
	0.6782
	0.9626 *
	−0.9867 **
	−0.4032 **



	X2 (β2)
	1
	1.72 **
	0.4558
	0.1990
	1.67 ***



	X3 (β3)
	1
	−3.42 ***
	−2.40 ***
	−1.19 **
	−0.6597 **



	X4 (β4)
	1
	1.24 *
	3.13 ***
	1.99 ***
	1.51 ***



	Quadratic terms
	
	
	
	
	



	X12 (β11)
	1
	0.6328
	−1.47 ***
	−2.42 ***
	0.1636



	X22 (β22)
	1
	−1.07 *
	−1.72 ***
	−2.58 ***
	−0.4717 **



	X32 (β33)
	1
	−3.42 ***
	−3.60 ***
	−3.33 ***
	−1.15 ***



	X42 (β44)
	1
	0.2118
	−1.54 ***
	−1.13 ***
	0.0652



	Interaction terms
	
	
	
	
	



	X1X2 (β1β2)
	1
	−2.99 ***
	−0.6606
	−0.1952
	−0.5511 **



	X1X3 (β1β3)
	1
	0.2740
	1.44 *
	1.06 **
	1.01 ***



	X1X4 (β1β4)
	1
	2.45 ***
	0.4581
	0.7562
	0.1127



	X2X3 (β2β3)
	1
	0.1471
	1.0 8*
	1.41 **
	1.11 ***



	X2X4 (β2β4)
	1
	−1.02
	1.34 **
	1.94 ***
	1.80 ***



	X3X4 (β3β4)
	1
	−1.43 **
	−0.4356
	0.4797
	0.6715 **



	Lack of fit (probability)
	10
	0.1138
	0.0981
	0.1025
	0.3556



	F-value
	
	8.18
	9.58
	9.15
	2.18



	R2
	
	0.9543
	0.9608
	0.9533
	0.9745



	Adj. R2
	
	0.9009
	0.9151
	0.8989
	0.9447



	Adeq. precision
	
	17.9849
	15.8235
	12.9272
	19.0817



	C.V. (%)
	
	8.90
	4.81
	5.90
	6.86







The level of significance is expressed as *** p < 0.001, ** p < 0.01, and * p < 0.05.
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Table 3. Comparison of the prediction abilities of the RSM and ANN models.
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Parameters

	
DPPH

	
ABTS

	
TPC

	
TFC




	
RSM

	
ANN

	
RSM

	
ANN

	
RSM

	
ANN

	
RSM

	
ANN






	
RMSE

	
1.38

	
1.15

	
1.10

	
0.78

	
1.15

	
0.56

	
0.66

	
0.46




	
R2

	
95.43

	
96.84

	
96.08

	
98.03

	
95.33

	
97.72

	
96.27

	
98.19




	
AAD

	
5.18

	
4.17

	
2.40

	
1.26

	
3.52

	
1.68

	
4.66

	
2.12




	
SEP

	
0.22

	
0.18

	
0.12

	
0.08

	
0.15

	
0.10

	
0.21

	
0.14
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Table 4. Process optimization using three different methods.
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Variables

	

	
RSM-GA

	
ANN-GA

	
RSM-DF

(0.92)






	
Independent variables

	
Concentration

	
47.75

	
47.67

	
47.36




	
Time

	
2.76

	
2.96

	
2.94




	
Temperature

	
140.79

	
139.54

	
139.71




	
Power (W)

	
599.99

	
600.00

	
599.99




	
Dependent variables

	
DPPH

	
26.31

	
28.01

	
27.94




	
ABTS

	
35.99

	
36.07

	
36.00




	
TPC

	
42.90

	
43.65

	
43.58




	
TFC

	
17.84

	
17.67

	
17.63
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Table 5. Identified compounds of the optimized extract of Sargassum fusiforme by ESI-MS/MS.
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Group

	
No.

	
Compound Name

	
EF

	
CM

(m/z)−/+

	
OM

(m/z)−/+

	
MS/MS (Negative Mode)






	
Phenolic acids and

derivatives

	
1.

	
Gallic acid

	
C7H6O5

	
169.0134

	
169.0137

	
125.02




	
2.

	
Vanillic acid

	
C8H8O4

	
167.0343

	
167.0344

	
108.02, 152.011




	
3.

	
Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate #

	
C12H16O5

	
239.0929

	
239.0925

	
173.03, 123.04




	
4.

	
3,4-Dihydroxyphenylglycol #

	
C8H10O4

	
169.0500

	
169.0506

	
151.03, 123.00




	
5.

	
Scopoletin #

	
C10H8O4

	
191.0349

	
191.0350

	
175.03, 147.04




	
6.

	
Caffeic acid 4-Sulfate #

	
C9H8O7S

	
258.9899

	
258.9912

	
215.00, 179.03, 135.04




	
7.

	
Cinnamoyl Glucose #

	
C15H18O7

	
309.0974

	
309.0974

	
147.04, 131.04, 103.05




	
Flavonoids

	
8.

	
3’-O-Methylcatechin

	
C16H16O6

	
303.0862

	
303.0868

	
271. 07, 163.05




	
9.

	
4’,7-Dihydroxyisoflavone #

	
C15H10O4

	
253.0493

	
253.0500

	
225.05,197.06, 143.03




	
10.

	
Naringenin #

	
C15H12O5

	
271.0581

	
271.0606

	
229.05, 177.01, 151.00, 119.06




	
Tannins

	
11.

	
Phloroglucinol

	
C6H6O3

	
125.0237

	
125.0238

	
97.04




	
12.

	
Fucophlorethol-A

	
C18H14O9

	
373.0557

	
373.0559

	
247.05, 233.02, 229.07, 125.03




	
13.

	
Bifuhalol

	
C12H10O7

	
264.0345

	
264.0348

	
247.03, 141.07, 111.03, 123.01, 125.03,




	
14.

	
Diphlorethohydroxycarmalol #

	
C24H15O13

	
511.0510

	
511.0506

	
385.00




	
15.

	
Dibenzodioxin-1,3,6,8-tetraol #

	
C12H7O6

	
246.9919

	
246.9914

	
203.05, 121.01




	
16.

	
Fucophlorethol #

	
C36H26O14

	
680.1154

	
680.1179

	
610.05,601.03, 495.07, 469.06, 229.03




	
Terpenes

	
17.

	
Glycyrrhizin

	
C42H62O16

	
821.3951

	
821.3959

	
777.40, 627.35, 469.33, 451.32




	
18.

	
β-Glycyrrhetinic acid

	
C30H46O4

	
469.3330

	
469.3317

	
451.32, 423.32, 409.31




	
19.

	
Isololiolide

	
C11H16O3

	
195.1021

	
195.1021

	
161.09, 179.10, 133.10, 105.07




	
20.

	
Lupenone

	
C30H48O

	
423.3620

	
423.3626

	
408.33,381.33,365.27,257.24




	
Carboxylic acids

	
21.

	
Fumaric acid

	
C4H4O4

	
115.0050

	
115.0037

	
71.01




	
22.

	
Threonic acid

	
C4H8O5

	
135.0290

	
135.0299

	
117.01, 91.04, 72.99




	
23.

	
Cinnamic acid

	
C9H8O2

	
147.0442

	
147.0452

	
129.03, 103.05




	
24.

	
Gentisic acid

	
C7H6O4

	
153.0187

	
153.1287

	
152.74, 108.07, 81.05




	
25.

	
Behenic acid

	
C22H44O2

	
339.3268

	
339.3263

	
321.31, 295.33,211.24




	
26.

	
Kainic acid

	
C10H15NO4

	
212.0922

	
212.0922

	
168.2, 194.1, 150.2




	
27.

	
Mannuronic acid

	
C6H10O7

	
193.0353

	
193.0348

	
175.02, 103.00, 72.99




	
28.

	
Diethyl phthalate

	
C12H14O4

	
221.0818

	
221.0813

	
193.08, 177.09, 149.09, 121.02




	
29.

	
Vanillylmandelic acid

	
C9H10O5

	
197.0449

	
197.0450

	
153.05, 137.02,123.04, 107.01




	
30.

	
Phthalic acid

	
C8H6O4

	
165.0188

	
165.0187

	
121.1 26, 119.15, 58.91




	
31.

	
3-Oxooctanoic acid

	
C8H14O3

	
157.0863

	
157.0876

	
139.07, 113.09, 97.06




	
32.

	
D-Glucaric acid derivate

	
C12H14O10

	
317.0544

	
317.0509

	
209.08




	
33.

	
Fukic acid

	
C11H12O8

	
271.0459

	
271.0453

	
227.05, 197.04, 179.03




	
34.

	
Mono-(3-carboxypropyl) phthalate

	
C12H12O6

	
251.0556

	
251.0555

	
233.04, 207.06, 165.01




	
35.

	
Azelaic acid

	
C9H16O4

	
187.0969

	
188.0976

	
187.31, 124.91, 169.20, 111.20




	
Fatty acids

	
36.

	
Caprylic acid

	
C8H15O2

	
143.1070

	
143.1072

	
125.09, 99.11, 59.01




	
37.

	
Stearic acid

	
C18H36O2

	
283.2641

	
283.2637

	
265.25, 239.27, 237.25




	
38.

	
cis-Vaccenic acid

	
C18H34O2

	
281.2486

	
281.2487

	
263.23, 223.17, 163.14, 71.01




	
39.

	
α-Linoleic acid

	
C18H32O2

	
279.2331

	
279.2330

	
261.22, 235.24, 233.22




	
40.

	
Oleic acid

	
C18H34O2

	
281.2487

	
281.2486

	
263.25, 181.21, 127.25




	
41.

	
Palmitic acid

	
C16H32O2

	
255.233

	
255.233

	
237.23, 211.24, 197.22




	
42.

	
Myristic acid

	
C14H28O2

	
227.2015

	
227.2017

	
209.19, 183.21,179.18




	
43.

	
Arachidic acid

	
C20H40O2

	
311.2958

	
311.295

	
297.04, 275.84, 200.85




	
44.

	
Eicosapentaenoic acid

	
C20H30O2

	
301.2176

	
301.2173

	
299.20, 283.20, 229.15, 131.08, 71.01




	
45.

	
Arachidonic acid

	
C20H32O2

	
303.2333

	
303.233

	
285.2218, 259.24, 257.22




	
46.

	
5,8,11-Eicosatrienoic acid

	
C20H34O2

	
305.2491

	
305.2486

	
287.23, 261.25, 207.21




	
47.

	
11,14-Eicosadienoic acid

	
C20H36O2

	
307.2643

	
307.2643

	
289.25, 249.18, 233.19, 153.09, 71.01




	
48.

	
Octadecendioic acid

	
C18H32O4

	
311.223

	
311.2239

	
299.25, 269.24, 251.23, 223.24




	
49.

	
Methyl arachidonate

	
C21H34O2

	
317.2487

	
317.2486

	
315.23, 301.21, 243.17, 191.18, 121.10, 73.02




	
50.

	
13-keto-9Z,11E-Octadecadienoic acid

	
C18H30O3

	
293.2125

	
293.2122

	
275.20, 195.13, 113.09




	
51.

	
10-Oxooctadecanoic acid

	
C18H34O3

	
297.2436

	
297.2435

	
279.23, 209.15, 141.12, 127.11




	
52.

	
10,16-Dihydroxy-palmitic acid

	
C16H32O4

	
287.2227

	
287.2222

	
269.21, 257.21, 239.20, 185.11




	
53.

	
Vernolic acid

	
C18H32O3

	
295.2278

	
295.2273

	
277.21, 251.23, 195.13, 127.11




	
54.

	
Octadeca-2,4-dienedioic acid

	
C18H30O4

	
309.2072

	
309.2071

	
291.19, 265.21, 247.20




	
55.

	
Palmitaldehyde

	
C16H32O

	
239.092

	
239.0925

	
237.22, 207.21, 153.12, 127.14




	
56.

	
Myristic aldehyde

	
C14H28O

	
211.2064

	
211.2067

	
209.19, 167.14, 127.14, 99.11, 71.08




	
57.

	
Heptanal

	
C7H14O

	
113.0962

	
113.0972

	
95.08, 85.10




	
58.

	
9-Octadecenal

	
C18H34O

	
265.2544

	
265.2537

	
249.22, 247.24, 235.24




	
59.

	
2,4-Decadienal

	
C10H16O

	
151.1119

	
151.1128

	
133.10, 123.11, 119.08, 93.07




	
60.

	
Nonanal

	
C9H18O

	
141.128

	
141.1285

	
123.11, 113.13, 95.08




	
61.

	
Ethyl oleate

	
C20H38O2

	
309.2798

	
309.2799

	
291.26, 281.24, 263.23, 237.25, 45.03




	
62.

	
1-Docosanol

	
C22H46O

	
325.3475

	
325.3476

	
309.31, 307.33, 295.33, 267.30




	
63.

	
(9R,10S,12Z)-9,10-Dihydroxy-8-oxo-12-octadecenoic acid

	
C18H32O5

	
327.2178

	
327.2177

	
309.20, 283.22, 187.09, 157.08




	
64.

	
5,8,12-Trihydroxy-9-octadecenoic acid

	
C18H34O5



	
329.2338

	
329.2333

	
311.22, 285.24, 267.23, 243.12, 195.17, 145.08




	
65.

	
13-Docosenamide

	
C22H43NO

	
336.3274

	
336.3272

	
319.30, 293.3214, 58.02




	
66.

	
Lauric acid

	
C12H24O2

	
199.1697

	
199.1698

	
181.1062; 155.0336




	
Amino Acids

	
67.

	
L-Proline

	
C5H9NO2

	
114.0560

	
114.0555

	
70.06




	
68.

	
Glutamic acid

	
C5H9NO4

	
146.0451

	
146.0453

	
70.06




	
69.

	
D-Histidine

	
C6H9N3O2

	
154.0628

	
154.0616

	
82.3, 71.9




	
Sugars

	
70.

	
D-Galactose

	
C6H12O6

	
179.0568

	
179.0555

	
161.04, 143.03, 113.02, 101.02,




	
71.

	
Mannitol

	
C6H14O6

	
181.0712

	
181.0718

	
165.01, 147.03, 129.05, 111.00




	
72.

	
Gluconic acid

	
C6H12O7

	
195.0517

	
195.0504

	
177.05, 159.02, 129.05, 98.90




	
73.

	
Xylitol

	
C5H12O5

	
151.0618

	
151.0612

	
119, 131, 89.1




	
74.

	
Maltitol

	
C12H24O11

	
343.1248

	
343.124

	
283.10, 265.09, 179.05, 161.04, 143.03




	
Other compounds

	
75.

	
4-Octylphenol

	
C14H22O

	
205.1593

	
205.1592

	
135.08, 119.05, 107.05, 93.03




	
76.

	
2,4-Dibromophenol

	
C6H4Br2O

	
248.8649

	
248.8550

	
248.85, 168.92




	
77.

	
Dihydroconiferyl alcohol

	
C10H14O3

	
181.0864

	
181.0864

	
163.07, 135.04




	
78.

	
Dihydroxyphenylalanine #

	
C9H10O7NS

	
276.0185

	
276.0184

	
259, 231, 215, 196, 179, 150, 135




	
79.

	
5-Hydroxybenzofuran-2(3H)-one #

	
C8H6O3

	
149.0237

	
149.0238

	
121.02, 67.01, 65.00








EF: elemental formula; OM: observed mass; CM: calculated mass; (-): Negative mode; # First time identification in SF.
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