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Abstract: Cystathionine-γ-lyase (CSE) is expressed in various tissues and generates H2S via an
alternative desulfuration reaction. We sought to explore the functions of skeletal muscle CSE using
skeletal muscle conditional knockout CSE (MCSEKO) mice. It was found that body weight, muscle
morphology, and exercise capacity were not altered in MCSEKO mice compared with littermate
wild-type mice. RNA-seq-based transcriptome analysis showed that 275 genes were differentially
regulated in skeletal muscle and multiple signaling pathways including insulin signaling and mTOR,
PI3K-AKT, and cGMP-PKG signaling pathways were enriched in MCSEKO mice. The intraperitoneal
glucose tolerance test and insulin tolerance test showed that glucose tolerance and insulin sensitivity
were reduced in MCSEKO mice. Glucose transporter 4 (GLU4) and PKG-1 expression levels and
insulin receptor substrate-1(IRS1)/PI3K/Akt signaling pathway were downregulated whilst the
mTOR/S6K/S6 pathway was enhanced in MCSEKO mice. These effects were reversed by the H2S
supplement. Aerobic treadmill training significantly promoted glucose tolerance and insulin sensi-
tivity and improved GLU4 and PKG-1 levels, promoted IRS1/PI3K/Akt signaling and suppressed
mTOR/S6K/S6 signaling pathway in MCSEKO mice. Our data suggest that skeletal muscle CSE/H2S
signaling is critical for the maintenance of insulin sensitivity, which is associated with maintaining
the balance in PKG, PI3K/Akt, and mTOR/S6K/S6 signaling pathways in skeletal muscle.
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1. Introduction

The skeletal muscle is the largest organ of the human body and accounts for 40–50%
of the total body weight [1]. It is crucial for such important functions as exercise, respira-
tion, and thermogenesis. In addition, skeletal muscle conducts a key role in maintaining
circulating glucose homeostasis, because it is the largest insulin-sensitive organ, accounting
for about 85% of the total body glucose intake.

Cystathionine-γ-lyase (CSE, EC 4.4.1.1) and cystathionine-β-synthetase (CBS, EC
4.2.1.22) are biologically essential and distributed in various tissues [2]. They independently
synthesize hydrogen sulfide (H2S) via alternative desulfuration reactions in various tissues
and catalyze the trans-sulfuration pathway. Under the catalysis of vitamin B6, CBS can
condense homocysteine with serine to produce cystathionine. Cystathionine can then be
hydrolyzed by CSE to form cysteine, which can be used to synthesize

Antioxidant glutathione (GSH) or further metabolized into sulfate which is excreted in
urine [3]. Both CBS and CSE proteins are expressed in human and rat skeletal muscles [4].
However, CSE but not CBS is identified in mouse skeletal muscles [5]. Ishii et al. [6] have
demonstrated that global CSE−/− mice display acute skeletal muscle atrophy and finally
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died of severe paralysis of the extremities when they are fed a diet with low cysteine, which
implies that CSE plays an important role in skeletal muscle. Some studies have shown
that H2S can modulate glucose transporter 4 (GLUT4) expression in cultured myoblast
C2C12 cells. However, the physiological function of CSE in skeletal muscle remains to
be elucidated.

Based on the above background, we sought to explore the roles of CSE/CBS/H2S
signaling in skeletal muscle using a genetic modification approach. Since mouse skeletal
muscle mainly expresses CSE, we generated skeletal muscle CSE knockout (MCSEKO)
mice to examine the functional role of CSE in skeletal muscle. We found that the body
weight, skeletal muscle morphology, and exercise capacity phenotypes were not affected in
the MCSEKO mice. RNA-seq combined with a functional test indicated that the MCSEKO
mice exhibited insulin resistance as evidenced by a decrease in intraperitoneal glucose
tolerance test (IGTT) and insulin tolerance test (ITT) and down-regulated expression of
insulin receptor substrate 1 (IRS1) and GLUT4. H2S donor treatment and aerobic treadmill
exercise significantly ameliorated insulin resistance. Mechanistically, we demonstrated that
CSE deficiency elicits a retrograde response in muscle to cause insulin signaling pathway
IRS1/PI3K/Akt suppression and mammalian target of rapamycin (mTOR)/ribosomal
protein S6 kinase (S6K)/S6 signaling pathway enhancement. Our data suggest that skele-
tal muscle CSE/H2S signaling is crucial for the maintenance of insulin sensitivity and
circulatory glucose homeostasis.

2. Materials and Methods
2.1. Animals

CSEFlox/Flox mice (NM-CKO-200274) and Ckmm-Cre (SJ-006475) were purchased from
Shanghai model organisms (Shanghai, China). Mice were housed under a 12 h light/12 h
dark cycle at 23 ◦C with free access to food and water. CSEFlox/Flox mice were first mated with
Ckmm-Cre mice. The MCSEKO mice were obtained by mating F1 CSEFlox/+; Cre+ mice to litter-
mate CSEFlox/+; Cre− mice. CSEFlox/Flox mice were genotyped via polymerase chain reaction
(PCR) using the following primers: 5′-GACAGTGAATCCTTTGGCAGTA-3′ and 5′- CACA-
GAGGGTAGATATT GAGACTTT-3′. The Ckmm-Cre mice were genotyped using the following
primers: 5′-ATTTG CCTGCATT ACCGGTCG-3′ and 5′-CAGCATTGCTGTCACTTGGTC-3′. To
avoid gender bias in our results, we used male mice in our experiments. All the procedures
of animal studies were granted by the Ethics Review Committee for Animal Experimenta-
tion of the Shanghai University of Sport (approval number: 102772020DW008).

2.2. Body Weight, Body Composition Measurement, and Skeletal Muscles Weight

The mice’s body weight and body composition were measured weekly from 3 weeks
old to 20 weeks old. According to the manufacturer’s instructions, the EchoMRI body com-
position analyzer E26-310-M was used to noninvasively measure mice’s body composition.
The mice were sacrificed with deep anesthesia at 21–22 weeks old, and the six sorts of
skeletal muscles, namely quadriceps muscle (QUA), gastrocnemius muscle (GAS), triceps
brachii (Triceps), tibialis anterior muscle (TA), extensor digitorum longus muscle (EDL), and
soleus muscle (SOL) were dissected and weighted, then fixed with 4% paraformaldehyde
or stored at −80 ◦C after snap freezing by liquid nitrogen.

2.3. Treadmill Exhaustive Exercise Capacity and Grip Strength

The exhaustive capacity test was conducted according to prior studies [7]. Briefly,
before the exercise test, the mice (22 weeks old) are subjected to adapt to the treadmill for
2 days. In adaptive exercise, the treadmill machine was set on a 15◦ incline. It started with
a 5-min adaptation period of 0 m/min, then continued for 10 min at 10 m/min, followed by
a 10-min movement at 14 m/min. In the exercise test, the machine was set on a 10◦ incline,
started at a speed of 10 m/min, continued for 5 min, and increased 2 m/min every 5 min
until the mice are exhausted (the mice stay on the electric shock for more than 5 s without
resuming running) [7].
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A grip strength meter (Columbus Instruments, Columbus, OH, USA) was used to
evaluate the grip strength of mice. In each test, the mice were placed on the grip strength
meter and pulled parallel to the ground until they lost grip. At each time point, the mice
were given five tests, with a 10 s rest between tests. The average value was obtained from
the best 3 out of the 5 tests. It was taken as the final score of each mouse.

2.4. Glucose and Insulin Tolerance Tests

When the mice were at 10, 15, and 20 weeks old, intraperitoneal glucose tolerance
tests (IGTT) were performed. Before the IGTT test, the mice fasted overnight. Mice were
intraperitoneally injected with glucose (1 g/kg) and their blood glucose level measured
with a blood glucose meter (Accu-Chek Performa) at 0, 15, 30, 60, 90, and 120 min after
injection. The insulin tolerance test (ITT) was performed on mice at 11, 16, and 21 weeks of
age. For ITT, the mice fasted for 6 h before the experiment. Insulin (0.7 U/kg) was injected
and blood glucose was measured 0, 15, 30, 60, 90, and 120 min after injection, using the
average of each curve to calculate the incremental area under the curve (AUC). The mice
were sacrificed at 21 weeks old with deep anesthesia, and muscle tissues were obtained,
and then stored at −80 ◦C after snap freezing in liquid nitrogen.

2.5. Exogenous H2S Supplementation

The mice (14 weeks old) were intraperitoneally injected with GYY4137 (Sigma-Aldrich)
at a dose of 50 mg/kg for 6 weeks. GYY4137 is a slow-releasing H2S donor and a water-
soluble derivative of Lawesson’s reagent. It has been shown that GYY4137 can release H2S
through hydrolysis [8]. The control group received the same volume of saline. After ITT and
IGTT, the mice were sacrificed by deep anesthesia, and the muscle samples were collected.

2.6. Aerobic Treadmill Exercise Protocol

The mice (14 weeks old) were subjected to aerobic treadmill exercise. In the first week,
the mice were adapted to the machine. They were allowed to walk on the treadmill at a
speed of 5 m/minute. After the adaptation period, the mice gradually carried out exercise
training at the speed of 8–12 m/min, lasting for 60 min/day, 6 days/week, and 6 weeks.
Concretely, the animals ran on the machine for 5 min (8 m/min) for warming up, then ran
on the treadmill for 50 min (12 m/min), then ran for 5 min (8 m/min) for cooling down.
The exercise intensity was moderate, about 60–75% of VO2 max [9–11]. The mice were
subjected to ITT and IGTT, and then sacrificed by deep anesthesia, and the muscle samples
were collected.

2.7. HE Staining

Skeletal muscle tissues were fixed overnight with 4% paraformaldehyde. The fixed
tissue samples were then embedded in paraffin. A continuous cross-section of muscle
tissues with a thickness of 5 µM was obtained, and hematoxylin eosin (HE) staining was
performed using a commercial kit (KeyGEN, China). Stained slices were observed by using
Olympus microscopy. The skeletal muscle cross-section area (CSA) was analyzed by using
Image J software (version 1.8.0, Rawak Software Inc., Stuttgart, Germany).

2.8. Q-PCR

The total RNA of muscle tissues was extracted using the TRIzol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The concentration and qual-
ity of the extracted RNA were determined on a NanoDrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Next, 1 µg RNA was reverse transcribed into cDNA
using a cDNA reverse transcription kit (Thermo Fisher). Q-PCR was conducted on
QuantStudio 6 Flex real-time PCR system (Thermo Fisher). Next, 2 µL of diluted cDNA
of various samples was mixed with SYBR Green PCR Master Mix (Life Technologies,
Shanghai, China). The housekeeping gene β-actin was employed as an internal con-
trol. Primers were as followings: CSE, 5′-CGGGTTTTGAATACAGCC GC-3′(forward), 5′-
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CAGCAAGACCCGATGCAAAG-3′(reverse); β-actin, 5’-TGGAA GGTGGACAGTGAGGC-
3’(forward), 5’-CCCAGGCATTGCTGACAGG-3’(reverse). At the end of amplification,
the specificity of PCR products was detected by a melting curve. Subsequent sequencing
of the PCR product was also performed to further confirm the specificity. To determine
the relative quantification of gene expression of the target gene and housekeeping gene,
compare Ct (threshold cycle) method and arithmetic formulate (2−∆∆Ct) was applied.

2.9. RNA-Seq Analysis

A total of six samples (3 GAS from MCSEKO mice and 3 GAS from Flox mice) were
used for RNA-seq. NovoGene (Beijing, China) conducted all the procedures including RNA
isolation, RNA quality evaluation (yield, purity, and integrity), construction of the cDNA
library, and Illumina sequencing. In short, RNA sequence libraries were generated from
mRNA purified from total RNA by using poly-T oligonucleotide-linked magnetic beads.
The data was sequenced on Illumina NovaSeq 6000 using a 150 bp read run of paired
reads. The data quality was checked on the Illumina Novaseq platform. Demultiplexing
was conducted with the Illumina Bcl2fastq2 v 2.17 program. These readings were mapped
to the latest UCSC transcript set using Hisat2 version 2.0.5, and gene expression levels
were estimated using feature counts 1.5.0-p3. The trimmed mean of M-values (DESeq) was
employed to normalize the gene expression. Differentially expressed genes were acquired
using the DESeq2 R package (1.16.1), as defined by p < 0.05 and |log2FoldChange| > 0.
Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were carried out for subsequent pathway analysis.

2.10. Western Blot Analysis

The GAS muscle was homogenized by an ultrasonic vibrator and mechanical homoge-
nizer in a cold RIPA buffer containing a mixture of protease inhibitors (Beyotime, Nanjing,
China). The tissue homogenates were centrifuged at 12,000× g for 15 min at 4 ◦C, and
the supernatants were collected. The protein concentration was quantified by a BCA kit
(ECOTOP, Guangzhou, China). The samples containing 30 µg protein were denatured,
separated with 10% SDS-PAGE, and then transferred to the poly (vinylidene fluoride)
membrane (Millipore Corp, Billerica, MA, USA) in turn. After being blocked, immunoblots
were incubated with primary antibody anti-CSE (1:300; Santa Cruz Biotechnologies, Cal-
ifornia, USA), anti-GLUT4 (1:1000; Abcam, Cambridge, UK), anti- mTOR (1:1000; Cell
Signaling Technology, Boston, MA, USA), anti-phospho-mTOR (p-mTOR) (1:1000; Cell
Signaling Technology), anti-S6K (1:1000; servicebio), anti-phospho-S6K (p-S6K) (1:1000;
absin, Shanghai, China), anti-ribosomal protein S6 (S6) (1:1000; servicebio, Wuhan, China),
anti-phospho-S6 (p-S6) (1:1000; absin), anti-IRS1 (1:1000; servicebio), anti-phospho-IRS1
(p-IRS1) (1:1000; servicebio), anti-phosphoinositide 3-kinase (PI3K) (1:1000; servicebio),
anti-phospho-phosphoinositide 3-kinase (p-PI3K) (1:1000; servicebio), anti-Akt (1:1000; ser-
vicebio), anti-phospho-Akt (p-Akt) (1:1000; servicebio), anti-PKG-1 (1:1000; Cell Signaling
Technology), and anti-β-actin (1:10,000; Bioworld, Nanjing, China) at 4 ◦C overnight, and
then incubate with IgG (1:5000; Abcam) conjugated with secondary horseradish peroxidase
at room temperature for 1 h. Immunoreactive proteins were visualized using an enhanced
chemiluminescence Western blotting detection system (Millipore). A densimeter (Syngen,
Braintree, UK), Genesnap, and Genetools software (Syngen, Braintree, UK) were used to
measure the staining intensity of the bands. To control sampling errors, the ratio of band
intensities to β-actin was obtained to quantify the relative protein expression level.

2.11. Statistical Analysis

All data were presented as mean ± standard error of the mean (SEM). The normal
distribution was evaluated by a Shapiro-Wilk test. Statistical significance was determined
according to sample distribution and variance uniformity. An unpaired two-tailed Stu-
dent’s t-test or nonparametric test was performed for two group comparison. For more
than two groups, one-way analysis of variance (ANOVA) followed by post-hoc multi-
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ple comparisons were performed for intergroup comparisons. p < 0.05 was considered
statistically significant.

3. Results
3.1. The MCSEKO Mice Show Normal Body Weight, Body Composition, Muscles Mass, and
Musculature Morphology

As shown in Figure 1A–C, the MCSEKO mice showed a significant decrease in mRNA
and protein levels of CSE in skeletal muscle.
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Figure 1. The expression level of CSE and characterization of body weight, body composition, muscle
mass, and musculature morphology in MCSEKO mice. MCSEKO mice and littermate Flox mice were
housed in standard conditions until 21-weeks-old, and then sacrificed under deep anesthesia. The
body weight, body composition, and muscle mass were measured every 1 to 2 weeks as indicated.
Q-PCR and Western blotting analysis were used to determine CSE expression in the skeletal muscle.
(A) CSE mRNA levels in the GAS of Flox mice and MCSEKO mice (n = 6 in each group). (B,C) CSE
protein expression in the GAS was detected by western blot analysis in the mice (n = 6 in each group).
(D–F) The body weight and body composition were measured in Flox mice and the MCSEKO mice.
The body weight (D), fat mass (E), and lean mass (F) of Flox mice and MCSEKO mice (n = 12 in
each group). (G) The muscle weight of the mice (n = 12 in each group). (H) H&E staining of GAS
(scale bars, 50 µm). (I) the GAS cross section area in the mice (n = 12 in each group). All data were
expressed as means ± SEM. *** p < 0.001.

The MCSEKO mice displayed normal body weight, fat mass, and lean mass when
compared with Flox littermates (Figure 1D–F). There was no significant difference in
QUA, GAS, Triceps, TA, EDL, and SOL muscle mass between the MCSEKO mice and
Flox littermates (Figure 1G). HE staining showed no obvious abnormity in MCSEKO mice
(Figure 1H,I).

3.2. The MCSEKO Mice Show Normal Grip Strength and Exercise Capacity

As shown in Figure 2A–D, there was no significant difference in grip strength between
MCSEKO mice and Flox littermates. Moreover, there was no significant significance in
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running distance, running time, and maximum running speed between MCSEKO mice and
Flox littermates.
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Figure 2. MCSEKO mice display normal grip strength and exercise capacity. The mice were housed
under standard conditions. The grip strength and treadmill exhaustion exercise capacity were
measured on Flox mice and the MCSEKO mice at 20 weeks old. (A) The grip strength of Flox mice
and the MCSEKO mice (n = 12 in each group). (B–D) The running distance, running time, and
running maximum velocity of Flox mice and the MCSEKO mice (n = 12 in each group). (E,F) The
blood glucose level of Flox mice and the MCSEKO mice before and after running exhaustion (n = 12
in each group). (G,H) The blood lactate level of Flox mice and the MCSEKO mice before and after
running exhaustion (n = 12 in each group). Data were expressed as means ± SEM.

To test whether CSE deficiency affects exercise performance, the mice were subjected
to a high-intensity treadmill. Before and after running, the blood glucose levels and blood
lactate levels were measured to make sure that all mice reached the fatigue limit. As shown
in Figure 2E–H, circulatory glucose level was decreased in MCSEKO and control mice after
exercise, in contrast, the circulatory lactic acid level was increased after exercise in both of
MCSEKO and control groups. There was no significant difference in blood glucose and
lactic acid levels between the two groups before or after exercise.

3.3. MCSEKO Mice Show Impaired Glucose Tolerance and Reduced Insulin Sensitivity with Age
and GYY4137 Treatment Improved Them

To study whether CSE deficiency induces molecular biological changes in skeletal
muscle, a RNA-seq assay was performed on the GAS of the MCSEKO and Flox mice
(Figure 3). The results showed that 275 genes were significantly differentially regulated.
Among the differentially regulated genes, 181 genes were upregulated whilst 94 genes
were down-regulated in CSE knockout mice compared with Flox mice (Figure 3A,B). GO
analysis showed that selective autophagy, response to insulin, glucose import in response
to insulin stimulus, and oxidative stress were enriched (Figure 3C).

Next, we performed the IGTT and ITT to examine glucose tolerance and insulin
sensitivity. The MCSEKO mice showed normal IGTT and ITT relative to Flox mice at
10~11 weeks old (Figure 4A,E,I,M) and 15~16 weeks old (Figure 4B,F,G,N). Impaired
glucose tolerance and insulin tolerance occurred at 20-weeks-old. As shown in Figure 4C,
circulatory glucose concentration was significantly increased 30, 60, 90, and 120 min after
glucose administration in MCSEKO mice compared with Flox littermates. The area under
the curve (AUC) of the blood glucose level was significantly higher in MCSEKO mice
than that in Flox mice (Figure 4J). Moreover, ITT showed that significantly increased
glucose levels occurred at 15, 30, 60, and, 90 min after insulin administration in MCSEKO
mice compared with Flox littermates (Figure 4K). The AUC of blood glucose level was
significantly higher in MCSEKO mice than that in Flox mice (Figure 4O).
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Figure 3. RNA-seq based transcriptome of skeletal muscle of MCSEKO mice. The mice were housed
under standard conditions until 20-weeks-old, and then sacrificed under deep anesthesia. GAS was
obtained for RNA-seq analysis. (A) Heat map of differentially expressed genes in the GAS of Flox mice
and the MCSEKO mice (n = 3 in each group). (B) Volcano plot of differentially expressed genes in GAS
of Flox mice and the MCSEKO mice (p < 0.05 and |log2FoldChange| > 0). The top eleven significantly
different genes between the two groups were labeled. (C) The GO pathway enrichment analysis.
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Figure 4. Glucose tolerance and insulin sensitivity are impaired in MCSEKO mice and GYY4137 treatment
improves them. The mice were housed under standard conditions. The glucose tolerance tests in Flox mice
and the MCSEKO mice at the age of 10 (A,E), 15 (B,F), and 20 (C,G) weeks, respectively (n = 7 in each
group). The insulin tolerance tests in Flox mice and the MCSEKO mice at the age of 11 (I,M), 16 (J,N), and
21 (K,O) weeks, respectively (n = 7 in each group). Some mice at 14 weeks old were treated with GYY4137
for six weeks. (D,H) the glucose tolerance tests were performed at the age of 20 weeks (n = 7 in each group).
(L,P) the insulin tolerance tests were performed at the age of 21 weeks (n = 7 in each group). Data were
expressed as means± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 (MCSEKO vs. Flox). # p < 0.05, ## p < 0.01,
### p < 0.001 (MCSEKO +GYY vs. MCSEKO). & p < 0.05 (MCSEKO +GYY vs. MCSEKO). GYY, GYY4137.
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We then examined the effects of H2S donor GYY4137 treatment on glucose tolerance
and insulin sensitivity in MCSEKO mice. With the six-week GYY4137 treatment, impaired
glucose tolerance and reduced insulin sensitivity in MCSEKO mice were significantly
reversed (Figure 4D,H,L,P).

3.4. The Insulin Signal Pathway and GLUT4 Protein Level Are Down-Regulated in the Skeletal
Muscle of the MCSEKO Mice and GYY4137 Treatment Ameliorates Them

In skeletal muscle cells, insulin promotes glucose uptake by binding to insulin recep-
tors and subsequently activating a series of signal events triggered by IRS 1 phosphorylation.
PI3K signaling interacts with p-IRS via p85 subunit, subsequently leads to Akt phospho-
rylated. This reaction leads to membrane translocation of GLUT4, thereby promoting
glucose uptake [12]. It was found that the p-IRS1/IRS1, p-PI3K/PI3K, and p-Akt/Akt
were down-regulated in MCSEKO mice compared to the littermate control mice (Figure 5).
Six-week GYY4137 treatment increased p-IRS1/IRS1, p-PI3K/PI3K, and p-Akt/Akt levels
compared with vehicle treatment in MCSEKO mice.
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Figure 5. The skeletal muscle levels of IRS/PI3K/Akt signaling and GLUT4 are down-regulated
in MCSEKO mice and GYY4137 treatment can increase them. MCSEKO mice and Flox mice were
treated with GYY4137 or vehicle for six weeks. Western blot analysis of p-IRS1, IRS1, p-PI3K, PI3K,
p-Akt, Akt, and GLUT4 protein levels in GAS muscle. (A) The representative images of western
blotting. (B,C) Cumulative data of western blotting images. Data were expressed as means ± SEM
(n = 6 in each group). * p < 0.05, ** p < 0.01.

The predominant transporter for glucose uptake is GLUT4 in skeletal muscle. It was
found that the GLUT4 expression was significantly decreased in the skeletal muscle of the
MCSEKO mice compared to the littermate control mice (Figure 5). With six-weeks GYY4137
treatment, the GLUT4 protein levels in the skeletal muscle were significantly increased in
MCSEKO mice.

3.5. The PKG-1 Protein Level Was Down-Regulated and the mTOR Signal Pathway Was
Up-Regulated in the Skeletal Muscle of the MCSEKO Mice and GYY4137 Treatment
Attenuated Them

KEGG analysis showed that a series of signaling pathways including the cGMP-PKG,
insulin signal, PI3K-Akt signal, and mTOR signal were enriched (Figure 6A). Some stud-
ies have shown that the CSE/H2S deficiency significantly decreased glucose metabolism
in C2C12 myotubes and gastrocnemius muscle of high-fat diet-fed mice [13]. More re-
cently, it is reported that the cGMP/PKG signaling is involved in glucose uptake [14]. As
shown in Figure 6B,C, PKG-1 expression was significantly reduced in the skeletal muscle
of MCSEKO mice compared to the littermate control mice. The PKG-1 protein level in
MCSEKO mice was significantly increased after the GYY4137 treatment compared with the
saline treatment.
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Figure 6. The PKG-1 level and mTOR signal pathway are altered in MCSEKO mice and GYY4137
treatment reverses them. MCSEKO mice and Flox mice were treated with GYY4137 or vehicle for
six weeks. Western blot analysis of PKG-1 and mTOR signal pathway in GAS muscle. (A) Enriched
pathways of KEGG analysis, (B) The representative images of western blotting of PKG1. (C) Cumula-
tive data of western blotting images of PKG-1. (D) The representative images of western blotting
of mTOR signaling pathway. (E,F) Cumulative data of western blotting images of mTOR signaling
pathway. Data were expressed as means ± SEM (n = 6 in each group). ** p < 0.01,*** p < 0.001.

Insulin signaling is regulated by mTOR/S6K/S6 signaling pathway [15]. S6K, the
downstream target gene of mTOR, can inhibit the tyrosine phosphorylation of IRS-1,
thereby leading to impaired insulin signaling [16]. As shown in Figure 6D–F, MCSEKO
mice showed significantly increased mTOR/S6K/S6 phosphorylation levels compared
to the littermate control mice (Figure 6D–F). GYY4136 treatment significantly reduced
mTOR/S6K/S6 phosphorylation levels compared with vehicle treatment in MCSEKO mice.

3.6. Aerobic Treadmill Exercise Improved Glucose Tolerance and Insulin Resistance in the
MCSEKO Mice

Many studies have implicated that aerobic exercise can improve glucose tolerance
and insulin resistance in obese [17] and diabetic mice [18]. Exercise enhances insulin
action in the skeletal muscle [18,19]. We next tested whether aerobic treadmill exercise
improved glucose tolerance and insulin resistance in MCSEKO mice. As shown in Figure 7,
aerobic treadmill exercise significantly improved glucose tolerance performance and insulin
sensitivity in MCSEKO mice.
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Figure 7. Aerobic treadmill exercise improves glucose tolerance and insulin sensitivity in MCSEKO
mice. MCSEKO mice and Flox mice were housed under standard conditions. Aerobic treadmill
exercise was performed on the mice at 14 weeks old for six weeks. (A,B) IGTT in Flox mice, the
MCSEKO mice, Flox + EXE mice, and the MCSEKO + EXE mice at the age of 20 weeks (n = 7 in
each group). (C,D) ITT in Flox mice, the MCSEKO mice, Flox + EXE mice, and the MCSEKO + EXE
mice at the age of 21 weeks (n = 7 in each group). Data are expressed as means ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001 (Flox vs. MCSEKO); $$ p < 0.01, $$$ p < 0.001 (MCSEKO vs. MCSEKO + EXE).
EXE: exercise.

3.7. Aerobic Treadmill Exercise Increases GLUT4 Expression and Improves PKG-1, IRSI/PI3K/Akt
and mTOR/S6K/S6 Signaling Pathways in MCSEKO Mice

As shown in Figure 8, aerobic treadmill exercise increased GLUT4 protein levels
and p-IRS1/IRS1, p-PI3K/PI3K, and p-Akt/Akt levels in MCSEKO mice compared with
sedentary treatment.

Antioxidants 2022, 11, x FOR PEER REVIEW 11 of 17 
 

 
Figure 7. Aerobic treadmill exercise improves glucose tolerance and insulin sensitivity in MCSEKO 
mice. MCSEKO mice and Flox mice were housed under standard conditions. Aerobic treadmill ex-
ercise was performed on the mice at 14 weeks old for six weeks. (A,B) IGTT in Flox mice, the 
MCSEKO mice, Flox + EXE mice, and the MCSEKO + EXE mice at the age of 20 weeks (n = 7 in each 
group). (C,D) ITT in Flox mice, the MCSEKO mice, Flox + EXE mice, and the MCSEKO + EXE mice 
at the age of 21 weeks (n = 7 in each group). Data are expressed as means ± SEM. * p < 0.05, ** p < 
0.01, *** p < 0.001 (Flox vs. MCSEKO); $$ p < 0.01, $$$ p < 0.001 (MCSEKO vs. MCSEKO + EXE). EXE: 
exercise. 

3.7. Aerobic Treadmill Exercise Increases GLUT4 Expression and Improves PKG-1, 
IRSI/PI3K/Akt and mTOR/S6K/S6 Signaling Pathways in MCSEKO Mice 

As shown in Figure 8, aerobic treadmill exercise increased GLUT4 protein levels and 
p-IRS1/IRS1, p-PI3K/PI3K, and p-Akt/Akt levels in MCSEKO mice compared with seden-
tary treatment.  

 
Figure 8. Aerobic treadmill exercise increases GLUT4 levels and IRSI/PI3K/Akt signaling in 
MCSEKO mice. MCSEKO mice and Flox mice were housed under standard conditions. Aerobic 
treadmill exercise was performed on the mice at 14 weeks old for six weeks. Western blot analysis 
of p-IRS1, IRS1, p-PI3K, PI3K, p-Akt, Akt, and GLUT4 levels in GAS. (A) The representative images 
of western blotting. (B,C) Cumulative data of western blotting images. Data were expressed as 
means ± SEM (n = 6 in each group). ** p < 0.01. EXE: exercise. 

Figure 8. Aerobic treadmill exercise increases GLUT4 levels and IRSI/PI3K/Akt signaling in MC-
SEKO mice. MCSEKO mice and Flox mice were housed under standard conditions. Aerobic treadmill
exercise was performed on the mice at 14 weeks old for six weeks. Western blot analysis of p-IRS1,
IRS1, p-PI3K, PI3K, p-Akt, Akt, and GLUT4 levels in GAS. (A) The representative images of western
blotting. (B,C) Cumulative data of western blotting images. Data were expressed as means ± SEM
(n = 6 in each group). ** p < 0.01. EXE: exercise.
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Figure 9 showed that the aerobic treadmill exercise increased PKG-1 protein level
(Figure 9A,B) and decreased mTOR/S6K/S6 phosphorylation levels compared with seden-
tary treatment in MCSEKO mice.
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in the skeletal muscle of the MCSEKO mice. MCSEKO mice and Flox mice were housed under
standard conditions. Aerobic treadmill exercise was performed on the mice at 14-weeks-old for six
weeks. (A,B) Western blot analysis of PKG-1 protein level in GAS muscle. (C–E) Western blot analysis
of p-mTOR, mTOR, p-S6K, S6K, p-S6, S6 protein levels in GAS. (A,C) The representative images of
western blotting. (B,D,E) Cumulative data of western blotting images. Data were expressed as means
± SEM (n = 6 in each group). ** p < 0.01, *** p < 0.001. EXE: exercise.

4. Discussion

Our study showed that CSE ablation in skeletal muscle led to glucose intolerance
and insulin resistance, which was associated with decreased GLUT4 protein levels and
imbalances in PKG-1, IRS/PI3K/Akt, and mTOR/S6K/S6 signaling pathways.

Lu et al. [20]. have recently reported that high glucose, palmitate, and oleate levels
significantly reduce H2S and the expression of CSE in mouse C2C12 myoblasts. The CSE
expression level are declined in the skeletal muscle of db/db mice, which is reversed by the
administration of NaHS [20]. Some other studies have also shown that GLUT4 expression is
modulated by the CSE/H2S system in cultured muscle cells. The CSE knockdown leads to
reduced GLUT4 expression and glucose uptake in C2C12 myotubes, which is prevented by
H2S treatment [21]. L-cysteine, the precursor of H2S, promotes the translocation of GLUT4
to the cell membrane and promotes glucose uptake in C2C12 cells [22]. Cai et al. [23] re-
vealed that treatment of high-fat diet-induced obese mice with GYY4137 improves insulin
resistance. Manna et al. [24] observed that exogenous supplementation with Na2S (a source
of H2S) up-regulates insulin-stimulated glucose utilization via up-regulating the insulin
signaling pathway. Consistent with these studies, we also revealed that CSE/H2S is an im-
portant factor in maintaining insulin sensitivity and GLUT4 expression in skeletal muscle.

When insulin binds to the extra-cellular domain, the insulin receptor is activated
through trans-autophosphorylation [25]. Afterward, the tyrosine site of IRS-1 undergoes
phosphorylation, which binds to PI3K, enabling PI3K to activate Akt [26]. Xue and col-
leagues [27] have demonstrated that glucose uptake is decreased in cultured myotubes
with CSE knockdown. Exogenous H2S treatment increases glucose uptake via activation
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of the IRS/PI3K/Akt signaling pathway in L6 myotubes. H2S treatment improves insulin
sensitivity and increases glucose tolerance via promoting PI3K/Akt signaling in skeletal
muscle in Goto-Kakizaki diabetic rats. In the current study, the muscle CSE deficiency
led to glucose intolerance and poor insulin sensitivity, and reduced GLUT4 expression
level and IRS/PI3K/Akt signaling pathway. GYY4137 treatment significantly increased
glucose tolerance and insulin sensitivity and promoted IRS1/PI3K/Akt signaling and
GLUT4 protein level in the skeletal muscle of the MCSEKO mice. Together, it suggests that
CSE/H2S maintains insulin sensitivity via regulating IRS/PI3K/Akt signaling pathway
in skeletal muscle. Of note, GYY4137 treatment has no effects on glucose tolerance and
insulin resistance in wild type mice, which is consistent with the Manna et al.’s study where
they show that H2S and L-cysteine did not affect glucose utilization in the cultured cells at
normoglycemic conditions [24].

It is known that mTOR is a component of the negative feedback loops in insulin
signaling. IRS-1 phosphoration is suppressed by mTOR/S6K signaling [28]. In fact, insulin
sensitivity is under control by the balance between mTOR signaling and PI3K/Akt signaling.
Koketsu et al.’s study has indicated that suppression of the mTOR/S6K pathway may
enhance Akt phosphorylation, restore insulin sensitivity, and improve glucose tolerance [29].
It has also been shown that mTORC1 mediates phosphorylation and the stability of growth
factor receptor binding protein 10 (Grb10), one of the mTORC1 substrates, leading to
feedback suppression of PI3K and inhibition of insulin signaling [15]. In addition, chronic
mTOR activation contributes to insulin resistance by inhibiting insulin signaling through
an S6K-independent negative feedback loop [30]. S6K1 KO mice show enhanced insulin
sensitivity [31]. Interestingly, the present study has demonstrated CSE/H2S deficiency
led to increased mTOR signaling, in contrast, it caused a reduction of PI3K/Akt signaling.
This key piece of evidence may explain the down-regulated insulin signaling observed in
MCSEKO mice.

The cyclic GMP-PKG signaling pathway is involved in the modulation of glucose
uptake in skeletal muscle [32]. The stimulating effects of cGMP on glucose transport require
the activation of PKG in muscle cells [33]. PKG activators significantly increase glucose
uptake in cultured rat podocytes [34]. Suppression of PKG signaling would inhibit insulin
sensitivity [34,35]. The present study showed that CSE/H2S signaling maintains PKG-1
expression in skeletal muscle, which may indicate that the effects of CSE/H2S signaling on
insulin sensitivity are associated with its regulating PKG-1 expression.

Oxidative stress is involved in the development of insulin resistance [36]. H2S sup-
presses mitochondrial oxidative stress in by increasing the intracellular GSH concentra-
tion [37]. Parsanathan et al. [21] reveal that H2S deficiency or CSE knockdown increases
total protein S-glutathionylation, which protects proteins from oxidative stress. Exoge-
nous H2S supplementation increases GSH levels, attenuates cellular oxidative stress, and
improves glucose uptake in CSE knockdown myotubes. Manna et al. [24] show that H2S
promoting glucose uptake is associated with increasing cellular GSH content, reduces
oxidative stress, and activates IRS1/PI3K/AKT signaling in cultured adipocytes. Interest-
ingly, we found that oxidative stress was enriched in GO analysis. In fact, CSE deficiency
can result in oxidative stress since CSE is an upstream factor for GSH metabolism [3]. In
addition, H2S can exert its effects by direct sulfhydration of various proteins. Cai et al. [23]
demonstrated that CSE/H2S can sulfhydration of PPARγ at the C139 site and increase
PPARγ activity, thereby increasing insulin sensitivity and promoting glucose uptake.

Exercise can enhance the expression of the GLUT4 glucose transporter [38]. After one
exercise, the increase of GLUT4 transcription lasted for 3–24 h [39]. In addition, long-term
regular exercise can increase the expression of GLUT4 protein steadily and improve blood
glucose control [40]. It has been also reported that the expression of GLUT4 protein and
glucose intake stimulated by insulin in skeletal muscles is increased after three weeks
of single-leg standing training, compared with the untrained muscles [41]. Similarly,
Christ-Roberts et al. stated that endurance training enhances the expression of GLUT4 in
patients with diabetes and reduces circulatory glucose levels [42]. In fact, some studies
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have proposed that exercise promotes insulin signaling [43,44]. Similarly, in this study, we
also observed that 6-week aerobic treadmill exercise training enhanced GLUT4 protein
expression, increased the phosphorylation IRS1/PI3K/Akt protein levels, and improved
the systematic insulin sensitivity and glucose tolerance in the MCSEKO mice.

Some studies have demonstrated that the benefit of aerobic exercise on insulin re-
sistance is associated with the suppression of mTOR/S6K signaling pathway in skeletal
muscle. Niu et al. [45] reported that aerobic exercise improves glucose tolerance and
reduces mTOR/S6K signaling in skeletal muscle in high-fat diet mice. Glynn et al. [46]
have also found that six-week aerobic exercise and nine-week independent running wheel
ameliorate insulin resistance by decreasing mTOR/S6K signaling in skeletal muscle. Con-
sistent with these studies, we found that the 6-week aerobic treadmill exercise improved
insulin sensitivity and glucose tolerance and attenuated the mTOR/S6K signal pathway in
the MCSEKO mice. The above evidence suggests that aerobic exercise contributes to the
reduction in the mTOR/S6K signaling pathway.

Zhang et al. [47] report that insulin sensitivity is increased via the cGMP/PKG pathway
after several hours of contraction of mouse skeletal muscle. Fan et al. [48]. reveal that PKG
signaling can increase Hsp20 phosphorylation at Ser16. Boluyt et al. [19] demonstrated that
aerobic exercise training enhances the Hsp20 level in the heart of rats, which can activate
Akt signaling and improve insulin resistance [49]. Of note, we found that six-week aerobic
treadmill exercise only improve the expression of PKG-1 in the muscle of the MCSEKO
mice muscle but did not affect the expression of PKG-1 in the muscle of Flox mice muscle.

5. Conclusions

The present study revealed for the first time that skeletal muscle CSE/H2S deficiency
leads to impaired glucose tolerance and insulin resistance in mice. Decreased GLUT4
expression and the imbalance in IRS-1/PI3K/Akt, PKG-1, and mTOR/S6K/S6 signaling
pathways contribute to such effects. Exercise training ameliorates glucose intolerance
and insulin resistance, and reverses the altered signaling pathways caused by CSE/H2S
deficiency. Our study provides a novel mechanism regarding the roles of skeletal muscle
in maintaining insulin sensitivity and blood glucose homeostasis, and benefits of exercise
training in insulin sensitivity.
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