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Abstract: Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that
contributes to pathological damage in various conditions, including ischemic stroke, myocardial
infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R
damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type
of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides,
has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that
ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies
targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent
advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-
regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis
regulators, to provide insights into developing therapeutic strategies for this devastating disease.
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1. Introduction

Ischemia-reperfusion (I/R) is a pathological condition characterized by the initial
restriction of the blood supply to organs or tissues, followed by the restoration of blood flow
and reoxygenation. Insufficient blood supply leads to tissue hypoxia and cellular metabolic
imbalance, and subsequent reperfusion and reoxygenation cause excessive inflammatory
responses and exacerbate ischemic tissue damage, which is known as I/R injury [1]. I/R
injury is intrinsically associated with oxidative damage, and multiple pathological processes
contribute to this damage, including impaired endothelial barrier function, mitochondrial
dysfunction, activation of the cell death program, calcium overload, sterile inflammation
and autoimmune responses [2]. However, the precise molecular mechanism of I/R injury
has not been fully elucidated and targeted therapies are still limited. Overall, therapeutic
strategies for this condition need to be developed, and examining new therapeutic targets
to manage I/R injury is a top priority.

Cell death is a stable pathological indicator of I/R injury. Emerging evidence has
revealed a novel therapeutic concept to target regulated cell death (RCD) to counteract
I/R injury, although the role of RCD in I/R injury has only recently become apparent [3].
Different forms of RCD have been identified in I/R injury, including autophagy, necroptosis,
apoptosis, pyroptosis, parthanatos and ferroptosis [2]. Recent studies suggest that targeting
RCD exerts beneficial effects against I/R injury; in particular, RCD in parenchymal and
endothelial cells is recognized as a promising intervention target. I/R injury leads to RCD of
parenchymal and endothelial cells, and apoptosis, necroptosis and autophagy are the most
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common types [4]. Generally, regulating I/R-induced RCD has been recognized as a new
therapeutic strategy against I/R injury, but effective interventions are rarely summarized.

Recently, ferroptosis, a form of RCD characterized by iron-dependent lipid peroxida-
tion, glutathione (GSH) depletion and glutathione peroxidase 4 (GPX4) inactivation [5], has
received great attention in I/R events [6]. Ferroptosis occurs during the reperfusion but
not the ischemic phase, as the levels of two key enzymes in ferroptosis, GPX4 and long-
chain-fatty-acid-CoA ligase 4 (ACSL4) in tissues were significantly regulated only during
reperfusion, accompanied by elevated iron concentration and malondialdehyde (MDA)
levels [7]. During the reperfusion phase, mitochondrial respiration is enhanced, which
consequently triggers reactive oxygen species (ROS) explosion and ferroptosis [8]. Notably,
decreased mitochondrial membrane potential (MMP) can be observed, which indicates
increased mitochondrial outer membrane permeability, a characteristic of mitochondrial-
mediated apoptosis [9]. Although caspases are activated during this process, interventions
targeting apoptosis do not completely prevent cell death. Thus, although activated in
I/R, apoptosis is not essential for subsequent cell death, suggesting the existence of other
mechanisms governing cell death [10], such as ferroptosis. And indeed, mitochondria play
a much more active role in ferroptosis than in apoptosis (17). Moreover, some morphologi-
cal characteristics of mitochondria during I/R, including reduced mitochondrial volume,
reduced or even lost mitochondrial cristae, and condensed mitochondrial membrane densi-
ties, are not associated with other forms of cell death, further emphasizing the relevance of
ferroptosis [8].

Ferroptosis has been implicated in the pathogenesis of I/R injury in multiple or-
gans, using ferroptosis inhibitors, as well as targeting ferroptosis regulatory genes, which
has been demonstrated to attenuate pathological damage in various I/R models [11]
(Tables 1 and 2). Inhibiting ferroptosis has the potential to become an effective therapeutic
strategy for I/R injury. However, the regulatory mechanisms of ferroptotic death in I/R
remain largely uncharacterized, and it is necessary to further examine the pathological
mechanism and targeted therapeutic strategies of ferroptosis in I/R conditions. In the
current review, we summarize the recent research progress on ferroptosis in I/R injury,
including ferroptosis regulatory genes involved in I/R and the available evidence for the
therapeutic application of ferroptosis regulators, hoping to reflect the state of the art and
provide a direction for future trials.

Table 1. Therapeutic targets of ferroptosis in ischemia-reperfusion injury.

Therapeutic Targets Diseases Model Key Mechanism References

Tau Cerebral IRI In vivo Tau-iron interaction, inhibit iron
overload [12]

Ferritin Cerebral IRI In vivo/In vitro Regulate p53 and SLC7A11 [13,14]

Mitochondrial ferritin Cerebral IRI In vivo Inhibit iron overload, inhibit lipid
peroxidation [15]

NCOA4 and USP14 Cerebral IRI In vivo/In vitro Promote ferritinophagy [14]

UBIAD1 Cerebral IRI In vivo/In vitro Inhibit lipid peroxidation [16]

PGE2 Cerebral IRI In vivo/Human
samples

Inhibit iron accumulation and lipid
peroxidation [17]

SAT1 Cerebral IRI In vivo/In vitro Transcriptional target of p53, induce
lipid peroxidation [18]

Thrombin Cerebral IRI In vivo/In vitro Instigate esterification of ACSL4 [19]

LncRNA
PVT1/miR-214 Cerebral IRI In vivo/In vitro Inhibit TfR1 and p53 [20]

Transferrin and
glutamine Myocardial IRI In vivo/In vitro Ferroptosis inducer [21]
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Table 1. Cont.

Therapeutic Targets Diseases Model Key Mechanism References

USP22 Myocardial IRI In vivo/In vitro Regulate SIRT1/p53/SLC7A11 axis [22]

USP7 Myocardial IRI In vivo/In vitro Upregulate p53/TfR1 pathway [23]

FPN Myocardial IRI In vivo/In vitro Regulate iron homeostasis [24]

DNMT-1 Myocardial IRI In vivo/In vitro Promote NCOA4-mediated
ferritinophagy [25]

OxPCs Myocardial IRI In vivo/In vitro Suppress GPX4 activity [26]

ELAVL1 Myocardial IRI In vivo/In vitro Promote autophagic ferroptosis [27]

MiR-135b-3p Myocardial IRI In vivo/In vitro Downregulate GPX4 expression [28]

LncAABR07025387.1 Myocardial IRI In vivo/In vitro Sponge miR-205 to enhance ACSL4
expression [29]

LncRNA Mir9-3hg Myocardial IRI In vivo/In vitro Regulate Pum2/PRDX6 axis [30]

MET Liver IRI In vivo/In vitro Disrupt iron metabolism [31]

HUWE1 Liver IRI In vivo/In vitro/Human
samples

Target TfR1 for proteasomal
degradation [32]

MiR-29a-3p Liver IRI In vivo/In vitro Downregulate IREB2 expression [33]

ALR Renal IRI In vitro Anti-oxidant, upregulate GPX4
expression [34]

Panx1 Renal IRI In vivo/In vitro Regulate HO-1, NCOA4 and FTH1 [35]

CIRBP Renal IRI In vivo/In vitro Regulate ELAVL1 to promote
ferritinophagy [36]

Legumain Renal IRI In vivo/In vitro Promote degradation of GPX4 [37]

IDO Renal IRI In vitro Induce AhR-mediated ferroptosis [38]

LSD1 Renal IRI In vivo/In vitro Upregulate TLR4/NOX4 pathway [39]

MiR-182-5p and
miR-378-3p Renal IRI In vivo/In vitro Downregulate GPX4 and SLC7A11

expression [40]

MiR-3587 Renal IRI In vitro Downregulate HO-1 expression [41]

Sp1 Intestinal IRI In vivo/In vitro/Human
samples Increase ACSL4 transcription [42]

TRPV1 Intestinal IRI In vivo/In vitro/Human
samples Upregulate GPX4 expression [43]

Nrf2 IIR-induced lung
injury In vivo/In vitro Upregulate SLC7A11-related axis [44–46]

p53 IIR-induced lung
injury In vivo/In vitro Regulate Nrf2 signaling pathway [47]

Abbreviations: IRI, ischemia-reperfusion injury; p53, protein 53; SLC7A11, solute carrier family 7 member 11;
NCOA4, nuclear receptor coactivator 4; USP14, ubiquitin-specific peptidase 14; UBIAD1, UbiA prenyltransferase
domain containing 1; PGE2, prostaglandin E2; SAT1, spermidine/spermine N1-acetyltransferase 1; ACSL4,
acyl-CoA synthetase long-chain family member 4; LncRNA, long non-coding RNA; PVT1, plasmacytoma variant
1; MiR, microRNA; TfR1, transferrin receptor 1; USP22, ubiquitin-specific peptidase 22; SIRT1, sirtuin-1; USP7,
ubiquitin-specific peptidase 7; FPN, ferroportin; DNMT-1, DNA (cytosine-5)-methyltransferase 1; OxPCs, oxidized
phosphatidylcholines; GPX4, glutathione peroxidase 4; ELAVL1, embryonic lethal-abnormal vision like protein 1;
Pum2, pumilio RNA binding family member 2; PRDX6, peroxiredoxin 6; MET, macrophage extracellular trap;
HUWE1, HECT domain-containing ubiquitin E3 ligase; IREB2, iron response element-binding protein 2; ALR,
augmenter of liver regeneration; Panx1, pannexin 1; HO-1, heme oxygenase 1; FTH1, ferritin heavy chain 1; CIRBP,
cold-inducible RNA-binding protein; IDO, indoleamine 2,3-dioxy-genase 1; AhR, aryl-hydrocarbon receptor;
LSD1, lysine- specific demethylase 1; TLR4, toll like receptor 4; NOX4, NADPH oxidase 4; Sp1, special protein 1;
TRPV1, transient receptor potential cation channel subfamily V member 1; Nrf2, nuclear factor erythroid 2-related
factor 2; IIR, intestinal ischemia-reperfusion.
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Table 2. Pharmacological therapeutic strategies targeting ferroptosis in ischemia-reperfusion injury.

Reagents Diseases Model Function References

Selenium compounds Cerebral IRI In vivo/In vitro Drive GPX4 expression [48–50]

Carvacrol Cerebral IRI In vitro Upregulate GPX4 expression [51]

Rehmannioside A Cerebral IRI In vivo/In vitro/Human
samples

Activate SLC7A11/GPX4
axis [52]

Galangin Cerebral IRI In vivo/In vitro Activate SLC7A11/GPX4
axis [53]

Carthamin yellow Cerebral IRI In vivo Inhibit ACSL4 expression [54]

Kaempferol Cerebral IRI In vitro Activate
Nrf2/SLC7A11/GPX4 axis [55]

Liproxstatin-1 Cerebral, myocardial,
lung, liver, intestinal IRI

In vivo/In vitro/Human
samples Inhibit lipid peroxidation [12,42,56–58]

Ferrostatin-1 Cerebral, myocardial,
lung, liver, renal IRI

In vivo/In vitro/Human
samples Inhibit lipid peroxidation [12,20,26,31,59–62]

Deferoxamine Myocardial, liver,
renal IRI In vivo/In vitro Iron chelator [21,31,61–63]

Dexrazoxane Myocardial IRI In vivo/In vitro Iron chelator [64]

Gossypol acetic acid Myocardial IRI In vivo/In vitro Anti-oxidant/iron-chelating [65]

Histochrome Myocardial IRI In vivo/In vitro Anti-oxidant/iron-chelating [66]

Cyanidin-3-glucoside Myocardial IRI In vivo/In vitro Anti-oxidant [67]

Xanthohumol Myocardial IRI In vivo/In vitro Anti-oxidant/upregulate
GPX4 expression [68]

Etomidate Myocardial IRI In vivo Upregulate Nrf2/HO-1
pathway [69]

Naringenin Myocardial IRI In vivo/In vitro Upregulate
Nrf2/SLC7A11/GPX4 axis [70]

Britanin Myocardial IRI In vivo/In vitro Upregulate Nrf2/GPX4 axis [71]

Propofol Myocardial IRI In vivo/In vitro Regulate AKT/p53 pathway [72]

Ferulic acid Myocardial IRI In vivo Upregulate AMPKα2
expression [73]

PDA NPs Myocardial IRI In vivo/In vitro Inhibit iron deposition and
lipid peroxidation [74]

UAMC-3203 Myocardial IRI In vivo Inhibit lipid peroxidation [75]

Resveratrol Myocardial IRI In vivo/In vitro Regulate USP19-Beclin 1
autophagy/upregulate GPX4 [76]

Dexmedetomidine Myocardial IRI In vivo Upregulate SLC7A11/GPX4
axis [77]

Irisin Lung, renal IRI In vivo/In vitro Upregulate Nrf2/HO-1
axis/upregulate GPX4 [60,78]

Rosiglitazone Lung, intestinal IRI In vivo/In vitro Inhibit ACSL4 expression [42,57]

α-tocopherol Liver IRI In vivo Inhibit lipid peroxidation [61]

Pachymic acid Renal IRI In vivo Upregulate Nrf2 signaling
pathway [79]

16–86 Renal IRI In vivo/In vitro Inhibit lipid peroxidation [80]

XJB-5-131 Renal IRI In vivo Inhibit lipid
peroxidation/anti-oxidant [81]
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Table 2. Cont.

Reagents Diseases Model Function References

Quercetin Renal IRI In vivo/In vitro Inhibit
ATF3/SLC7A11/GPX4 axis [82]

Nec-1f Renal IRI In vivo/In vitro Inhibit RIPK1 kinase activity
and ferroptosis [83]

Entacapone Renal IRI In vivo/In vitro Upregulate SLC7A11
repression [84]

APG Intestinal IRI In vivo/In vitro Inhibit MAO-B/anti-oxidant [85]

Capsiate Intestinal IRI In vivo/In vitro Enhance GPX4
expression/activate TRPV1 [43]

iASPP IIR-induced lung injury In vivo/In vitro Upregulate Nrf2
signaling/p53 inhibitor [47]

Isoliquiritin apioside IIR-induced lung injury In vivo/In vitro Downregulate Hif-1α
expression [86]

Abbreviations: IRI, ischemia-reperfusion injury; GPX4, glutathione peroxidase 4; SLC7A11, solute carrier family 7
member 11; ACSL4, acyl-CoA synthetase long-chain family member 4; Nrf2, nuclear factor erythroid 2-related
factor 2; HO-1, heme oxygenase 1; AKT, protein kinase B; p53, protein 53; AMPKα2, adenosine 5′-monophosphate-
activated protein kinase α2; PDA NPs, polydopamine nanoparticles; USP19, ubiquitin-specific peptidase 19;
ATF3, activation transcription factor 3; RIPK1, receptor interacting protein kinase 1; APG, apigenin-7-O-β-
D-(-6′ ′-p-coumaroyl)-glucopyranoside; MAO-B, monoamine oxidase b; TRPV1, transient receptor potential
cation channel subfamily V member 1; iASPP, inhibitor of apoptosis-stimulating protein of p53; IIR, intestinal
ischemia-reperfusion.

2. Pathological Mechanism of Ferroptosis in I/R Injury

I/R injury is accompanied by various pathological processes, including increased intra-
cellular iron concentrations and excessive ROS generation, which are accompanied by lipid
peroxidation following reperfusion [87]. These events lead to cellular oxidative damage and
are consistent with the characteristics of ferroptosis, a process in which iron-dependent ROS
accumulation exceeds the ability of cells to maintain redox homeostasis, resulting in lipid
peroxidation and ultimately cell death [5]. Notably, evidence suggested that iron and lipid
peroxidation are necessary for the propagation of ferroptosis but not for cell rupture [88].
Take myocardial I/R as an example, given that ferroptosis occurs in myocardial I/R [21,56]
and the increased intracellular iron concentrations as well as lipid peroxidation [64,89], this
process may contribute significantly to the increased infarct size during reperfusion. Oxida-
tive stress is the main cause of MIRI, which is due to enhanced ROS production. Excessive
accumulation of ROS can cause membrane lipid peroxidation and disrupts the barrier
function of the cell membrane. Moreover, the excessive oxidation of lipids and proteins
together facilitates cardiomyocyte damage and eventually leads to cell death. During the
reperfusion phase, the re-oxygenation of myocardial tissue with the recovery of blood flow
will cause a sudden enhanced ROS production within the first few minutes, which is one
of the pathogenic mechanisms of MIRI. In addition to lipid peroxidation, oxidative stress
induced by the Fenton reaction is also of great significance for ferroptosis. Iron homeostasis
imbalance increases intracellular free iron, which consequently improves hydroxyl radical
(•OH) generation through the Fenton reaction. These reactive species cause cellular damage
by attacking lipids, proteins and DNA while activating cell death pathways, including
ferroptosis [90]. Additionally, excessive iron is transported into cells after I/R, accelerating
the accumulation of ROS through the Fenton reaction and Haber–Weiss reaction, which
ultimately makes cells more vulnerable to ferroptosis.

Ferroptosis is a biological process regulated by multiple genes and is regulated by a
variety of cellular metabolic pathways, including iron metabolism, amino acid metabolism
and lipid metabolism [91]. The morphological characteristics of ferroptosis are reduced
mitochondrial volume, reduction of mitochondrial cristae and increased bilayer membrane
density [5]. These changes are caused by high lipid peroxidation levels in the phospholipid
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pool of the cell membranes [88]. When polyunsaturated fatty acyls (PUFAs) exist in the
phospholipid pool, it is highly susceptible to lipoxygenase (LOX)-driven peroxidation, for
hydrogen extraction from PUFAs is prone to produce peroxyl radicals [92]. ACSL4 plays a
key role in this process, as it expands the membrane lipids pool containing PUFAs, thereby
increasing ferroptosis sensitivity [93]. Ferroptosis is iron-dependent, the enzyme activity of
LOX requires iron to maintain [94], whereas iron can oxidize phospholipids in the Fenton
reaction independent of LOX [95]. Generally, cells uptake iron through transferrin receptor
1 (TfR1) and then store iron in ferritin complexes. However, lysosomal and autophagic
mechanisms can decompose these complexes to release iron and further sensitize them for
ferroptosis in ferritinophagy [96]. These reactions consistently happen but typically do not
cause cell death, as there are multiple intracellular antioxidative systems. The GPX4 system
is the most prominent of these systems [97]. The enzyme xc-controls the cellular import of
cystine to exchange glutamate at the plasma membrane, a necessary step for the production
of the GPX4 substrate GSH. By oxidizing GSH, GPX4 can reduce peroxidized lipids, thus,
inhibition of GPX4 or cystine import can induce ferroptosis [97]. In addition, coenzyme
Q10 (CoQ10) can reverse lipid peroxidation independent of GPX4, ferroptosis suppressor
protein 1 (FSP1) can act as an oxidoreductase of CoQ10, shuttling reductants to the lipid
bilayer plasma membrane to protect against peroxidation damage [98]. Furthermore, mi-
tochondrial membrane peroxidation can be reversed by dihydroorotate dehydrogenase
(DHODH), which acts in parallel with GPX4 by reducing CoQ10 [99]. Another protective
enzyme is GTP cyclohydrolase 1 (GCH1), which protects PUFA phospholipids from ferrop-
totic degradation independent of GPX4 and it can also reduce CoQ10 [100]. Collectively,
ferroptosis occurs through plasma membrane pores caused by lipid peroxidation, but cells
are equipped with various systems against lipid peroxidation. Targeting key molecules
and processes in these systems is the basic route to inhibit ferroptosis and improve the
prognosis of related diseases, including but not limited to I/R injury.

There is long-standing evidence that targeting iron is a potential therapeutic strategy
for I/R injury. Previous clinical studies have shown that iron levels are significantly
increased in regions of the brain with severe ischemia-hypoxia [101]. Additionally, I/R-
induced increases in iron levels have been associated with exacerbated tissue damage [12],
and modulating iron homeostasis has been shown to reduce I/R injury [102]. Moreover,
free iron is necessary for the initiation of ferroptosis. There is a labile iron pool (LIP) in the
cytoplasm, lysosomes and mitochondria [103], and free iron released from the LIP during
I/R accelerates lipid peroxidation and ferroptosis through the Fenton reaction [104]. On
the other hand, reperfusion of ischemic tissues leads to excessive ROS generation that
exacerbates I/R injury [105], and various antioxidants have been shown to protect against
I/R injury [106]. Notably, nonenzymatic production of ROS is promoted when metal ions
are present, such as iron, which is involved in ROS production in mitochondria. Evidence
suggests that ferroptosis occurs during the reperfusion period rather than the ischemic
period [7]. Mitochondrial dysfunction during ischemia leads to excessive ROS levels, which
cannot be effectively scavenged and exacerbate ferroptosis together with lipid peroxidation
following reperfusion [87]. Therefore, I/R injury, which is mainly characterized by oxidative
damage and accompanied by the dysregulation of iron homeostasis, is inseparable from
ferroptosis (Figure 1). Since the beginning of ferroptosis-related research, many ferroptosis
inducers and inhibitors have been identified, such as erastin, RSL3, sulfasalazine, sorafenib,
ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1). Additionally, ferroptosis can be inhibited
by iron chelators, peroxidation inhibitors and antioxidants [107], and most of these agents
have been used to further elucidate the mechanism by which ferroptosis is involved in
I/R injury. Ferroptosis has multiple regulatory genes, such as GPX4, ACSL4, solute carrier
family 7 member 11 (SLC7A11), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear
receptor coactivator 4 (NCOA4), and heme oxygenase 1 (HO-1). These genes are involved
in multiple mechanisms related to ferroptosis, such as iron metabolism, oxidative stress
and lipid peroxidation, and targeted therapeutic strategies associated with these genes
have also been investigated in various I/R models [108]. Collectively, the important role of
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ferroptosis in mediating I/R injury has added a new impetus to the treatment of I/R injury
and initiated a wave of developing novel therapeutic strategies for I/R injury.
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Figure 1. Overview of the regulatory mechanism of ferroptosis in ischemia-reperfusion. I/R,
ischemia-reperfusion; Glu, glutamate; Cys, cystine; SLC3A2, solute carrier family 3 member 2;
SLC7A11, solute carrier family 7 member 11; p21, cyclin dependent kinase inhibitor 1A; p53, protein
53; GSH, glutathione; GSSG, glutathione oxidized; Se, selenium; GPX4, glutathione peroxidase
4; SAT1, spermidine/spermine N1-acetyltransferase 1; ALOX-15, arachidonate lipoxygenase 15;
NADPH, nicotinamide adenine dinucleotide phosphate; CoQ10, coenzyme Q10; FSP1, ferropto-
sis suppressor protein 1; HSPB1, heat shock factor-binding protein 1; TfR1, transferrin receptor 1;
FPN, ferroportin; STEAP3, six transmembrane epithelial antigen of the prostate 3; DMT1, divalent
metal-ion transporter-1; IREB2, iron response element-binding protein 2; NCOA4, nuclear receptor
coactivator 4; LOXs, lipoxygenases; PUFA, polyunsaturated fatty acids; PUFA-PE, polyunsaturated
phosphatidylethanolamines; ACSL4, acyl-CoA synthetase long-chain family member 4; LPCAT3,
lysophosphatidylcholine acyltransferase 3; HO-1, heme oxygenase 1; Nrf2, nuclear factor erythroid
2-related factor 2; Keap1, kelch-like ECH-associated protein 1; p62, sequestosome 1.

3. Therapeutic Strategies Targeting Ferroptosis in I/R Injury
3.1. Ferroptosis in Cerebral I/R Injury

Cerebral infarction, which is also known as ischemic stroke, is an episode of neuro-
logical dysfunction induced by the focal cerebral, spinal cord, or retinal infarction [109].
Previous studies suggested that ischemic stroke was complicated by iron accumulation
in the affected regions, which exacerbated neuronal damage during reperfusion [110].
Moreover, iron overload is the major source of oxidative stress in cerebral I/R [111], and
an adverse prognosis in patients with cerebral ischemia has been associated with elevated
brain iron levels [112]. Similarly, animals treated with a high-iron diet were more sus-
ceptible to middle cerebral artery occlusion (MCAO) [113], and iron chelation therapy
attenuated I/R injury [114].

3.1.1. Therapeutic Targets of Ferroptosis in Cerebral I/R Injury

Iron is an important driver of lipid peroxidation and ferroptosis [96]. Tau protein
facilitates neuronal iron efflux, the loss of which may result in neurotoxic iron accumu-
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lation [115]. Tuo et al. [12] found that MCAO suppressed tau and increased iron levels
in 3-month-old rats and mice, whereas tau knockout did not increase brain iron levels
in these mice and protected the hemispheres from I/R injury. However, the protective
effect was counteracted and there was accelerated iron accumulation in the brains of aged
tau-knockout mice until iron-targeted intervention restored it. Additionally, the ferroptosis
inhibitors Fer-1 and Lip-1 attenuated neurological deficits following cerebral I/R. These
findings suggest that the tau-iron interaction is a pleiotropic regulator of ferroptosis and
cerebral I/R injury. As another key component of iron homeostasis, ferritin has been shown
to protect against oxidative injury [116], and its degradation has also been demonstrated
to trigger ferroptosis [117]. A recent study reported that ferritin overexpression exerted a
neuroprotective effect against MCAO-induced oxidative hippocampal neuronal death [13].
Notably, the increases in p53 and SLC7A11 expression were reversed by ferritin overex-
pression, suggesting that I/R-induced ferroptosis was suppressed. In addition to cytosolic
ferritin, mitochondrial ferritin (FtMt) has also been associated with iron-dependent ox-
idative damage and ferroptosis [118]. In cerebral I/R injury, ferroptosis activation was
accompanied by FtMt upregulation [15]. FtMt-knockout mice exhibited worsened neu-
rological deficits with typical ferroptosis features after cerebral I/R. Conversely, FtMt
overexpression reversed ferroptosis activation and consequently ameliorated cerebral I/R
injury. Ferritinophagy is a process in which ferritin is transported to lysosomes for degra-
dation [119]. NCOA4 has been demonstrated to promote ferritinophagy [120] and further
induces ferroptosis [121]. Recently, the involvement of NCOA4-mediated ferritinophagy
was identified in cerebral I/R, and NCOA4 silencing significantly inhibited ferroptosis
and prevented neuronal damage [14]. Moreover, NCOA4 was reported to be upregulated
by ubiquitin-specific peptidase 14 (USP14) in damaged neurons, and USP14 inhibition
effectively decreased NCOA4 levels to suppress ferritinophagy-mediated ferroptosis. These
findings provide evidence that targeting ferroptosis by regulating iron metabolism-related
proteins/pathways is a potential strategy for ischemic stroke treatment.

In addition to targeting iron metabolism-related genes, strategies to modulate ox-
idative stress-related mechanisms to suppress ferroptosis in cerebral I/R have also been
investigated. UbiA prenyltransferase domain-containing 1 (UBIAD1) is an antioxidant
enzyme that catalyzes the biosynthesis of coenzyme Q10 (CoQ10) in the Golgi appa-
ratus membrane [122]. In nonmitochondrial systems, CoQ10 is involved in regulating
lipid peroxidation, paralleling the GPX4 pathway in ferroptosis [98]. Huang et al. [16]
demonstrated that UBIAD1 was upregulated during cerebral I/R, which suppressed lipid
peroxidation and ferroptosis and exerted neuroprotective effects. UBIAD1 alleviated
cerebral I/R-mediated ferroptotic neuronal death by enhancing antioxidant capacities by
ameliorating mitochondria and Golgi apparatus dysfunction, suggesting that restoring
impaired mitochondria and the Golgi apparatus is beneficial in ameliorating cerebral
I/R injury. The cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway is known
to be involved in cerebral I/R, and evidence suggests an association between ferropto-
sis and the COX-2/PGE2 pathway [123]. Xu et al. [17] found that inhibiting cerebral
I/R-induced ferroptosis inactivated PGE2 synthases, degraded enzymes and PGE2 re-
ceptors and reduced cerebral infarct size. Conversely, PGE2 could suppress ferroptosis
by inhibiting iron accumulation and lipid peroxidation. Polyamine imbalance has been
reported in cerebral I/R injury, and inhibiting spermine metabolism to putrescine may
prevent neuronal I/R injury [124]. Spermidine/spermine N1-acetyltransferase 1 (SAT1)
is a rate-limiting enzyme in cellular polyamine metabolism that facilitates the conversion
of spermidine and spermine to putrescine [125]. Zhao et al. [18] investigated the role
of the SAT1/arachidonate 15-lipoxygenase (ALOX15) axis in neuronal ferroptosis after
cerebral I/R. The researchers demonstrated that SAT1 knockdown reduced ROS levels and
cortical iron levels in cerebral I/R and further attenuated neurological injury. Collectively,
activation of the SAT1/ALOX15 axis exacerbated cerebral I/R injury by triggering neuronal
ferroptosis, and inhibition of SAT1 alleviated cerebral I/R injury. As important contributors
to ferroptosis, ACSL4 genes/proteins, as well as their phosphatidylethanolamine lipid
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products, were significantly altered in response to MCAO [19]. Moreover, thrombin was
shown to induce ferroptotic signaling by promoting arachidonic acid mobilization and the
subsequent esterification of ACSL4, suggesting that targeting the thrombin/ACSL4 axis
may alleviate ischemic stroke via ferroptosis inhibition.

microRNA (miRNA) function in various pathophysiological processes, including
I/R-induced cell death [126], and the role of miRNAs in regulating ferroptosis has been
demonstrated in cancers [104]. Similarly, lncRNAs play critical regulatory roles in multiple
biological processes and diseases, including I/R injury [127]. Ischemic stroke has been
shown to change miRNAs and long noncoding RNA (lncRNA) expression profiles [128,129].
For instance, elevated miR-214 exerted antioxidant and antiapoptotic effects during I/R in-
jury [130]. Inspired by the altered plasma levels of lncRNA PVT1 (plasmacytoma variant 1)
and miR-214 in ischemic stroke patients, Lu et al. [20] investigated the therapeutic effects of
targeting PVT1 and miR-214 in cerebral I/R models. PVT1 silencing and miR-214 overex-
pression reduced infarct size and, importantly, suppressed ferroptosis in mice subjected to
cerebral I/R. Furthermore, PVT1 overexpression or miR-214 silencing abolished the effects
of Fer-1 on ferroptosis indicators. These results suggest the possibility of targeting PVT1
and miR-214 for ischemic stroke treatment.

3.1.2. Pharmacological Therapies Targeting Ferroptosis in Cerebral I/R Injury

Accumulating evidence suggests that pharmacological interventions inhibiting fer-
roptosis prevent I/R-induced neuronal damage [6]. Since being identified as a master
regulator of ferroptosis [131], selenium-dependent GPX4 has been associated with brain
diseases, including ischemic stroke [107]. Alim et al. [48] reported that selenium (Se) drove
a transcriptional adaptive response to prevent ferroptosis and alleviate hemorrhagic or
ischemic stroke. Pharmacological selenium administration augmented GPX4 via coor-
dinated activation of transcription factor AP-2 gamma (TFAP2c) and special protein 1
(Sp1) to inhibit ferroptosis and exert neuroprotective effects, providing a new strategy
for stroke management. Recently, the anti-ferroptotic effects of several selenium com-
pounds were characterized in murine models of MCAO [49,50], further supporting the
strategy of using pharmacological selenium to prevent cerebral I/R injury. Some agents
with antioxidant or neuroprotective effects have also been reported to inhibit ferroptosis
and reduce cerebral I/R injury. Carvacrol (CAR) is a monoterpene phenol with antiprolifer-
ative, antiapoptotic, and neuroprotective properties [132]. Guan et al. [51] demonstrated
that CAR protected against I/R-induced hippocampal neuronal impairment by mitigating
ferroptosis by increasing the expression of GPX4, providing new insights into the mech-
anism of CAR-mediated neuroprotective effects on cerebral I/R injury. Rehmannioside
A [52], bioflavonoids including galangin [53], carthamin yellow [54] and kaempferol [55],
have been shown to ameliorate I/R-induced neuronal ferroptosis by upregulating the
SLC7A11/GPX4-related axis or inhibiting ACSL4 expression. These findings provide
valuable insight into the pathogenesis and available agents for treating ischemic stroke.

3.2. Ferroptosis in Myocardial I/R Injury

Acute myocardial infarction (AMI) accounts for a large proportion of global mortal-
ity [133]. Although effective myocardial reperfusion strategies are essential for ischemic
tissue survival, reperfusion itself may trigger cardiomyocyte dysfunction, which is known
as MIRI [134]. Emerging evidence suggests that dysregulation of iron homeostasis is in-
volved in the pathogenesis of AMI. Following I/R, excess iron is transported into cells
and predisposes cardiomyocytes to undergo ferroptosis via the Fenton reaction and ROS
accumulation [135]. Precisely targeting ferroptosis has been suggested to be a promising
therapeutic option for reversing MIRI, and multiple ferroptosis inhibitors and ferroptosis-
regulated genes involved in the MIRI setting have been reported [136].
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3.2.1. Therapeutic Targets of Ferroptosis in Myocardial I/R Injury

Ferroptosis is closely associated with cellular metabolism and redox machinery. The
serum factors transferrin and glutamine have been previously shown to be ferroptosis
inducers. Gao et al. [21] demonstrated that transferrin and intracellular glutaminolysis are
essential for the execution of ferroptosis. The glutaminolysis inhibitor Compound 968 and
the iron chelator deferoxamine (DFO) mitigated I/R injury and improved cardiac function
in mice, suggesting that targeting glutaminolysis to suppress ferroptosis is a potential
therapy for MIRI. As a member of the deubiquitinase family, ubiquitin-specific protease
22 (USP22) has been reported to direct the stabilization of sirtuin-1 (SIRT1) to inhibit
p53 transcriptional activity and proapoptotic functions [137]. Recently, the USP22/SIRT1
axis was shown to play a pivotal role in ferroptosis-mediated I/R-induced cardiomy-
ocyte damage [22]. Increases in USP22, SIRT1, or SLC7A11 attenuated ferroptosis and
ameliorated cardiac function, which was accompanied by reduced ROS production, lipid
peroxidation and iron accumulation. Intriguingly, in contrast to USP22, ubiquitin-specific
protease 7 (USP7) was reported to promote ferroptosis in MIRI by activating the p53/TfR1
pathway [23].

As the only known mammalian iron-exporting protein, ferroportin 1 (FPN1) plays a
key role in systemic iron homeostasis, and hepcidin-mediated internalization and degrada-
tion of FPN1 are critical for maintaining cardiac iron homeostasis [138]. As a key regulator
of FPN1 transcription [139], Nrf2 has been shown to alleviate myocardial injury by inhibit-
ing I/R-induced oxidative damage and cell death [140]. Modulation of the Nrf2/FPN1
signaling pathway was shown to be a promising strategy to restrict ferroptosis and al-
leviate diabetic myocardial reperfusion injury in a recent study [24]. Similar to cerebral
I/R injury [14], ferritinophagy contributes to I/R-induced ferroptosis. DNA (cytosine-5)-
methyltransferase 1 (DNMT-1) was shown to affect ferroptosis in diabetic myocardial (DM)
I/R by regulating NCOA4-mediated ferritinophagy [25]. The increase in ferroptosis was
accompanied by elevated DNMT-1 and NCOA4 levels in myocardial tissues in the DM I/R
group, while a DNMT-1 inhibitor reversed NCOA4-mediated ferritinophagy and myocar-
dial injury. Moreover, DNMT-1 inhibition enhanced the protective effect of NCOA4-siRNA
in a cell H/R model. Therefore, inhibiting DNMT-1 may be a therapeutic strategy for re-
ducing ferroptosis during myocardial I/R by regulating NCOA4-mediated ferritinophagy.

Fragmented oxidized phosphatidylcholines (OxPCs) have been reported to induce
cell death in neonatal cardiomyocytes, and several types of OxPCs are increased in models
of MIRI [141]. Stamenkovic et al. [26] recently demonstrated that OxPCs were generated
during I/R disrupted mitochondrial bioenergetics and calcium transients and could induce
cardiomyocyte death. Notably, GPX4 activity was suppressed in isolated cardiomyocytes
treated with OxPCs, which was associated with increased ferroptosis. Furthermore, the
neutralization of OxPCs prevented ferroptosis during I/R. Thus, interventions targeting
OxPCs may mitigate MIRI. Embryonic lethal-abnormal vision-like protein 1 (ELAVL1) is an
RNA-binding protein that regulates gene expression by stabilizing mRNAs [142]. Previous
studies have suggested its role in pyroptosis in diabetic hearts [143] and in ferroptosis
during liver fibrosis [144]. Chen et al. [27] demonstrated that Forkhead Box C1 (FOXC1)
transcriptionally activated ELAVL1, increased I/R-induced autophagic ferroptosis, and
exacerbated the myocardial injury. ELAVL1 knockdown significantly suppressed ferrop-
tosis and ameliorated pathological damage in mice undergoing myocardial I/R surgery,
indicating that ELAVL1 may serve as a target for suppressing I/R-induced ferroptosis.

In addition to those in ischemic stroke, the roles of several miRNAs and lncRNAs
in regulating ferroptosis have also been reported in myocardial I/R. MiR-135b-3p is an
oncogene that accelerates tumor development [145]. Recently, this factor was shown
to exert an inhibitory effect on GPX4 expression, thereby exacerbating ferroptosis during
MIRI [28]. Accumulating evidence suggests that lncRNAs can act as competing endogenous
RNAs (ceRNAs) and sponge miRNAs to upregulate downstream gene expression [146].
LncAABR07025387.1 was shown to function as a ceRNA to sponge miR-205 (downregu-
lating miR-205 expression) and consequently enhanced ACSL4 expression to exacerbate
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ferroptosis during myocardial I/R [29]. In contrast, several lncRNAs are cardioprotective
against I/R injury. The bone marrow mesenchymal stem cell (BMSC)-derived lncRNA
Mir9-3hg, which has been previously reported to suppress bladder cancer progression [147],
can suppress I/R-induced cardiomyocyte ferroptosis by regulating the pumilio RNA
binding family member 2 (Pum2)/peroxiredoxin 6 (PRDX6) axis [30]. These findings
highlight the therapeutic potential of using functional noncoding RNAs to treat MIRI by
modulating ferroptosis.

3.2.2. Pharmacological Therapies Targeting Ferroptosis in Myocardial I/R Injury

Pharmacological therapeutic strategies targeting ferroptosis inhibition in MIRI have
also been developed. As a well-established ferroptosis inhibitor, the effect of Lip-1 on
reducing cell death in the ischemic myocardium has been investigated in a murine model
of MIRI [56]. The cardioprotective effect of Lip-1 is mainly achieved by abrogating the I/R
stress-induced reduction in GPX4 and inhibiting mitochondrial ROS generation. Similarly,
other well-recognized ferroptosis inhibitors, such as Fer-1 [59], DFO [63] and dexrazoxane
(DXZ) [64], have been shown to provide effective protection against MIRI by attenuating
ferroptosis. However, it should be noted that even some common ferroptosis inhibitors,
such as DXZ, an intracellular metal chelator, have previously been reported to have no pro-
tective effect on MIRI in pigs [148]. Thus, the different pharmacodynamics, bioavailability
and subcellular localization of ferroptosis inhibitors should be considered in future studies
on I/R injuries.

Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides, which
leads to oxidative damage to lipid bilayers. Thus, preventing oxidative stress is a common
strategy to alleviate ferroptotic injury, and a variety of ferroptosis inhibitors that prevent
oxidative stress have been developed and validated in I/R models. Gossypol acetic acid
(GAA), a natural constituent extracted from the seeds of cotton plants, has been shown to
inhibit oxidative effects and lipid peroxidation in rat hepatic tissues [149]. Additionally, the
iron-chelating effect of GAA has been confirmed [150]. It was recently reported that GAA
was beneficial in myocardial I/R by protecting cardiomyocytes against ferroptosis and
reducing infarct size [65]. Histochrome (HC) is a water-soluble form of echinochrome A
with strong iron-chelating and antioxidant properties [151]. As a clinically available drug,
HC has been previously shown to alleviate MIRI by reducing arrhythmia potential and
infarct size [152]. Hwang et al. [66] recently found that the administration of HC protected
the myocardium from I/R injury by suppressing ferroptosis, as indicated by a reduction
in ROS levels, the maintenance of GSH levels, and the upregulation of GPX4 activity. As
a member of the anthocyanin family, cyanidin-3-glucoside (C3G) has antioxidant and
anti-inflammatory properties [153]. The cardioprotective effects of C3G have also been
reported in doxorubicin-induced cardiotoxicity and diastolic heart dysfunction [154,155].
In a rat model of MIRI, C3G administration attenuated oxidative stress and inhibited the
expression of ferroptosis-related proteins, thereby suppressing ferroptosis and mitigating
pathological cardiac damage [67], indicating that C3G is a potential agent to protect the
myocardium from I/R injury. Flavonoids can inhibit lipid peroxidation and chelate redox-
active metals and have been shown to attenuate myocardial infarction [156]. Moreover,
it was reported that flavonoids could inhibit ferroptosis in human pancreatic ductal ade-
nocarcinoma [157]. Xanthohumol (XN), a prenylated flavonoid extracted from Humulus
lupulus, exerts various pharmacological effects, including inhibiting lipid peroxidation [158].
Recent evidence suggests that XN can protect cardiomyocytes against ferroptosis by in-
hibiting lipid peroxidation and ROS generation, chelating iron and modulating Nrf2 and
GPX4 [68]. A considerable number of compounds with antioxidant activity can ameliorate
I/R-induced ferroptosis, and exploiting these properties could provide new strategies for
the management of those with myocardial infarction.

The Nrf2 signaling pathway has received extensive attention in ferroptosis-related
studies. Several compounds or clinically used drugs have been reported to reduce I/R-
induced ferroptosis and myocardial damage by regulating Nrf2 signaling. Etomidate (Eto),



Antioxidants 2022, 11, 2196 12 of 25

a short-acting anesthetic that has been previously shown to ameliorate I/R injury [159],
was reported to attenuate MIRI by inhibiting ferroptosis through the Nrf2/HO-1 path-
way [69]. Naringenin (NAR), a flavonoid-rich in various biological activities, has signif-
icant effects on improving I/R injury [160]. Xu et al. [70] recently concluded that NAR
could alleviate myocardial I/R-induced pathological damage by inhibiting ferroptosis via
the Nrf2/SLC7A11/GPX4 axis. Britanin (Bri) is a sesquiterpene lactone extracted from
Inula linariifolia with excellent antioxidative and anti-inflammatory activities [161]. Bri
has been reported to protect against cerebral I/R injury by regulating the Nrf2 signaling
pathway [162]. In a recent study on MIRI, Bri was shown to exert a protective effect against
ferroptosis-mediated myocardial I/R damage by upregulating GPX4 expression through
the activation of adenosine monophosphate-activated protein kinase (AMPK)/glycogen
synthase kinase 3β (GSK3β)/Nrf2 signaling [71]. The effects of these agents verified the
importance of targeting the Nrf2 pathway to alleviate ferroptosis-mediated I/R injury.

Apart from these drugs/compounds, a variety of agents with different biological activ-
ities have been shown to inhibit ferroptosis in MIRI. Propofol, a frequently used anesthetic
agent, has been shown to protect against myocardial injury by suppressing I/R-induced
ferroptosis through the AKT/p53 signaling pathway [72]. Ferulic acid (FA), the main active
component of Angelica sinensis, was reported to alleviate MIRI by enhancing AMPKα2
expression-mediated ferroptosis inhibition [73]. Polydopamine nanoparticles (PDA NPs),
a new form of ferroptosis inhibitor with favorable biocompatibility and biodegradability,
were shown to effectively reduce iron deposition and lipid peroxidation in a murine model
of MIRI [74]. UAMC-3203, a novel ferroptosis inhibitor modified from Fer-1 analogs, inhib-
ited ferroptosis and significantly attenuated I/R myocardial damage [75]. Resveratrol (Res),
a polyphenol with multiple biological activities, was shown to alleviate MIRI by inhibit-
ing ferroptosis through the regulation of ubiquitin-specific peptidase 19 (USP19)-Beclin
1-mediated autophagy [76]. Dexmedetomidine (DEX), a selective α2-adrenergic receptor,
was shown to alleviate myocardial damage by inhibiting ferroptosis through the promotion
of the SLC7A11/GPX4 axis [77]. Collectively, alternative anti-ferroptosis agents continue
to emerge, but the specific mechanisms and drug safety need to be further evaluated in
disease models, including but not limited to I/R injury.

3.3. Ferroptosis in Lung I/R Injury

Although research remains scarce, recent evidence shows that ferroptosis is involved
in lung I/R injury (LIRI) and can be modulated to mitigate lung damage. Xu et al. [57]
first demonstrated the involvement of ferroptosis in LIRI, and GPX4 and ACSL4 were
significantly regulated in lung I/R conditions. Consistent with the findings in other I/R
models, increased tissue iron levels, lipid peroxidation and ferroptosis-like mitochondrial
morphological changes were observed in the hilar clamp murine model of LIRI. Moreover,
the administration of rosiglitazone (ROSI) inhibited ACSL4 expression, decreasing lung
I/R-induced ferroptotic damage. Consistent with the findings in intestinal ischemia-
reperfusion-induced acute lung injury (IIR-ALI) [47], pretreatment with Lip-1 suppressed
inflammation and attenuated lung injury following I/R. Irisin is a hormone-like molecule
that is mainly secreted by skeletal muscles during exercise, and its anti-inflammatory,
antioxidative and antiferroptotic activities have attracted much attention [163]. Irisin has
been reported to prevent LIRI by restoring mitochondrial function [60]. Recently, irisin
treatment prevented I/R lung damage by suppressing ferroptosis through the Nrf2/HO-1
axis [60], which was similar to the effect of Fer-1. These findings indicate the involvement
of ferroptosis in the progression of LIRI. Because of the critical role of oxidative stress in
LIRI, inhibiting ferroptosis to attenuate oxidative damage might be a new strategy for
preventing I/R lung injury.
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3.4. Ferroptosis in Hepatic I/R Injury
3.4.1. Therapeutic Targets of Ferroptosis in Hepatic I/R Injury

Hepatic I/R injury, which commonly occurs during liver surgical procedures, can
induce severe liver damage and different forms of cell death, including ferroptosis. A high
serum ferritin level in donors is a risk factor for I/R injury in liver transplantation [61], and
evidence indicates that ferroptosis may be a promising therapeutic target in hepatic I/R
injury [164]. Not surprisingly, most ferroptosis regulatory targets that have been studied in
hepatic I/R are related to iron metabolism. Macrophages play a central role in regulating
iron homeostasis and participate in hepatic I/R injury. Macrophage extracellular trap
(MET) formation and ferroptosis were more severe both in patients who underwent hepate-
ctomy and mice subjected to hepatic I/R [31]. Intriguingly, I/R-induced ferroptosis was
reversed by inhibiting MET formation. Additionally, Fer-1 or DFO administration attenu-
ated I/R-induced liver injury, which highlighted the therapeutic potential of inhibiting MET
formation and ferroptosis in reversing hepatic I/R injury. The HECT domain-containing
ubiquitin E3 ligase (HUWE1) was initially shown to regulate apoptosis [165]. However,
little is known about the role of HUWE1 in pathological conditions with high levels of cell
death, such as hepatic I/R. Wu et al. [32] reported an association between high expression of
HUWE1 and reduced hepatic injury in liver transplantation patients and further identified
HUWE1 as a novel negative ferroptosis modulator that targets TfR1 for ubiquitination and
proteasomal degradation to regulate iron metabolism. IREB2 plays a central role in cellular
iron homeostasis [166] and has been suggested to be a marker gene for ferroptosis [5]. Li
et al. [33] recently reported increased IREB2 expression in a steatotic liver I/R model, and
Ireb2 knockdown significantly reduced iron levels and suppressed ferroptosis. Further-
more, miR-29a-3p could downregulate IREB2 expression and inhibit ferroptosis, and the
downregulation of miR-29a-3p abolished this protective effect. Fatty livers are extremely
sensitive to I/R injury and poorly tolerate this condition, and the authors concluded that
targeting Ireb2 via exosomal transfer of miR-29a-3p was a potential preventive strategy.

3.4.2. Pharmacological Therapies Targeting Ferroptosis in Hepatic I/R Injury

To date, few ferroptosis inhibitors have been investigated in hepatic I/R models,
and the agents that have been initially validated in other I/R models have not yet been
examined in hepatic I/R models. Friedmann Angeli et al. [58] discovered that Lip-1 sup-
pressed ferroptosis and reversed liver injury in a preclinical model of hepatic I/R. Similarly,
pretreatment with Fer-1 or α-tocopherol (the active form of vitamin E) significantly pre-
vented hepatic I/R-induced ferroptosis-mediated pathological damage [61]. Hepatic I/R
injury was also attenuated by the iron chelator DFO but was exacerbated in mice that were
fed a high-iron diet [61]. These results suggest the important role of ferroptosis in the
pathogenesis of hepatic I/R injury.

3.5. Ferroptosis in Renal I/R Injury
3.5.1. Therapeutic Targets of Ferroptosis in Renal I/R Injury

Renal I/R injury remains a challenge in perioperative medicine and is closely associ-
ated with oxidative cell death. As demonstrated in murine models of I/R-induced AKI,
ferroptosis causes synchronized necrosis in renal tubular cells. In addition to the known
key enzymes associated with ferroptosis, recent studies have suggested some potential
therapeutic targets for I/R-induced ferroptosis, which vary in the mechanisms by which
they regulate ferroptosis. Augmenter of liver regeneration (ALR), a widely distributed
multifunctional protein, has antioxidant properties [167]. Huang et al. [34] showed that
silencing ALR exacerbated ferroptosis and increased ROS and mitochondrial damage in
an in vitro model of I/R-induced AKI. Notably, the researchers demonstrated that ALR
mediated ferroptosis in renal I/R injury and was linked to the glutathione-glutathione
peroxidase (GSH-GPX) system. Pannexin 1 (Panx1), which is a protein involved in the
ATP-release pathway, has a proapoptotic effect on AKI [168]. Su et al. reported that Panx1
contributed to ferroptosis-mediated renal I/R injury. Panx1 deletion decreased plasma
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creatinine and MDA levels and tubular cell death in the kidneys of mice subjected to
renal I/R. Moreover, silencing Panx1 expression significantly attenuated iron accumula-
tion and lipid peroxidation induced by the ferroptosis inducer erastin in cultured human
kidney 2 (HK2) cells [35]. As we mentioned previously, ELAVL1 is an important regu-
lator of ferroptosis and has been shown to increase myocardial I/R-induced autophagic
ferroptosis [27]. Sui et al. [36] reported an interaction between ELAVL1 and cold-inducible
RNA-binding protein (CIRBP). CIRBP expression was elevated in response to H/R or
erastin in HK2 cells, and anti-CIRBP treatment suppressed ferroptosis and improved renal
I/R injury. Therefore, CIRBP may promote ferroptosis in renal I/R injury. Legumain, an
asparaginyl endopeptidase expressed in proximal tubular cells, is required for the mainte-
nance of kidney homeostasis [169]. Legumain deficiency was recently shown to attenuate
ferroptosis and tubular injury in renal I/R [37]. Mechanistically, legumain participates
in the pathogenesis of I/R-induced AKI by regulating the degradation of GPX4, a major
ferroptosis-protective factor. Indoleamine 2,3-dioxygenase 1 (IDO) is a rate-limiting enzyme
that degrades tryptophan, and inhibiting IDO has been shown to preserve renal function in
I/R injury [170]. Moreover, IDO expression was upregulated by anoxia and reoxygenation
in a H/R model of primary renal proximal tubular epithelial cells (RPTECs) [38], which fur-
ther induced aryl-hydrocarbon receptor (AhR)-mediated ferroptosis and exacerbated H/R
damage. Lysine-specific demethylase 1 (LSD1) has been shown to regulate the pathogenesis
of kidney disease. In renal I/R injury, LSD1 promotes oxidative stress and ferroptosis [39].
However, LSD1 inhibition blocked I/R-induced ferroptosis and oxidative stress by down-
regulating the TLR4/NOX4 pathway, suggesting that LSD1 is a potential therapeutic target
for renal I/R injury.

Several miRNAs have also been identified as important regulators of I/R-induced
renal injury. For instance, miR-378a-3p was significantly increased in the urine of rats
subjected to renal I/R surgery [171]. MiR-182-5p was elevated in posttransplantation
AKI patients [172], and miR-182-5p inhibition ameliorated I/R-induced renal injury [173].
MiRNAs can play functional roles by cooperating with other noncoding RNAs [174]. Ding
et al. [40] found that miR-182-5p and miR-378-3p expression levels were upregulated in
H/R-induced injury. Importantly, these two upregulated miRNAs jointly promoted the
activation of ferroptosis by downregulating the expression of SLC7A11 and GPX4 [40].
Ferroptosis can be regulated by HO-1, which controls the iron level during ferroptotic
death [175]. Inhibiting miR-3587 (a putative regulator of HO-1) was reported to upregulate
HO-1 expression and protect renal cells against I/R-induced ferroptosis [41]. These studies
provide new insights into targeting I/R-induced ferroptosis to alleviate renal I/R injury.

3.5.2. Pharmacological Therapies Targeting Ferroptosis in Renal I/R Injury

Out of the concern for the potential metabolic and plasma instability of Fer-1, Link-
ermann et al. [80] generated third-generation ferrostatin 16–86 to suppress ferroptosis in
renal I/R, which exerted a protective effect even under conditions with severe I/R injury
and provided enhanced protection as a combination therapy with mitochondrial permeabil-
ity transition inhibition. Increasing evidence suggests that pharmacological inhibition of
ferroptosis is a promising therapeutic strategy to mitigate renal I/R injury. Inhibitors of fer-
roptosis, such as XJB-5-131 [81], quercetin [82], Nec-1f [83], Fer-1 and DFO [62], have been
reported to suppress ferroptosis, thereby attenuating renal injury under I/R conditions.
Therefore, postischemic renal necrosis may be targeted by ferrostatin therapy.

Instead of using ferroptosis inhibitors, other pharmacological treatments have been
shown to prevent I/R-induced ferroptosis and protect against renal I/R injury. Consistent
with the findings in LIRI [60], irisin treatment has been proven to alleviate tissue damage
in a murine model of renal I/R by upregulating GPX4 expression [78]. Pachymic acid
(PA), a lanostane-type triterpenoid isolated from Poria cocos, was shown to ameliorate renal
damage in a murine model of renal I/R, which may be related to ferroptosis inhibition in
the kidney via the upregulation of the Nrf2/HO-1 axis [79]. Entacapone, a specific inhibitor
of catechol-O-methyltransferase (COMT), has long been used as an adjuvant therapy for
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Parkinson’s disease. Yang et al. [84] recently found that entacapone reversed ferroptosis and
alleviated AKI by inhibiting lipid peroxidation and iron accumulation, and the underlying
mechanism involves the upregulation SLC7A11 to enhance antioxidant capacity. These
findings expand the uses of several existing agents and provide new strategies for the
treatment of I/R-AKI.

3.6. Ferroptosis in Intestinal I/R Injury

Some researchers have focused on I/R-induced intestinal injury as well as IIR-induced
remote tissue damage. Li et al. [42] demonstrated that suppressing ferroptosis with Lip-1
ameliorated I/R-induced intestinal injury. Additionally, inhibiting ACSL4 with ROSI before
reperfusion prevented IIR injury, which indicates the role of ferroptosis in IIR. Consistent
with findings in cerebral I/R injury [97], Sp1 was identified as a critical factor that pro-
moted ACSL4 expression, which could be targeted to alleviate IIR-induced ferroptosis [42].
Apigenin-7-O-β-D-(-6′′-p-coumaroyl)-glucopyranoside (APG), a flavonoid glycoside ex-
tracted from Clematis tangutica, has a strong antioxidant effect on I/R injuries [176]. Feng
et al. [85] demonstrated that APG protected against endothelial ferroptosis and IIR in-
jury by inhibiting MAO-B activation, attenuating ROS generation and decreasing iron
accumulation. As important components of the gut, the roles of the gut microbiota and
metabolites in I/R-induced ferroptosis and intestinal injury remain unclear. Deng et al. [43]
reported that the gut microbiota metabolite capsiate (CAT) inhibited ferroptosis during
IIR by increasing GPX4 expression through the activation of transient receptor potential
cation channel subfamily V member 1 (TRPV1), which provides a potential strategy for
the prevention of intestinal I/R damage. Not only in LIRI but the role of ferroptosis has
also been studied in the murine model of IIR-ALI. Typical characteristics of ferroptosis,
including increased lipid peroxide, decreased reduced GSH and mitochondrial morpho-
logical changes were observed in lung tissues of IIR groups. Furthermore, regulation of
ferroptosis through the Nrf2-SLC7A11/HO-1 axis [44], Nrf2/STAT3/SLC7A11 axis [45],
Nrf2/TERT/SLC7A11 axis [46], as well as an inhibitor of apoptosis-stimulating protein of
p53 (iASPP) [47], isoliquiritin apioside (IA) [86], have been reported to alleviate IIR-induced
lung injury.

4. Conclusions and Perspectives

A growing body of evidence suggests that ferroptosis plays a pivotal or even dominant
role in the pathogenesis of I/R injuries, and strategies targeting ferroptosis to ameliorate
I/R injury have recently been demonstrated in various preclinical I/R models (Figure 2).
Although limited to animal and cell levels, protection against I/R injury mediated by
chemical inhibitors of ferroptosis or the ablation of ferroptosis regulatory genes strongly
suggests that ferroptosis is a promising target for drug development to prevent I/R injury.
However, according to the available evidence, the regulatory mechanisms of ferroptosis
in I/R injury are not fully understood. Moreover, the pharmacological mechanism of the
currently known agents that inhibit ferroptosis in I/R, as well as their toxicity, side effects,
safe doses and other issues, remain to be further elucidated in future preclinical and clinical
trials. In conclusion, it is necessary to fully elucidate the mechanism of ferroptosis-mediated
I/R injury and to identify ferroptosis regulators that can be safely targeted to alleviate I/R
injury to develop effective therapeutic strategies.

Intensive study of ferroptosis has increasingly become a focus of therapeutic and
prognosis improvement in a variety of diseases. The roles of ferroptosis in the pathogenesis
of diseases and ferroptosis inhibition approaches are being extensively studied in multiple
disease models, including but not limited to cancer [177], neurological diseases [178], infec-
tion and inflammation [179], etc., suggesting that targeting ferroptosis has great potential
to improve therapeutic strategies for related systemic diseases. However, ferroptosis is
still in the early stage of what should become a riveting research field, and the mechanism
remains to be further examined, especially in specific disease models.
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Figure 2. Therapeutic strategies targeting ferroptosis in ischemia-reperfusion injury. Regulatory
genes and pharmacological therapies of ferroptosis investigated in I/R injury are summarized in the
figure. Green capsules represent well-recognized ferroptosis inhibitors, red capsules represent agents
studied in cerebral I/R injury, purple for myocardial, yellow for lung, blue for renal and gray for
intestinal. I/R, ischemia-reperfusion; GPX4, glutathione peroxidase 4; ACSL4, acyl-CoA synthetase
long-chain family member 4; NCOA4, nuclear receptor coactivator 4; SLC7A11, solute carrier family
7 member 11; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase 1; MAO-B,
monoamine oxidase b; IREB2, iron response element-binding protein 2; TfR1, transferrin receptor 1;
AMPKα2, adenosine 5′-monophosphate-activated protein kinase α2; p53, protein 53; FPN, ferroportin;
USP7, ubiquitin-specific peptidase 7; USP14, ubiquitin-specific peptidase 14; USP19, ubiquitin-
specific peptidase 19; USP22, ubiquitin-specific peptidase 22; TRF, transferrin; Gln, glutamine;
MiR, microRNA; OxPCs, oxidized phosphatidylcholines; LncRNA, long non-coding RNA; ELAVL1,
embryonic lethal-abnormal vision like protein 1; DNMT-1, DNA (cytosine-5)-methyltransferase 1;
Nrf2, nuclear factor erythroid 2-related factor 2; TERT, telomerase reverse transcriptase; STAT3, signal
transducer and activator of transcription 3; Sp1, special protein 1; TRPV1, transient receptor potential
cation channel subfamily V member 1; LSD1, lysine- specific demethylase 1; Panx1, pannexin 1; CIRBP,
cold-inducible RNA-binding protein; IDO, indoleamine 2,3-dioxy-genase 1; ALR, augmenter of liver
regeneration; HUWE1, HECT domain-containing ubiquitin E3 ligase; SAT1, spermidine/spermine
N1-acetyltransferase 1; PVT1, plasmacytoma variant 1; UBIAD1, UbiA prenyltransferase domain
containing 1; PGE2, prostaglandin E2; Fer-1, ferrostatin-1; Lip-1, liproxstatin-1; DFO, deferoxamine;
DXZ, dexrazoxane; α-Toc, α-tocopherol; GAA, gossypol acetic acid; C3G, cyanidin-3-glucoside; XN,
xanthohumol; HC, histochrome; PDA NPs, polydopamine nanoparticles; APG, apigenin-7-O-β-D-(-
6′ ′-p-coumaroyl)-glucopyranoside; CAR, carvacrol; Se, selenium; Res, resveratrol; CAT, capsiate; CY,
carthamin yellow; ROSI, rosiglitazone; KF, kaempferol; DEX, dexmedetomidine; QCT, quercetin; FA,
ferulic acid; iASPP, inhibitor of apoptosis-stimulating protein of p53; Eto, etomidate; NAR, naringenin;
Bri, britanin; PA, pachymic acid; IA, isoliquiritin apioside.
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