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Abstract: The human brain is primarily composed of lipids, and their homeostasis is crucial to carry
on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of
the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations
in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as
increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this
regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical
supplementation with antioxidant molecules has proven to be useful in proving cognitive functions.
Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant
defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein
dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of
diet and exercise.

Keywords: lipid-binding proteins; neurodegenerative disease; apolipoproteins; nutraceutical supple-
ment; physical activity

1. Introduction

Lipid homeostasis is a crucial mechanism for brain well-being, considering that lipids
are the main components of neuronal cells and are also involved in bioenergetic and
signaling pathways [1]. In order to ensure an adequate amount of lipids in and out of
the Central Nervous System (CNS), human organisms require a set of proteins that are
able to bind and transport lipids, called lipid-binding proteins (LBPs) [2]. The LBPs, also
called lipid chaperones, are proteins able to bind lipids in a reversibly and non-covalently
way [3]. Thus, the alterations of LBPs structure affect their functions impairing brain lipid
homeostasis and exposing individuals to a high risk of developing neurodegenerative
diseases (NDs) [1,4]. Indeed, LBPs are fundamental for organelle membranes, vesicle traf-
ficking, myelin formation and degradation, misfolded protein accumulation, lysosome and
proteasome function, as well as regulating inflammation and oxidative stress [2]. Among
these molecular mechanisms influenced by LBPs, oxidative stress is for sure one of the
main important processes contributing to NDs development [5]. In fact, free radicals lead
to mitochondrial dysfunction, membrane instability, synapse impairment, apoptosis, and
lipid peroxidation, which in turn favors autophagy, apoptosis, and ferroptosis contributing
to cell death and loss of neurons [6–8].
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In recent years, it has been demonstrated that environmental factors, including lifestyle,
diet, and physical activity, affect the onset and development of NDs. Particularly, more
and more attention has been focused on the neuroprotective effects of physical activity that
could become an alternative way to act against oxidative stress and the consequent neurode-
generation. Particularly, exercise positively affects neuroplasticity and neuronal vitality,
promoting angiogenesis, releasing neurotrophic factors and irisin, balancing autophagy
and apoptosis, and reducing inflammation and oxidative stress [9].

Moreover, nutraceutical supplementation has been investigated since lots of antioxi-
dant molecules (including vitamins C and E, polyphenols, and selenium) are considered
potential additional treatments in NDs, even though their ability to pass the blood–brain
barrier (BBB) and their effective bioavailability in the CNS is not yet fully clarified [10].
However, natural compounds can alter gut microbiota in a positive way, and the existence
of a gut–brain axis regulates inflammation and oxidative stress in the CNS [11].

Overall, the aim of the present review was to investigate physiological, molecular
mechanisms that link lipid metabolism dysregulation and lipid-binding protein dysfunction
to NDs’ development, with particular attention on the neuroprotective role of nutraceutical
supplements and physical activity.

2. Lipid-Binding Proteins in Neurodegenerative Disorders

Lipids are essential molecules for brain functions [12], and their management in the
brain and across the BBB is strictly regulated by a set of non-enzymatic proteins, which
are able to interact with them [2]. Among these, apolipoproteins are proteins capable of
binding lipids, thus forming lipoproteins [13]. The lipids that constitute the apolipoproteins
include cholesterol, triglycerides, and phospholipids, thus generating high-density and
low-density lipoproteins (HDLs and LDLs) [14]. Different families of apolipoproteins exist
as follows: Apo A (classified in Apo-A1, Apo-A2, Apo-A4, and Apo-A5), ApoB (classified
in Apo-B48 and Apo-B100), ApoC (classified in Apo-C1, Apo-C2, Apo-C3, and Apo-C4),
ApoD, ApoE, ApoF, ApoH, ApoL, and ApoM [15].

Among these, ApoA, ApoC, ApoE, and ApoJ were demonstrated to play a crucial role
in the β-amyloid (Aβ) homeostasis, a neuropathological marker of Alzheimer’s disease
(AD) included among the NDs, while ApoD is more generally essential in maintaining
brain health.

Indeed, it was demonstrated that the deficiency of Apo-A1, which is the main compo-
nent of HDLs, is able to favor β-amyloid (Aβ) deposition as well as its related inflammatory
status and its oligomerization [16]. In turn, Aβ deposits affect their own clearance, directly
impairing LDL receptor-related protein 1 (LRP1) in the hippocampus. In fact, LRP1 is
responsible for transporting Aβ throughout the brain, and it proved to be oxidized by Aβ
itself, which therefore worsens LPR1 functions [17]. Regarding ApoC, three different iso-
forms (Apo C-I, C-II, and C-III) were found abundant in the cerebrospinal fluid of patients
genetically predisposed to develop AD, suggesting their involvement in the pathogenesis
of AD [18]. The ApoJ is another LBP involved in Aβ pathology: it seems to be fundamental
in the clearance of Aβ [19], although its exact role is controversial [20].

Notably, ApoD is involved in redox homeostasis within the brain since it is able to
bind arachidonic acid and its derivatives, preventing their peroxidation [21]. Moreover,
it would seem that the expression of ApoD is a homeostatic mechanism that the human
brain implements in order to maintain oxidative stress and inflammation under control:
in fact, ApoD-knockout mice are more predisposed to early brain aging, loss of neurons,
cognitive decline, and neurological disorders [22]. Additionally, its antioxidant role, ApoD,
is fundamental in regulating astrocyte vitality through autocrine mechanisms [23]. Fur-
thermore, in murine models, it was demonstrated that ApoD is fundamental in myelin
biogenesis since it provides the integrity of lysosomal membranes and a correct location of
regulatory proteins, which are necessary for the compaction of myelin [24]. Supporting this,
ApoD knockout mice show a decreased thickness of myelin with a consequent reduction
in velocity in nerve conduction and a decline in cognitive and motor functions [25]. The
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correlation between lipid-binding proteins and myelin was investigated, given that myelin
exerts a pivotal role in the conduction velocity, and its degeneration provokes a decline in
cognitive functions [26].

In addition, in a drosophila model of the retina, some ApoD homolog lipocalins
were proven to regulate the expression of numerous genes involved in autophagy mecha-
nisms providing protection against type I spinocerebellar ataxia (SCA) degeneration [27].
Lipocalin 2 (Lcn2) is also involved in autophagy: outside the CNS, it was proven to enhance
the permeability of lysosomal vesicles, impairing autophagy mechanisms and promoting
cell death [28]. Through similar processes, Lcn2 probably mediates neuronal damages,
particularly in hippocampal regions, as well as mediating microglial activation and neuro-
toxicity [29]. In contrast to ApoD involvement in myelin biogenesis, Lcn2 pathologically
influences its catabolism. Moreover, a recent murine study showed that Lcn2-expressing
astrocytes express phagocytic properties against myelin, leading to myelination [30]. In
addition, Lcn2 was proven to be increased in multiple sclerosis (MS) brains and prevents
remyelination processes [31].

In the field of lipid-binding proteins and their involvement in NDs development,
ApoE is the main actor since it has been classified as one of the main risk factors for both
early- and late-onset AD. Thus, a detailed description of this apolipoprotein is given in the
following paragraph.

3. Apolipoprotein E (ApoE)

The ApoE is a protein mainly implicated in lipid homeostasis in both peripheral
and central tissues; in particular, in the CNS, it modulates synaptic integrity/plasticity,
glucose metabolism, and cerebrovascular functions [32]. ApoE is synthetized by several
tissues, among which the liver, adipose tissue, endothelium, female reproductive system,
and brain are the main ones; of note, about 75% of ApoE peripheral amount is attributed
to liver production by hepatocytes and Kupffer cells [33]. The brain is the second most
common site of ApoE production, and it is principally ascribed to glial cells, i.e., microglia,
oligodendrocytes, and astrocytes, but also pericytes, vascular smooth muscle cells, choroid
plexus, and neurons under stress conditions can produce it [34,35].

The involvement of ApoE in lipid homeostasis is prevalent. Indeed, ApoE is a lipid-
binding protein that is implicated in lipid metabolism and transport through blood, lymph,
cerebrospinal fluid, and interstitial fluid [35,36]. In particular, in plasma, ApoE is asso-
ciated with chylomicron, very low-density lipoproteins (VLDLs), and HDLs. It mainly
interacts with low-density lipoprotein receptors (LDLR) and their family members, such as
LRP1, LRP8, and VLDL receptor (VLDLR) [32,36], as well as heparan sulfate proteoglycan
(HSPG) receptors [37], thus promoting the clearance of plasma lipoproteins by endocytic
pathway [38]. In the CNS, ApoE plays a key role in lipids and cholesterol transport [37].
Particularly, ApoE-mediated cholesterol exchange arises from non-neuronal (e.g., astro-
cytes) to neuronal cells and vice-versa (for instance, from neurons to microglia) [39], and
it regulates lipid clearance and recycling [39]. Of note, the ApoE protein produced by
peripheral tissues seems to not cross the BBB, underlining that the two pools, i.e., central
and peripheral, are separate and distinct [35,40].

ApoE exists in three different isoforms, depending on the amino acid type present in po-
sition 112 and 158 of primary sequence: ApoE 2 (112Cys/158Cys), ApoE 3 (112Cys/158Arg),
and ApoE 4 (112Arg/158Arg) [41]. Importantly, the single amino acid polymorphism con-
tributes to ApoE structure and function alterations [32], resulting in changes in the protein
conformation, post-translational modification, lipoprotein preference, and binding affinity
for receptors [42]. The presence of ε4 allele is strongly associated with AD development,
with a 9–15-fold increased risk for 4 homozygous compared to 4 heterozygous (3–4-fold
increased risk) [43].

Beyond its role in lipid transport, ApoE is fundamental in Aβ production [44] and
clearance [45]. Particularly, when ApoE binds to its own receptor, ERK1/2 MAP kinase
pathways are activated and stimulate the transcription factor AP-1, which is responsible
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for increased transcription of amyloid-β precursor protein (APP), leading to enhanced
production of Aβ; interestingly, the isoform ε4 is more efficient in triggering these pathways
compared to ApoE ε2 and ApoE ε3 [44].

The ApoE ε4 effects on the brain are also macroscopically detected since it has proved
to be related to hippocampal atrophy in subjects affected by mild cognitive impairment
(MCI) [46], and the presence of the ApoE ε4 genotype seems to be linked to a faster decline
in memory tests [47]. Moreover, the same isoform is also responsible for a rapid decline in
language and executive functions in healthy individuals over 60 years old [48].

ApoE ε4 also negatively affects hippocampal neurogenesis, decreasing dendritic ar-
borization and impairing memory functions [49]. In addition, ApoE ε4 polymorphism is as-
sociated with higher LDL cholesterol levels and a consequent enhanced risk of atherosclero-
sis, predisposing the ε4 carriers to cerebrovascular abnormalities and cognitive decline [50].
Moreover, ApoE ε4 is related to a worse prognosis after traumatic brain injuries (regardless
of different types of damage) [51] as well as to other types of NDs, including Parkinson’s
disease (PD) [52,53] and dementia with Lewy bodies (DLB) [54]. The mechanisms by which
ApoE ε4 contributes to neurodegeneration development are numerous [55]. Apart from
the above-mentioned involvement in a marked production of Aβ, the altered structure
of the ε4 isoform surely affects the Aβ binding ability [56], thus impairing its transport
to microglia [57] or through the BBB [58], thus altering its clearance [59]. ApoE ε4 also
mediates the proteolytic degradation of Aβ less efficiently compared to ApoE ε2 and ApoE
ε2 [60]. A recent study demonstrated that the selective removal of astrocytic ApoE ε4 seems
to prevent tau hyperphosphorylation and tau-related neurodegeneration, suggesting that
ApoE ε4 promotes neurotoxicity itself [61]. Furthermore, it was demonstrated that the allele
ε4 negatively affects cholesterol homeostasis in the central nervous system predisposing to
AD onset [62].

Of note, ApoE ε4 also negatively impacts synaptic plasticity. Specifically, it has been
recently demonstrated that the allele ε4 is associated with deficits in extra-hippocampal
memory and learning in young mice, and this is due to attenuated pre-synaptic plasticity
in specific regions, thus suggesting that early modifications in ApoE ε4 brains could
predispose to the AD development [63,64]. Notably, ApoE ε4 is also implicated in the
alteration of neuroinflammation: particularly, ApoE ε4 microglia express increased tumor
necrosis factor (TNF α) concentration than ε2 or ε3 microglial cells [65]. Similarly, human
ApoE ε4 astrocytes show higher cytokine production, including interleukin 1β (IL-1β),
TNFα, and IL-6, thus enhancing neuroinflammation and promoting AD development [66].

4. Fatty Acid Binding Proteins in Neurodegeneration

Fatty acid binding proteins (FABPs) are members of the LBPs family; they are intra-
cellular molecules responsible for lipid transport inside cells [67] encoded by ten FABP
genes in mammals. Three of them, FABP3, FABP5, and FABP7, are expressed in the brain
and seem to be the effectors of several pathways that regulate microglia and brain develop-
ment [68]. In particular, FABP3 is expressed in mature neurons, while FABP5 and FABP7
are mainly present in neural progenitor cells [69]. Although their primary structures show
strong homology, they exhibit specific fatty acid ligand preferences. FABP3 binds prefer-
entially toω6 polyunsaturated fatty acid (PUFAs) such as arachidonic acid (20:4) (20–22),
FABP5 prefers saturated fatty acids such as stearic acid (18:0) and monounsaturated fatty
acids such as oleic acid (OA, 18:1) (22–24), and FABP7 binds preferentially to ω3 PUFAs
such as docosahexaenoic acid (DHA, 22:6) (21,22,25) [69]. Notably, FABP3 could exert a
crucial role in fetal neuronal development since it seems to be fundamental inω3 andω6
PUFA transport in mouse trophoblasts [70].

FABP3 expression has proven to correlate with the aggregation of α-synuclein (α-syn)
in synucleinopathies, including PD [71]. α-syn is a 14 kDa protein encoded by the SNCA
gene that is located on chromosome 4 [72], characterized by an amphipathic lysine-rich
N-terminal domain capable of binding membrane lipids [73]. It seems that the expression
of the SNCA gene is epigenetically influenced by aging and physical activity since it was
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demonstrated that healthy and active individuals had lower α-syn levels [74]. In physio-
logical conditions, the exact role of α-syn is still questionable [75], but it seems to modulate
synaptic vesicles acting on their mobilization and endocytosis [76]. In murine models, the
suppression of FABP3 prevents the loss of dopaminergic neurons and both monomeric
and fibrillar α-syn accumulation [77]. In fact, the interaction between FABP3 and α-syn is
crucial since it negatively affects proteasome activity preventing α-syn degradation [78].
α-syn accumulation has proven to alter membrane permeability leading to an increased
intracellular concentration of calcium, activation of calpain pathways, and synaptic dysreg-
ulation [79]. Additionally, α-syn impairs the polymerization of tubulin [80] and destabilizes
microtubules, thus negatively affecting cytoskeleton functions [81]. In murine models, it
was observed that the α-syn accumulation within the endoplasmic reticulum (ER) causes
ER stress, which in turn enhances neurodegenerative processes in synucleinopathies [82].
Moreover, extracellular α-syn accumulation exerts neurotoxicity in PD models activating
microglia with the involvement of several pathways triggered by the activation of the
nuclear factor (NF)-κB, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) and
mitogen-activated protein kinases (MAPKs) [83,84]. Neurotoxicity is also mediated by the
α-syn-induced release of inflammatory factors, including TNF-α, nitric oxide (NO), and
interleukins, as well as reactive oxygen species (ROS) [85].

In addition to its role in PD, FABP3 is also considered a marker of AD because of its
relation with Aβ accumulation [86]. It was even proposed that FABP3 negatively correlates
with the severity of the disease: a large amount of FABP3 was detected in the CSF of AD
brains, suggesting its correlation with neurodegenerative processes [87]. In this regard,
considering that FABP3 is primarily found in gray matter, its location in the CSF is un-
common and reflects destructive processes that occur in neuronal membrane lipids [88].
Furthermore, a negative correlation between FABP3 and the Mini-Mental State Examination
(MMSE) has also been recently demonstrated in the early stages of AD, underlining that
FABP3 could be an early predictor of cognitive decline [87]. Similarly, FABP5 suppres-
sion in mice has been associated with memory impairment and cognitive decline [89]. In
particular, FABP5 seems to affect learning and memory by activating PPARγ signaling
pathways. Moreover, FABP5 was shown to regulate the transport through the BBB of the
docosahexaenoic acid [90], which is a 22-carbon omega 3 PUFA with an essential role as a
constituent of neuronal membranes [91]. Under oxidative stress conditions, FABP5 can bind
α-syn and translocate to mitochondria, reducing membrane potential with the consequent
impairment of mitochondrial activity [92]. In this regard, mitochondrial dysfunction is
considered a primary cause of neurodegeneration in several synucleinopathies, suggesting
a strict relation between α-syn and mitochondrial vitality [93]. In fact, α-syn influences
several processes within mitochondria [94]: it impairs calcium signaling, thus altering
its homeostasis [95]; favors mitochondrial fragmentation [96]; and alters their structure,
therefore influencing the expression of proteins fundamental for mitochondrial morphol-
ogy [97,98] α-syn overexpression also acts on the complex I of the electron transport chain
impairing respiratory functions and leading to an increased genesis of free radicals [99].

In addition, in the CNS, FABP5 enhances malignancies of lower-grade gliomas since it
induces the epithelial-mesenchymal transition triggering the TNFα/NF-κB pathway [100].

Beyond its role in neurons, FABP7 is a well-known modulator of astrocyte func-
tions [101] by regulating synaptic functions and dendritic morphology [102]. In the amy-
otrophic lateral sclerosis (ALS) mice model, it was demonstrated that the overexpression of
FAPB7 leads to astrocyte neurotoxicity, increasing the activity of the pro-inflammatory NF-
κB pathway [103]. In addition, FABP7 seems to be upregulated by the Reelin-Dab1/Notch
signal pathway, which is responsible for improving the migration of neuronal cells during
brain development [68]. FABP7 is also an important regulator of PUFA levels in the brain:
specifically, it was observed that the expression of FABP7 in malignant glioma cells was
associated with an increased ω6/ω3 ratio, suggesting the involvement of FABP7 in the
dysregulation of lipid homeostasis with deleterious effects on the brain [104].
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Moreover, in AD brains of patients expressing ApoE ε4, there are reduced levels
of FABP7, and this alters PUFA cerebral content and their role as anti-inflammatory
molecules [105].

Although FABP3, FABP5, and FABP7 belong to the most represented LBPs in the CNS,
it was also suggested that FABP4 could have a key role in neurodegeneration since it is
expressed in mice microglial cells. In particular, FABP4 suppression leads to increased
expression of mitochondrial uncoupling protein 2 (UCP2) with a consequent attenuation of
the pro-inflammatory response mediated by palmitic acid, nitric oxide synthase (iNOS),
and TNF-α [106].

When considering the above, the relationship among FABPs, inflammation, and
oxidative stress suggests that these proteins are strongly involved in neurodegeneration
and should be taken into account in order to improve the treatment of these diseases.

5. Cholesterol Synthesis and Metabolism in the CNS

Although hypercholesterolemia is known to be involved in neurodegenerative disor-
ders, brain cholesterol is independent of circulating levels, and its metabolism in the CNS
is crucial for neuronal health [107]. Specifically, brain cholesterol is produced by astrocytes,
and its clearance depends on its conversion in 24(S)-hydroxycholesterol (24S-OHC) that is
subsequently eliminated from the brain [108]. The efflux of brain cholesterol involves ApoE,
Apo-A1, and ATP-binding cassette A1 (ABCA1); the latter is responsible for cholesterol
transport from cells to poor-lipidated ApoA1 and ApoE [109].

However, the role of 24S-OHC in neurodegeneration is still unclear since it seems
to both favor and prevent neuronal cell death [108]. Indeed, 24S-OHC is able to protect
neurons from the cytotoxicity of 7-ketocholesterol, inducing their adaptations, as well as
reducing Aβ accumulation and tau hyperphosphorylation. On the other hand, the same
molecule seems to induce cell apoptosis favoring the activity of caspase proteins, leading
to the formation of abnormal lipid structures, and increasing oxidative stress [110–114].

Oxidative stress and inflammation, in turn, negatively affect cholesterol homeostasis.
The autoxidation of cholesterol forms oxysterols, including 24-hydroxycholesterol and
27-hydroxycholesterol, which were found to be higher in the cerebrospinal fluid of AD
patients compared to controls. These oxysterols seem able to increase Aβ production
besides being crucial in connection with the peripheral circulating cholesterol, considering
that they can cross the BBB [110].

Cholesterol metabolism also seems to be involved in PD pathogenesis: cholesterol
excess in lysosomes leads to abnormalities in the lipid rafts, which are membrane mi-
crodomains enriched in cholesterol and sphingolipids [111]. As a consequence, altered
interactions between cholesterol and α-syn occur in brain cells, enhancing α-syn oligomer-
ization and thus influencing PD pathogenesis [112]. Causes of this excess of cholesterol
inside lysosomes could be mutations that occur in the GBA1 gene that encodes for the
lysosomal enzyme β-glucocerebrosidase-1 and are shown to correlate with PD. Particularly,
N370S-GBA1 mutation has proved to cause retention of β-glucocerebrosidase-1 in the en-
doplasmic reticulum altering lysosomal traffic and impairing autophagy with a consequent
lysosomal cholesterol accumulation [113,114].

Finally, epigenetic mechanisms mediated by microRNAs (miRNAs) and affecting
genes involved in cholesterol homeostasis seem to be crucial in neurodegeneration. It was
suggested that miR-106b-5p, miR-758, and miR-33 downregulate the expression of the
ABCA1 gene, with a consequent decrease in Apo-A1-related cholesterol efflux from the
brain [109].

6. Oxidative Stress and Lipid Peroxidation

Oxidative stress is a condition that arises from an imbalance between the production
of reactive oxygen species (ROS) and the antioxidant defenses. Generally, antioxidant
defenses protect our cellular systems from possible oxidative damage, regulating ROS
levels [115]. It was demonstrated that ROS play a useful role as signaling molecules to



Antioxidants 2022, 11, 2116 7 of 23

regulate cellular processes, including redox homeostasis [116–118]. Unfortunately, if ROS
concentration is too high and/or the antioxidant defenses are lower to contrast them, this
dysregulation causes oxidative stress [115,117].

Due to their unstable nature, ROS often react with cellular macromolecules (proteins,
nucleic acid, and lipids), and these events are particularly evident in the brain [119].
Indeed, the brain is characterized by an elevated consumption of oxygen and glucose and
has the highest rate of lipid metabolism in the body [120]. Moreover, neuronal cells are
characterized by lowered enzymatic and nonenzymatic antioxidant mechanisms, impairing
the neutralization of free radicals and thus enhancing oxidative stress [120]. This high
metabolic rate triggers the production of free radicals and ROS, particularly in mitochondria,
generated by the leakage of electrons out of the electron transport chain [121]. In contrast,
cytosolic ROS derive from the NADPH oxidase (NOX) and, depending on the conditions,
from other enzymes, including xanthine oxidase [122,123].

The cell membranes are highly susceptible to ROS damage since they are rich in lipids,
especially PUFAs, thus going towards lipid peroxidation, which is particularly involved in
NDs [124]. Indeed, lipid peroxidation generates a large number of free radicals triggering
neuronal membrane damage and producing secondary products, which contribute to
extensive cellular damage [119]. As mentioned, lipid peroxidation targets preferentially
PUFAs, including linoleic acid, arachidonic acid (AA), and docosahexaenoic acid (DHA),
which are highly consumed by the brain, thus corroborating the high level of lipid turnover
in this organ [119].

Lipid peroxidation is a non-enzymatic process and involves distinct steps of initiation,
propagation, and termination [125]. In the first stage, reactive oxygen metabolites form a
fatty acid radical by reacting with the carbon–carbon double bond of PUFAs. These com-
pounds are unstable and are inclined to form conjugated dienes, generating carbon-centered
alkyl radicals [126]. In the propagation step, the subsequent generation of a lipid peroxyl
radical leads to the attack of an additional PUFA molecule, alimenting an uncontrolled
self-perpetuating chain reaction in which every PUFA of the cellular membrane can poten-
tially be oxidized [127]. Finally, the termination is guaranteed by substrate depletion, the
generation of stable products derived from the mutual reaction of all the present radicals,
and the presence of a molecule with antioxidant and chain-breaking properties [124].

ROS production not only leads to phospholipids damage but also attacks membrane
proteins and induces lipid-protein and protein-protein crosslinking, thus altering mem-
brane integrity [128]. The lipid peroxidation carries to membrane permeability alteration
together with a decreased membrane fluidity, lower membrane-bound enzyme activity,
and membrane receptors impairment [129,130].

Not surprisingly, the above-mentioned alterations and modifications of lipids have
been demonstrated to affect neuronal homeostasis and contribute to brain dysfunction. A
huge amount of data clearly demonstrate that ROS and oxidative stress have a pivotal role
in the development of NDs [131–133].

In particular, several papers reported that brain tissues and body fluids of patients
affected by NDs, including AD, PD, ALS, Huntington’s disease (HD), and Down syndrome
(DS) [134–138], present higher levels of lipid peroxidation markers with respect to control
subjects. The alteration in lipid peroxidation was demonstrated to be accompanied by
an elevation of ROS in the brain areas associated with the specific neurodegenerative
phenomenon [135,139,140].

Moreover, the process of lipid peroxidation involves several signaling cascades, includ-
ing the activation of phospholipases and their subsequent physiological responses [121,139].

Beyond the cell membrane, even mitochondria membranes are particularly sensitive
to lipid peroxidation that contributes to mitochondrial dysfunction [120]. Since mitochon-
dria are the main source of free radicals that derive from the electron transport chain,
these organelles are susceptible to ROS damage and ROS-induced mutations [140]. It was
demonstrated that the oxidation of cardiolipin, a glycerophospholipid that constitutes the
mitochondrial inner membrane, leads to an increased membrane permeability favoring
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access to pro-apoptotic molecules, including BAX and BAD, which reduce mitochondria
survival [141]. Mitochondria play a crucial role in NDs; indeed, a recent study showed that
abnormalities that occur in these organelles are responsible for cell loss in the pedunculo-
pontine nucleus in PD brains [142]. Moreover, an altered mitochondrial cytochrome oxidase
gene expression was proven to be associated with AD [143]. In addition, lipid peroxidation
in AD murine models is directly involved in the process of amyloidogenesis since it is
able to upregulate the expression of BACE1 (beta-site amyloid precursor protein cleavage
enzyme 1) and the consequent increased beta-secretase activity and Aβ production [144].

The crucial involvement of LPBs and oxidative stress in neurodegeneration develop-
ment is schematically represented in Figure 1.
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dogenic process activation by the ERK1/2 MAP kinase pathway that induces the Aβ production in 
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Figure 1. Lipid-binding proteins and oxidative stress in the pathogenesis of neurodegeneration.
Oxidative stress is one of the main processes that modulate the LBPs functions. Indeed, when the
production of ROS is predominant compared to antioxidant defenses activation, the apolipoproteins
and FABPs activity are altered. Under these conditions, the ApoE ε4 mainly modulates the amy-
loidogenic process activation by the ERK1/2 MAP kinase pathway that induces the Aβ production
in relation to AP-1-dependent APP transcription, and neuroinflammation, especially by promoting
TNF-a, IL-1β, and IL-6 release. At the same time, FABP3 induces Aβ and a-syn accumulation and
correlates with the alterations of cognitive performance, thus being considered an early predictor
of cognitive decline. Similarly, under oxidative stress, FABP5 binds a-syn and affects the PPARγ

pathway, thus leading to mitochondria dysfunctions. Moreover, FABP7 promotes lipid dysregulation
by increasing theω6/ω3 ratio, as well as induces the proinflammatory pathway activity, promoting
NF-kB release. Overall, these processes contribute to defining the pathological mechanisms that
conduct the neurodegeneration onset. The figure was created in BioRender.com, accessed on 18
September 2022.

7. Antioxidant Supplementation in Neurodegenerative Diseases

Antioxidants exert the main role in oxidative chain reaction termination through
the elimination of free radical intermediates [145]. In particular, the use of antioxidant
compounds has been elected as a candidate approach to prevent or counteract neuronal
cell death; moreover, supplementation of the diet with nutraceutical products has been
proposed to contribute to limiting the pathology progression in early phases of NDs [146].
Indeed, thanks to their well-known antioxidant properties, many natural compounds play
a crucial role in delaying the onset and the progression of neurodegenerative disorders [10],
as represented in Figure 2.

In this regard, it was demonstrated that vitamins C and E are effective against oxidative
stress; the co-supplementation with 400 IU of vitamin E and 1000 mg of vitamin C in AD
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patients is able to pass through the BBB, and elevated levels of vitamins were found in the
CSF; this reflected in a decreased lipoprotein peroxidation [147].

PUFAs are also useful antioxidant molecules; in particular, theω3 PUFA has proved
to improve both the oxidative stress status and inflammation since it is able to reduce
circulating levels of cytokines with a notable positive effect on cognitive perform [148].
Additionally, ω3 PUFA positively affected cell aging, influencing telomere length [148].
Moreover, the PUFAω3, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), whose principal dietary sources are fatty cold-water fishes, induce the fasting and
postprandial serum triglyceride (TG) by reducing VLDL hepatic synthesis without hepatic
retention of lipids [149–151]. Phytosterols (nuts, seeds, and vegetable oils) promote LDL-
cholesterol (LDL-C) decrease in a dose-dependent way [152]. In particular, phytosterols do
not allow intestinal cholesterol absorption increasing LDL receptors and, at the same time,
inducing LDL-C concentrations to decrease [153,154].

A 2-week coenzyme Q10 (CoQ10) supplementation, a component of the inner mito-
chondrial membrane [155], was proven effective in reducing brain oxidative stress and
inflammation by its influence on mitochondrial dysfunction. In particular, it seems to
improve levels of glutathione and superoxide dismutase (SOD) [156]. In this regard, the
CoQ10 deficiency was demonstrated to be a biomarker of oxidative stress in PD [157].

Concerning polyphenols, resveratrol, presents in red grapes, peanuts, and other plants,
is able to attenuate neuroinflammation in AD brains since it is an activator of the SIRT1
pathway [158], regulating redox homeostasis [159]. Chlorogenic acids (CGAs), polyphenols
that are contained in coffee beans, have been shown to improve attention and executive
functions in subjects suffering from MCI [160]. Similarly, in AD murine models, CGAs
were demonstrated effective in modulating oxidative stress through the inhibition of
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are two enzymes
with a known pro-oxidant activity [161]. Among polyphenols, curcuminoids were proven
to attenuate oxidative stress, affecting the activity of SOD, glutathione peroxidase (GPx),
and catalase (CAT), and prevent lipid peroxidation and apoptosis in neuronal cells, thus
improving cognitive functions [162]. More generally, most of the polyphenols are able to
downregulate ROS levels, SOD, GPx, and CAT and upregulate the expression of nuclear
factor erythroid 2-related factor 2 (Nrf2) that encodes antioxidant enzymes; additionally,
the polyphenols act on inflammation regulating the expression of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) gene and the secretion of IL-6 [163]. In
addition, Polyphenols limit lipid peroxidation and oxidative stress of plasma lipoproteins
as well as promote hepatic LDL receptors [164]. Moreover, dietary polyphenols intake
could guarantee the improvement of HDL-C levels [165], and isoflavones such as genistein
(e.g., soy) are potent antioxidants against LDL oxidation [166].

Among the medicinal plants, Nigella Sativa and its active compound, thymoquinone,
are highly effective on oxidative stress in the brains of rats exposed to head irradiation
since they positively affect the total superoxide scavenger activity (TSSA), non-enzymatic
superoxide scavenger activity (NSSA), SOD, and paraoxonase (PON) activities [167].

Furthermore, among metals, the effects of zinc supplementation on brain functions
were also studied: it seems to be able to improve cognitive functions, enhancing the release
of BDNF and the antioxidant capacity [168]. In murine models, instead, the supplemen-
tation with selenium nanoparticles decreases the activity of AChE and caspase 3 and
improves the expression of Nrf2, thus regulating the oxidative stress status and apopto-
sis [169]. It was demonstrated that a zinc deficiency, a nutritional problem that may lead to
atherosclerosis onset, could decrease hepatic Apo-A1 gene expression and reduce plasma
Apo-A1 levels [170].

Finally, probiotics, a group of non-pathogenic microorganisms, exert antioxidant ca-
pacities in the CNS [10] and improve manifestations of several neurodegenerative diseases,
including PD and AD [171]. It was demonstrated that Lactobacilli and Bifidobacteria
improve learning and memory in AD rats [172]. In another murine model, the supple-
mentation with Lactobacilli-fermented cow’s milk increases levels of antioxidant defenses
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(SOD, GSH, and GP), reduces inflammatory factors, and improves cognitive functions
both in vivo and in vitro [173]. In AD patients, a 12-week consumption of probiotic-treated
milk improved oxidative stress and inflammation, reducing plasma malondialdehyde
(MDA), a lipid peroxidation end product, and serum high-sensitivity C-reactive protein
(hs-CRP) with a clear positive effect on the MMSE [174]. A possible mechanism through
which probiotics act on the antioxidant defenses in the CNS is the activation of the SIRT1
pathway, as demonstrated by Bonfili et al. in mice treated with a probiotic formulation
supplementation (Slab51) [175]. In fact, SIRT1, an NAD+-dependent protein deacetylase,
is known as a promoter of cell survival thanks to its ability to lower ROS levels in the
CNS [176].

In PD subjects, a randomized, double-blind, placebo-controlled trial demonstrated
that a 12-week Lactobacillus supplementation improves the patient score on the Unified
Parkinson’s Disease Rating Scale (UPDRS) and glutathione (GSH) levels as well as de-
creased levels of hs-CRP and MDA [177]. Probiotics in PD were also proven to act on the
expression of inflammation-related genes with downregulation of IL-1, IL-8, and TNF-α
and upregulation of TGF-β and PPAR-γ [178].
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Figure 2. Antioxidant supplementation in neurodegenerative diseases. Antioxidant supplementa-
tions exhibit beneficial effects on the onset and progression of neurodegenerative diseases. Vitamins
E and C play an important role in reducing oxidative stress, while PUFAs exert positive effects on cell
aging and cognitive performance. Coenzyme Q10 (2 weeks) is able to decrease brain oxidative stress
and inflammation, improving levels of glutathione and superoxide dismutase (SOD). Regarding
metals, zinc was demonstrated to improve cognitive functions (antioxidant capacity and BDNF
release), while selenium regulates oxidative stress status and apoptosis (activities of AChE and
caspase 3 decrease). Polyphenols can downregulate ROS levels, SOD, GPx, and CAT, and upregulate
the expression of Nrf2, enhancing attention, executive (chlorogenic acids), and cognitive functions
(curcuminoids) as well as reducing neuroinflammation in the AD brains (resveratrol). Active com-
pounds in medicinal plants, such as thymoquinone, can counteract oxidative stress in the brains of
rats exposed to head irradiation, affecting TSSA, NSSA, SOD, and PON activities. Probiotics exhibit
antioxidant activity in CNS, improving some manifestations of neurodegenerative disorders. The
figure was created in BioRender.com, accessed on 18 September 2022.
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8. Neuroprotective Effects of Physical Activity

Beyond the neuroprotective effects of nutraceutical supplementation, the beneficial
role of physical activity (PA) in protecting from NDs development is growing [179]
(Figure 3). Physical activity has well-known neuroprotective effects, improving neu-
rotrophic factors production, synaptic connections, and neuronal survival [9]. Exercise has
also been proven to be related to morphological changes in the CNS, affecting cognitive
functions positively. First, it was demonstrated that aerobic training is able to enhance hip-
pocampal perfusion, which is reflected in its enlargement with a remarkable improvement
in memory [180]. In another study, it was shown that a 12-week exercise intervention was
able to ameliorate the functional connectivity of the hippocampus in subjects suffering from
MCI [181]. This effect could be mediated by the release of neurotrophic factors, including
brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and insulin growth
factor -1 (IGF-1); both strength and endurance interventions are useful in increasing BDNF
and IGF1 in old adults [182]. In fact, BDNF, with its autocrine and paracrine functions,
acts on glutamatergic and GABAergic synapses as well as serotonergic and dopaminergic
transmission with clear positive effects on neuroplasticity [183]. BDNF is also crucial
for the development of the postnatal hippocampus since it influences dendritic spine
morphology, which is fundamental for memory [184]. Moreover, in the aging hippocam-
pus of murine models, swimming exercise has been shown to increase IGF-1 triggering
the IGF1/PI3K/Akt and AMPK/SIRT1/PGC1α and thus suppressing inflammation and
apoptosis in neuronal cells [185].

The presence of muscle-brain crosstalk is well documented. Skeletal muscle produces
myokines, which are molecules capable of regulating brain functions [186], and BDNF
production seems to be dependent on FNDC5, which is an exercise-induced muscle pro-
tein [187]. Particularly, by triggering the PGC-1α/FNDC5 pathway in skeletal muscles, PA
promotes BDNF increase in hippocampal tissues [187]. In addition, FNDC5 is also the pre-
cursor of irisin (another myokine) that has proved to be able to mediate the positive effects
of physical activity on aging brains [188]. Specifically, irisin acts both on neuroplasticity and
synaptic health, favoring the release of neurotrophic factors (including BDNF) [188] and on
acute brain injury: indeed, in a post-stroke brain, the ischemic damage usually activates
the NOD-like receptor pyrin 3 (NLRP3) inflammasome that is responsible for mediating
the inflammatory response, and it was demonstrated that irisin alleviates neuronal injuries
inhibiting the NLRP3 inflammatory pathway [189].

The impact of PA on inflammation, which is crucial in neurodegenerative disorders, is
supported by exercise capacity for modulating cytokine release: different kinds of training
were proven to decrease IL-6 and TNFα levels [190,191] as well as intercellular adhesion
molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, reducing
endothelial activation among elderly population [192].

Moreover, both resistance and endurance training favor the release of SIRT1, an NAD+-
dependent protein deacetylase that plays a remarkable role in modulating inflammation
and microglia activation [193]. SIRT1 mediates the PGC-1α deacetylation, activating several
pathways (through the nuclear respiratory factors, Nrf1 and 2) that regulate mitochondria
biogenesis and respiratory function, thus reducing inflammation and oxidative stress [194].

In murine AD models, a 4-week treadmill exercise intervention was demonstrated
to be efficient on memory functions, and this effect was mediated by the increase in anti-
inflammatory cytokines IL-4 and IL-10, a decrease in IL-1β and TNF-α, peroxynitrite
production, and lipid peroxidation. Furthermore, in the same study, PA preserved neuronal
vitality through the suppression of the caspase-9/caspase-3 apoptotic pathway suggesting
that exercise is particularly effective against inflammation and oxidative stress damage [195].
However, it has to be considered that regular moderate exercise has been widely demon-
strated to counteract oxidative stress-related negative changes. In contrast, acute and
vigorous exercise has been related to an excess of free radical production [132,196].

At rest, oxidative stress status is generally found to be lower in athletes than in
sedentary individuals [197]. Therefore, the literature data present conflicting results due
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to differences in exercise intensities and duration as well as different methods used to
estimate oxidative stress status. Conversely, antioxidant enzymes, including CAT and GPx,
were reported to be increased in athletes than in sedentary individuals, although these
changes are actually related to the physical status and training level of the athletes [198,199].
In this regard, PA was also proven to be efficient in reducing lipid peroxidation by the
modulation of MDA and the activity of several enzymes, including SOD, CAT, GPx, and
AChE [200,201].
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Figure 3. Neuroprotective effects of physical activity. Regular exercise is demonstrated to decrease
oxidative stress and inflammation as well as increase the release of anti-inflammatory molecules,
including IL-4 and IL-10. In addition, exercise triggers the PGC-1α/FNDC5 pathway in skeletal
muscles, with the consequent release of Irisin, which is fundamental for the increase in neurotrophic
factors. PA improves astrocyte functions with positive effects on hippocampal and vascular activities.
In addition, exercise seems able to restore the AMPK and the JNK-BCL2 autophagy, preventing the
accumulation of misfolded proteins and ensuring mitochondrial turnover. Exercise also acts on cell
apoptosis and brain aging, restoring Wnt/β-Catenin signaling. Finally, PA enhances the release
of dopamine improving brain functions in patients suffering from PD. The figure was created in
BioRender.com, accessed on 18 September 2022.

Moreover, in neurodegenerative disorders, inflammatory status derives also from
astrocyte activation that provides for negative changes in brain tissue [202]: in AD mice,
exercise affects the astrocyte state increasing levels of glial fibrillary acid protein (GFAP)
with a consequent enhancement of astrocytic BDNF and better hippocampal functions [203].
In addition, moderate levels of PA in rats induce astrocytes to cover brain vessels, restoring
a better microcirculatory status that is often altered in neurodegenerative disease-affected
brains [204].

The importance of regular physical activity in relation to neurodegenerative disorders
also lies in the regulation of brain autophagy: impaired autophagy is known to be associated
with misfolded protein accumulation, and exercise seems to be able to restore this mecha-
nism by upregulating miR-130a and thus activating AMPK-mediated autophagy [205]. In
addition, exercise induces mitophagy through the activation of AMPK and JNK-BCL2 path-
ways, and this process is fundamental for an adequate mitochondrial turnover in neuronal

BioRender.com


Antioxidants 2022, 11, 2116 13 of 23

cells [206]. Exercise also acts on cell apoptosis and brain aging, restoring Wnt/β-Catenin
signaling: in fact, the suppression of Wnt-associated pathways causes synaptotoxicity,
neuronal apoptosis, and cognitive decline [207].

Exercise also plays a crucial role in delaying the progression of PD, acting directly
on dopamine circuits [208]: in particular, aerobic exercise has been proven to enhance the
release of dopamine in the caudate, simultaneously improving the sensibility of the ventral
striatum affecting the dopaminergic pathway in a positive way [209].

Finally, in murine models, it was demonstrated that exercise reduces stress hormones,
including corticosterone circulating levels, with remarkable positive effects on memory
functions [200].

9. Conclusions

Lipid homeostasis is a crucial factor for brain well-being since lipids are fundamental
in regulating brain functions. The alteration of LBPs and, consequently, the lipid contents in
brain cells leads to NDs development, especially triggered by an impaired balance between
ROS production and antioxidant defenses. The knowledge of neuroprotective effects given
by nutraceutical supplements as well as physical activity is growing in the scientific com-
munity. Antioxidants exert a crucial role in modulating oxidative stress and inflammation,
limiting the production of free radicals and increasing antioxidant defenses delaying brain
aging and neurodegeneration. In addition, nutraceuticals positively affect lipid profile and
lipoproteins, thus preventing also all mechanisms related to vascular impairment. These
bioactive compounds do not substitute pharmacological therapies in severe diseases cases,
but they could be used as possible adjuvants based on their potential effects on human
health [210,211]. However, the activity of natural compounds has been mainly tested on
animal models and by in vitro assays [211], while pharmaceutical compounds are produced
based on good manufactured practices (GMPs), including a widespread series of preclinical
and clinical studies and assuring high safety levels [212]. Furthermore, nutraceuticals do
not need the approval of health authorities, unlike pharmaceuticals. Therefore, nutraceuti-
cal safety is not guaranteed, and, in this regard, it is possible that these products may also
have undesirable effects [212]. As their consumption is becoming more common, people
should keep more attention, and, as reported by Cicero et al. (2018), supplements should
be recommended by professional sanitary figures to limit improper use [210]. Although
many of these natural compounds are provided by dietary sources [213], they can be taken
as nutraceutical supplementations to improve their bioavailability and potential beneficial
effects based on higher concentrations. Nevertheless, it is important to underline that these
supplements do not replace a balanced diet [214].

Furthermore, regular and moderate exercise is fundamental in improving antioxidant
defenses and modulating oxidative stress without forgetting that physical activity favors the
release of neurotrophic factors and stimulates skeletal muscles to produce myokines, which
directly affect brain functions. Some studies confirmed that physical activity, particularly
aerobic exercise, can modify the lipid profile, improving human health and counteracting,
for example, dyslipidemias or nonalcoholic fatty liver disease (NAFLD), without side
effects [215]. However, more studies are needed to better investigate the beneficial effects
of exercise and nutraceuticals on lipid-binding proteins.

Herein, differently from the previous literature reviews in this field, we explored the
interplay among lipids, lipid-binding proteins, and oxidative stress in order to offer an
overview of lipid-related mechanisms involved in neurodegeneration onset, with particular
attention to the antioxidant and neuroprotective role of nutraceutical supplement and
physical activity as a non-pharmacological way of intervention (Figure 4).
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Figure 4. Beneficial effects of nutraceuticals and exercise on lipid profile. Nutraceuticals and exercise
are able to influence lipid profile and lipoproteins levels. A good lifestyle improves health and
prevents possible chronic diseases. Nutraceuticals are provided by dietary sources, but they generally
contain higher concentrations of bioactive compounds, exerting potential beneficial effects. The
ω3 EPA and DHA were demonstrated to reduce VLDL hepatic synthesis and serum TG, while
phytosterols impede intestinal cholesterol absorption, increasing LDL-C receptors and reducing
LDL-C levels. Micronutrients are involved in regulating some apolipoproteins gene expression and
affect HDL-C metabolism. Minerals such as magnesium and zinc and vitamins such as ascorbic acid
and niacin impact lipoproteins and Apo-A1 levels. Polyphenols exert antioxidant activity against
lipid peroxidation and promote hepatic LDL receptors. Soluble fibers encourage LDL-C decrease.
In parallel, physical exercise promotes blood lipid consumption, reducing their levels, and induces
lipid oxidation in skeletal muscle, giving the energy required during training. Moreover, in skeletal
muscle, physical activity increases FABPpm content, especially in males. Exercise training induces
LDL reduction and TG levels, especially when exercise intensity grows. The figure was created in
BioRender.com, accessed on 18 September 2022.
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