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Abstract: Metabolic syndrome (MetS) is a worldwide public health issue characterized by a set of risk
factors for cardiovascular disease. MetS can originate in early life by developmental programming.
Increasing evidence suggests that oxidative stress, which is characterized as an imbalance between
reactive oxygen species (ROS), nitric oxide (NO), and antioxidant systems, plays a decisive role
in MetS programming. Results from human and animal studies indicate that maternal-derived
insults induce MetS later in life, accompanied by oxidative stress programming of various organ
systems. On the contrary, perinatal use of antioxidants can offset oxidative stress and thereby prevent
MetS traits in adult offspring. This review provides an overview of current knowledge about the
core mechanisms behind MetS programming, with particular focus on the occurrence of oxidative-
stress-related pathogenesis as well as the use of potential oxidative-stress-targeted interventions as
a reprogramming strategy to avert MetS of developmental origins. Future clinical studies should
provide important proof of concept for the effectiveness of these reprogramming interventions to
prevent a MetS epidemic.

Keywords: oxidative stress; reactive oxygen species; antioxidant; developmental origins of health
and disease (DOHaD); nitric oxide; obesity; hypertension; metabolic syndrome

1. Introduction

Emerging evidence suggests that early life environment may negatively affect long-
term health and result in increased risk for developing chronic diseases later in life. In a
series of studies, David Barker and his colleagues showed that low birth weight (LBW)
is associated with increased rates of heart disease, diabetes, and many other features of
metabolic syndrome (MetS) in adult life [1–4]. Based on these findings, David Barker and
colleagues proposed the concept of fetal origins of adult disease [5]. It soon became clear
that adverse environmental insults also occur during a critical developmental window that
produces long-term alterations in tissue structure or function by what is now called devel-
opmental programming [6], as well as predisposition to future illness. These developments
led to the emergence of the field known as ‘The Developmental Origins of Health and
Disease’ (DOHaD) [7]. Notably, the DOHaD concept also provides a novel way to avert
adult disease by reprogramming therapy [8,9], that is, by switching therapy prior to illness
onset from adulthood to fetal or fetal life. For that reason, reprogramming can potentially
serve as an innovative preventive strategy to reduce the global burden of disease.

Non-communicable diseases (NCDs) are of increasing global concern due to their
high mortality rate [10]. Importantly, MetS and associated disorders account for two-thirds
of NCD deaths [11]. Also important is the prevalence of MetS, which continues to rise
globally because of a lack of specific therapeutic regimens [11]. Based on this, the pursuit
of a DOHaD approach that can better understand metabolic programming and develop
efficient reprogramming strategies has the potential to reduce global burden of MetS.
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MetS is a collection of medical conditions that occur together and that increase risk
of cardiovascular disease (CVD) [12]. The main components of MetS comprise insulin
resistance, obesity, hypertension, non-alcoholic fatty-liver disease (NAFLD), dyslipidemia,
and accumulation of adipose tissue. Although the pathogenesis of MetS is highly complex
and not yet clear, increasing evidence suggests that oxidative stress has a decisive role in its
manifestations [13].

Oxidative stress is a phenomenon caused by an imbalance in overproduction of dele-
terious reactive oxygen and nitrogen species (ROS and RNS) that overwhelm the capacity
of cellular antioxidant defense [14]. Novel research findings increasingly support the im-
portance of oxidative stress in various components of MetS, including hypertension [15],
obesity [16], insulin resistance [17], NAFLD [18], etc. Conversely, treatment with antioxi-
dants has been suggested to aid in the prevention of MetS-related disorders [19–21].

Despite the evidence showing the impact of oxidative stress and antioxidant therapy
in MetS, little attention has been paid to their implications for the developmental program-
ming of MetS. The aim of the current review is to map the best available evidence onto
the interplay between oxidative stress and developmental programming of MetS. Our
review also tends to highlight the common mechanisms behind MetS programming, their
interactions with oxidative stress, and the potential of oxidative-stress-targeted therapy as
a reprogramming strategy for MetS of developmental origins.

We used the PubMed, Medline, and Embase databases to search studies written in English
using the following keywords: “metabolic syndrome”, “hypertension”, “dyslipidemia”, “hy-
perlipidemia”, “obesity”, “diabetes”, “insulin resistance”, “hyperglycemia”, “developmental
programming”, “DOHaD”, “free radicals”, “offspring”, “progeny”, “mother”, “prenatal”, “ni-
tric oxide”, “oxidative stress”, “pregnancy”, “reprogramming”, “reactive oxygen species”,
“reactive nitrogen species”, and “antioxidant”. Additional studies were selected based on
references from eligible articles. The search was ended by 23 August 2022.

2. Current Evidence Supporting the Developmental Origins of MetS
2.1. Human Research

Currently, several lines of epidemiological evidence suggest that adverse intrauterine
conditions coincide with the risk of developing MetS throughout the lifetime. Existing
human studies mainly come from natural history famine birth cohorts. The studies on the
Dutch famine showed that pregnant women under famine had children who developed
several features of MetS later in life, such as hypertension, dyslipidemia, obesity, and
insulin resistance [22,23]. Studies in other famines also support the notion that early-life
famine exposure appears to be a risk factor for obesity, hypertension, and coronary heart
disease [22–25]. Also, data from twin studies suggest that LBW is related to an increased
risk of adult cardiometabolic disorders [26,27].

In 1989, Barker and colleagues reported that LBW was associated with an increased
risk of death from CVD [1]. Likewise, there have been many studies showing an association
between LBW and hypertension [28], impaired glucose tolerance [29], and obesity [30] in
later life. Much of the observational research on risk factors for MetS traits represent another
line of evidence to support developmental origins of MetS. Risk factors now known to have
such effects include maternal malnutrition [22,23], maternal obesity [31,32], gestational
diabetes [33], maternal smoking [34], environmental toxins [35], maternal stress [36], etc.
Finally, postnatal overnutrition is detrimental for infants with LBW who attain “catch-up
growth”, being related to obesity and cardiometabolic risks [37,38]. A systematic review
summarizing 39 studies revealed that rapid weight gain in infants with LBW was linked to
an 80% greater risk for CVDs [39].
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A number of hypotheses, such as thrifty phenotype [40], catch-up growth hypothe-
sis [41], and predictive adaptive responses [42] have been developed to explain the epidemi-
ological observations of an association between early life insults and later adult diseases.
Despite these human studies supporting a connection between early-life environmental
exposure and developmental origins of MetS traits in later life, these clinical studies seem
unable to provide molecular mechanisms underlying developmental origins of MetS for the
creation of reprogramming interventions. As a result, the consideration of biological plau-
sibility when assessing causality and the creation of potential reprogramming strategies
rely heavily upon evidence derived from animal models.

2.2. Animal Models

A number of previous studies address the importance of animal models being used to
understand MetS programming, and this has been reviewed elsewhere [43–46]. Bearing in
mind the complexity of MetS, developmental origin studies of MetS are mostly conducted
using models that display some, but not all, features of MetS in most investigations [43–46].
Many animal models are derived from a variety of early-life risk factors to elicit certain
characteristics of MetS in adult offspring. Similar to human studies, these early-life insults
contribute to the developmental origins of MetS, including maternal nutrition imbalance,
maternal illness, environmental toxins, maternal stress, medication use, etc. Although
rats are the most frequently used animals [43–46], other species like mice [47], sheep [48],
rabbits [49], pigs [50], and non-human primate [51] have also been used for comparisons
of major components of MetS development during the lifetime. As we primarily focus
on oxidative stress in this review, and for the sake of brevity, we have limited the animal
models of oxidative-stress-related MetS with developmental origins; these are discussed in
detail in the following section.

3. Oxidative-Stress-Related Developmental Origins of MetS
3.1. ROS/NO Disequilibrium

Oxidative stress results from a state of disequilibrium in the ROS/NO balance and
a limited biological antioxidant capability. Both ROS and RNS are damaging biological
molecules [14]. ROS are highly reactive chemicals formed from oxygen, including free
radicals such as superoxide anion (O2

−) and hydroxyl anion (OH−) as well as non-radical
molecules such as hydrogen peroxide (H2O2). Among them, the superoxide anion radical
initiates a cascade of reactions, resulting in the generation of other ROS species.

RNS that bear nitrogen atoms include the nitric oxide radical (NO−), the nitrogen
dioxide radical (NO2−), and peroxynitrite (ONOO−). Much of RNS-dependent cytotoxicity
resides in peroxynitrite, which is produced by the reaction between NO and superox-
ide [52]. In contrast, NO physiologically functions as a gasotransmitter, participating in
cardiometabolic health at an optimal level [53]. Asymmetric dimethylarginine (ADMA)
is an endogenous competitive inhibitor of NOS [54]. High ADMA can uncouple NOS
isoenzymes to generate peroxynitrite, further contributing to reduced NO bioavailability
and increased oxidative stress [55].

On the other hand, several antioxidants can counteract the harmful effects of ROS/RNS.
Superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase,
etc. are enzymatic antioxidants. There are also quite a few non-enzymatic antioxidants,
which include glutathione (GSH) and vitamins [56]. The discrepancy between excessive
ROS/RNS and weak endogenous antioxidant defense leads to damaged DNA, lipids,
proteins, and cellular structures.
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3.2. Oxidative Stress and NO Signaling during Pregnancy

During pregnancy, the balance between ROS and antioxidants should be maintained
to provide an appropriate environment for the fetus [57]. The physiological generation of
ROS positively impacts a variety of developmental processes, ranging from oocyte matura-
tion [58], embryo implantation [59], and placental differentiation [60] to fetal development.
The fetus needs oxygen early in pregnancy, but the oxygen consumption differs at different
trimesters of pregnancy [61]. Fetal oxygen levels are low during the first trimester. During
the second and third trimesters, increasing oxygen needs are in response to rapid fetal
weight gain and establishment of fetal–placental circulation [62]. Increased production of
ROS occurs because of high consumption of oxygen, enhanced metabolism, and utilization
of fatty acids, while abnormal overproduction of ROS disrupts these processes, resulting
in compromised pregnancy [57]. Oxidative damage arises due to the failure of defensive
antioxidant mechanisms in responding to excessive ROS and RNS [56]. Adverse conditions
in pregnancy that are now known to induce oxidative stress include preeclampsia, diabetes,
maternal smoking, obesity, and intrauterine growth retardation (IUGR) [63].

NO has a crucial role in governing feto-placental blood flow. Along with the main
vasodilator in the placenta, NO is involved in vascular reactivity regulation, placental
bed vascular resistance, and angiogenesis [64]. Circulating ADMA levels, an endogenous
inhibitor of NOS, are reduced in the first trimester but increase as the gestational age
increases [65,66]. In early pregnancy, low ADMA and concomitant high NO may result
in hemodynamic adaptation, a greater need of organ perfusion, and uterine relaxation
to allow for fetal growth. In contrast, increased ADMA levels in later pregnancy aid in
the higher uterine muscle contractile activity that is required for successful delivery [67].
In compromised pregnancies, such as in pre-eclampsia [67], gestational diabetes [68],
and maternal undernutrition [69], ADMA levels rise to levels higher than those seen
in normal pregnancy. Summarily, imbalances between ROS and ADMA/NO pathway
result in oxidative stress, which is a condition that contributes to fetal programming in
compromised pregnancies.

3.3. Animal Models of Oxidative-Stress-Related Developmental Origins of MetS

Although mounting evidence indicates the pathogenic interrelationship between
oxidative stress and MetS [13], there is a relative paucity of information regarding the impact
of oxidative stress in early life on offspring MetS traits. Hence, this section mainly covers
evidence regarding animal models used to study oxidative-stress-related developmental
origins of MetS. These animal models are summarized in Table 1 [57–118]. Since there is a
large amount of available information for single components of MetS, for the sake of brevity,
we limited our study to those animal models that display at least two of the components
of MetS in offspring. Additionally, this review was restricted to rat models to facilitate
appropriate comparisons of major features of MetS as they appear throughout a lifetime.
In rats, one month of life is equivalent to 3 human years in adulthood [119]. Table 1 lists
the timing of offspring outcomes, ranging from one week to one year of age in rats, which
corresponds to humans from infancy to middle adulthood.
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Table 1. Summary of oxidative-stress-related developmental origins of MetS in rodent animal models.

Animal Models Timing and Dose Offspring
Species/Gender MetS-Related Outcomes in Offspring Mechanisms of Oxidative Stress Programmed

Organ System

Caloric restriction 50% caloric restriction during
pregnancy and lactation

SD rats/M [69,70];
Wistar rats/M [71]

Hypertension: 12–16 weeks [69,70];
insulin resistance: 14 weeks [71]

↑ ADMA, ↓ NO, ↑ renal 8-OHdG
expression [69];
↑3-NT, ↓ NO [70]

Kidney [69],
vessel [70]

Protein restriction
9% low-protein diet during pregnancy

[72]; 8% low-protein diet during
pregnancy and lactation [73]

Wistar rats/M [72,73] Hypertension: 12 weeks [72];
insulin resistance: 12 weeks [73] ↑ F2-isoprostane, ↓ glutathione [72] Kidney [72]

Maternal high-fat diet

58% high-fat diet during pregnancy
and lactation [74–78]; 31% high-fat

high-cholesterol
diet during pregnancy [79]

SD rats/M [74–78];
Wistar rats/M & F [79]

Hypertension: 16 weeks [74];
↑adiposity: 16 weeks [75]; dyslipidemia:

16 weeks [76]; obesity, dyslipidemia,
and hyperinsulinemia: 100 days [77]

↓ SOD activity in M; ↑ renal MDA
level in F [78]; ↑ renal 8-OHdG

expression [79]
Kidney [78,79]

Maternal high-fructose
consumption

60% high-fructose diet during
pregnancy and lactation [80,81]; 10%

wt/vol fructose solution during
pregnancy [82]

SD rats/M [80,81];
C57BL/6J/M & F [82]

Hypertension, insulin resistance, and
dyslipidemia: 12 weeks [80,81];

hypertension, insulin resistance, and
obesity: 1 year [82]

↑ Renal 8-OHdG expression,
↓ NO [83]; ↑brain NADPH-oxidase

expression and MDA [84];
↑ ROS [85]

Kidney [83], brain [84],
spleen [85]

Uteroplacental
insufficiency

Bilateral uterine artery ligation on day
18 [86] or 19 [87] of pregnancy

Wistar–Kyoto rats/M [86];
Wistar rats/M [87]

Hypertension: 22 weeks [86];
dyslipidemia and insulin resistance:

30 weeks [87]

↑ Urinary F2-isoprostane level &
renal NADPH-oxidase-dependent

superoxide [88]
Kidney [86,88]

Maternal hypoxia

Hypoxia exposure (13% O2) from day 6
to 20 of gestation [89]; alternating cycles

of normoxic (room air; 120 s) and
hypoxic (6.5% O2; 80 s) exposure

during pregnancy [90]

Wistar rats/M [89];
SD rats/M [90]

Hypertension: 4 months [89];
obesity and insulin resistance:

12 weeks [90]
↑ Lipid peroxidation [91] Heart [91]

Maternal inflammation

Intraperitoneally administered
0.79 mg/kg LPS on gestational day 8,

10, and 12 [92]; surgically induced
periodontitis 13 days before mating [93]

SD rats/M & F [92];
Wistar rats/M [93]

Hypertension: 12 weeks [92];
insulin resistance: 75 days [93] ↑ Renal MDA [94] Kidney [94]

Maternal diabetes

Intraperitoneally administered 45
mg/kg STZ on gestational day 0 [95];

intraperitoneally administered 50
mg/kg STZ on postnatal day 1 [95];
intraperitoneally administered 120

mg/kg STZ on postnatal day 5 [96,97]

SD rats/M [95];
Wistar rats/M [96,97]

Hypertension: 12 week [95]; obesity:
12 weeks [96]; insulin resistance and

dyslipidemia: 16 weeks [97]

↑ ADMA,↓ NO [95]; ↑ renal TBARS
and 3-NT [98]; ↑ ROS,↓
NO,↓ SOD activity [99]

Kidney [95,98], vessel [99]

Maternal
chronodisruption

Continuous light exposure during
pregnancy and lactation [100];

continuous light exposure from day 12
to 21 of gestation [101]

SD rats/M [100];
Wistar rats/M [101]

Hypertension: 12 weeks [100],
insulin resistance: 18 weeks [101] ↑ Brain ROS [102] Brain [102]
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Table 1. Cont.

Animal Models Timing and Dose Offspring
Species/Gender MetS-Related Outcomes in Offspring Mechanisms of Oxidative Stress Programmed

Organ System

Maternal stress

Intraperitoneally administrated
0.2 mg/kg dexamethasone daily on

gestational days 15 and 16 [103];
intraperitoneally administered

0.1 mg/kg dexamethasone from 14 to
20 of gestation [104,105]

SD rats/M [103–105]

Hypertension: 16 weeks [103];
obesity, insulin resistance, and
hypertension: 6 months [104];
liver steatosis: 1 week [105]

↓ Renal NO [103];
↑ NADPH-oxidase,

↓ Gpx1 expression [106];
↑ renal 8-OHdG expression,

↑ ADMA [107]

Kidney [103,106],
liver [104,105],

adrenal gland [106]

Maternal di-n-butyl
phthalate (DEHP)

exposure

Oral gavage with 6.25 mg/kg DEHP
during pregnancy and lactation [108];
oral gavage with 100 mg/kg DEHP

from gestational day 9
to postnatal day 21 [109]

Wistar rats/M [108];
SD rats/M [109]

Hypertension: 21 weeks [108];
insulin resistance: 80 days [109] ↑ Renal ROS [110] Kidney [110]

Prenatal bisphenol A
(BPA) exposure

Oral gavage with 50 µg/kg BPA during
pregnancy and lactation [111]; oral

240 µg/kg BPA from 2 weeks prior to
mating and through pregnancy and

lactation [112]

SD rats/M [111]; SD rats/M & F
[112]

Hypeertension: 16 weeks [111];
insulin resistance: 6 months [112]

↑ Renal 8-OHdG expression,
↑ ADMA, ↓ NO [111] Kidney [111]

Maternal nicotine
exposure

Nicotine administration through an
osmotic minipump at 4 µg/kg/min

from day 4 of pregnancy to postnatal
day 10 [113,114]; nicotine

administration through an osmotic
minipump at 6 mg/kg/day from

postnatal days 2 to 16 [115]

SD rats/M [113,114]; Wistar
rats/M & F [115]

Hypertension: 5–8 months [113,114];
hyperlipidemia and steatosis:

6 months [115]

↑ 3-NT, MDA, and NADPH
oxidase [113];

↑MDA and 4-NHE levels,
↓ GPx1 activity [115]

Vessel [113],
liver [115]

Maternal ethanol
exposure

Oral gavage with 1 g of ethanol/kg on
gestational day 13 and 14 [116,117] SD rats/M & F [116,117] Hypertension: 6 months [116],

insulin resistance: 6 months [117]
↓ SOD1, CAT, and Gpx1;

↑ NOX2 [118] Brain [118]

SD = Sprague–Dawley rat; M = Male; F = Female; LPS = lipopolysaccharide; STZ = streptozotocin; ADMA = asymmetric dimethylarginine; NO = nitric oxide; 8-OHdG = 8-
hydroxy-2′–deoxyguanosine; ROS = reactive oxygen species; TBARS = thiobarbituric acid; 3-NT = 3-nitrotyrosine; 4-NHE = 4-hydroxynonenal; Gpx1 = glutathione peroxidase 1;
MDA = malondialdehyde; SOD = superoxidase dismutase; CAT = catalase; NOX2 = NADPH oxidase 2.



Antioxidants 2022, 11, 2108 7 of 23

3.3.1. Maternal-Derived Insults

Various environmental insults have been examined in animal models, including mater-
nal nutritional imbalance [69–85], pregnancy complications [86–94], maternal illness [95–106],
and toxin/chemical exposure [107–118]. Maternal nutritional imbalance can induce nutri-
tional programming. Following the observational studies evaluating exposure to severe
famine [22–24], maternal caloric or protein restriction models have been conducted to
mimic malnutrition in pregnant women exposed to severe famine at that time. Adult rat
progeny born to dams exposed to 50% caloric restriction develop insulin resistance and
hypertension [69–71].

Similarly, protein restriction (8–9%) during pregnancy and/or lactation leads to off-
spring hypertension and insulin resistance [72,73]. Offspring MetS traits can also be
programmed by maternal overnutrition. A maternal high-fat diet has been commonly
used as an animal model for studying MetS of developmental origins [120]. Mother rats
receiving a high-fat diet saw an elevation in BP, body weight, blood lipids, and insulin level
in their offspring [74–77]. Likewise, hypertension, abnormal regulation of lipid metabolism,
and insulin signaling can be programmed by a maternal high-fructose diet [80–82].

Additionally, complications during pregnancy and maternal illness are able to cause
MetS programming. Bilateral uterine artery ligation induced maternal uteroplacental in-
sufficiency that led to hypertension, dyslipidemia, and insulin resistance in adult male rat
offspring [86,87]. In addition, adult male offspring born to dams exposed to hypoxia devel-
oped hypertension, obesity, and insulin resistance [89,90]. Likewise, offspring hypertension
and insulin resistance can be induced by maternal inflammation in a lipopolysaccharide
(LPS) exposure model or a surgically induced periodontitis model [92,93].

Several components of MetS such as hypertension, obesity, insulin resistance, and dys-
lipidemia in adult offspring induced by maternal diabetes are also demonstrable in animal
models [95–97]. Though many models have been used for diabetes research, only streptozo-
tocin (STZ)-induced diabetes has been modeled for MetS of developmental origins [95–97].
Both type 1 and type 2 diabetes can be induced by STZ when given to adult [95] or neonate
rats [95–97]. Previous reports also demonstrated that adult male offspring in a rat model
with maternal continuous light exposure had hypertension and insulin resistance [100,101].
Another common pregnancy complication is maternal stress. A developing fetus is prone
to being exposed to excessive glucocorticoid due to a stressed pregnancy. Dexamethasone
exposure during pregnancy was shown to induce hypertension, obesity, insulin resistance,
and liver steatosis in adult male rat offspring [103–105].

Moreover, maternal exposures to toxin/chemical have also been associated with the
developmental programming of MetS. Several of the studies listed in Table 1 indicated that
maternal exposure to di-n-butyl phthalate (DEHP) [108,109] or bisphenol A (BPA) [111,112]
can lead to hypertension and insulin resistance in adult rat offspring. Additionally, maternal
nicotine administration during lactation was shown to cause hypertension, hyperlipidemia,
and steatosis in adult offspring [113–115]. Furthermore, administration of 1 g ethanol/kg
on gestational days 13 and 14 in mother rats induced MetS programming, resulting in
hypertension and insulin resistance in offspring of both sexes by 6 months of age [116,117].

3.3.2. Mechanisms behind Oxidative Stress

Oxidative-stress-mediated mechanisms involved in the pathogenesis of developmental MetS
include increased ROS generation enzymes [84,106,113,118], increased ROS [85,88,89,102,110],
decreased expression and/or activity of antioxidant enzymes [72,78,99,106,115,118], in-
creased peroxynitrite [70,98,113], increased oxidative damage [69,72,78,79,83,84,88,94,98,
111,113,115], and dysregulated ADMA-NO pathway [69,70,83,95,99,103,107,111]. Notably,
most studies have focused on the renal and cardiovascular systems: investigators generally
paid less attention to oxidative stress programming on other organ systems, such as the
brain [84,102,118], spleen [85], liver [104,105,115], and adrenal gland [106].

Over the years, many oxidative stress biomarkers have been proposed, mainly reflect-
ing the assessment of oxidative damage in biological molecules: lipids, proteins, and DNA.
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Among these, lipid peroxidation biomarkers are the most commonly used. Table 1 shows
how several biomarkers of lipid peroxidation have been utilized to determine oxidative
damage in different models of programmed MetS, including F2-isoprostanes [72,88], malon-
dialdehyde (MDA) [78,84,94,113], thiobarbituric acid reactive substances (TBARS) [99], and
4-hydroxynonenal (4-NHE) [115]. Notably, MetS of developmental origins programmed
by different maternal insults accompanies organ-specific lipid peroxidation in the kid-
ney [72,78,88,94], vessels [99,113], brain [84], and liver [115].

Additionally, 8-hydroxydeoxyguanosine (8-OHdG) is a biomarker used to detect ox-
idized nucleoside of DNA [121]. Several studies support the idea that oxidative stress
with increased renal 8-OHdG expression is involved in the pathogenesis of MetS pro-
gramming in models of caloric restriction [69], high-fat diet [78], high-fructose diet [83],
prenatal dexamethasone exposure [107], and prenatal bisphenol A exposure [111]. Another
biomarker of oxidative stress is 3-nitrotyrosine (3-NT), which represents the nitration of
protein-bound and free tyrosine residues by reactive peroxynitrite molecules [122]. Prior
work revealed that increased 3-NT in the vessels [70,113] and kidneys [98] is related to
MetS of developmental origins.

Decreased antioxidant capacities can also be involved in oxidative-stress-related MetS
programming. Impaired enzymatic and non-enzymatic antioxidant defenses, including
SOD [78,99], glutathione peroxidase 1 [106,115,118], catalase [118], and glutathione [72],
have been shown in several models of MetS programming.

Prior reviews support the notion that ADMA-related NO-ROS imbalance in early
life induces offspring hypertension, a hallmark of MetS. Table 1 illustrates how ADMA
is a key risk factor for oxidative stress programming in several animal models, such as
caloric restriction [69], diabetes [95], prenatal dexamethasone exposure [107], and pre-
natal bisphenol A exposure [111]. Moreover, NO deficiency in the vessels [70,84] and
kidneys [69,99,103,111] is also relevant to MetS of developmental origins. A summary of
the interaction between maternal-derived insults implicated in oxidative stress and the
major organ systems involved in MetS of developmental origins is depicted in Figure 1.
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Figure 1. Schema outlining how maternal-derived insults induce MetS in later life via oxidative stress
programming of various organ systems. Maternal-dervied insults that induce oxidative stress are
related to increases in reactive oxygen/nitrogen species (ROS/RNS), decreases in nitric oxide (NO),
and reductions in antioxidants.
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3.3.3. Other Mechanisms Related to MetS Programming

In addition to oxidative stress, several core mechanisms may participate in MetS
programming [45], including the glucocorticoid effect [123], dysregulated nutrient-sensing
signals [124], aberrant activation of the renin–angiotensin aldosterone system (RAAS) [125],
gut microbiota dysbiosis [126], etc. Oxidative stress acts a molecular hub facilitating
a wide range of functional interactions among the above-mentioned core mechanisms
behind MetS programming (Figure 2). Several of the studies presented in Table 1 have
linked maternal glucocorticoid exposure to MetS programming [103–107]. As a product
of the activation of the hypothalamic–pituitary–adrenal (HPA) axis, glucocorticoids have
potent programming effects on fetal development [127]. Also, the interplay of oxidative
stress and nutrient-sensing signals has been implicated in maternal high-fructose diet-
induced offspring hypertension [84,128]. Further, it is known that RAAS intrinsic to
tissues modulates BP, metabolic homeostasis, adiposity, and insulin sensitivity [125,129].
The aberrant activation of the RAAS and oxidative stress concurrently exist in several
models of MetS programming [84,103,130]. Moreover, disruption in gut microbiota is
tightly connected to MetS and associated disorders [131], such as obesity [132], insulin
resistance [133], dyslipidemia [134], cardiovascular disease [135], etc. An imbalanced redox
state induces gut microbiota dysbiosis, while gut microbial communities regulate redox
signaling to preserve host–microbiota homeostasis [136,137].
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Figure 2. The interconnection between oxidative stress and other common mechanisms underlying
metabolic syndromes of developmental origins.

4. Reprogramming Strategies: Oxidative-Stress-Targeting Therapies

Although the role of oxidative stress in the pathogenesis of many diseases is un-
doubted, the beneficial effects of antioxidant therapy, based on available clinical evidence,
remain inconclusive. So far, the majority of epidemiological studies have not confirmed any
evidence of proven benefits from antioxidant supplementation, especially in the cardiovas-
cular field [138,139]. These controversial findings may be due to the type of antioxidant, the
single versus multiple approach, supplement timing and dosage, the population suitable
to be treated, etc. Accordingly, it is vital to target specific critical redox pathways and
increase the selectivity of these oxidative-stress-targeted approaches in animal models
before clinical translation.

As for our contemporary knowledge of the DOHaD concept, it turns out that pre-
vention and management of MetS can be started earlier, even before disease occurs, by
reprogramming [8,9]. In the above sections, we illustrated the critical roles that oxidative
stress plays in the pathogenesis of MetS programming. On that basis, antioxidants and
other oxidative-stress-targeted interventions hold promise for the early-life prevention of
MetS in adult progeny.

Non-enzymatic antioxidants could be natural and synthetic antioxidants [140]. Ex-
amples of natural non-enzymatic antioxidants are glutathione, polyphenols, carotenoids,
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flavonoids, vitamins A, C, and E, etc. [141]. Apart from natural antioxidants, several
synthetic antioxidants have also been implemented in MetS. This section discusses the
reprogramming role of oxidative-stress-targeted therapies that are involved in the main
redox reactions and avert MetS of developmental origins. There are several different types
of oxidative-stress-targeted intervention. These are grouped together, depending on which
mechanism of oxidative stress they mediate. Overall, these interventions can be classified
as targeting ROS with enzymatic antioxidants, targeting ROS with non-enzymatic antioxi-
dants, and targeting NO. These potential oxidative-stress-targeted interventions used as
reprogramming therapies for MetS of developmental origins are illustrated in Figure 3.
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4.1. Targeting ROS with Enzymatic Antioxidants

The NOX family, as a key enzymatic source of ROS, can employ NADPH as an electron
donor and then drive molecular oxygen to convert into superoxide [142]. Therefore, agents
that would efficaciously target NOXs to scavenge ROS might hold significant promise for
reducing oxidative stress [143]. There are two types of NOXs inhibitors: small-molecule
inhibitors and peptidic inhibitors [143]. However, neither of them have been examined in
MetS of developmental origins.

On the other hand, SOD can eliminate superoxides with a dismutation mechanism.
SOD mimetics have also been explored as a potential treatment for many oxidative-stress-
related disorders [144]. It has long been known that SOD modulates metabolism. Prior
work indicates that several types of SOD mimics show therapeutic potential against dys-
lipidemia [145], obesity [146], insulin resistance [146], and hypertension [147]. Although
administration of SOD mimetic tempol in pregnancy has been reported to reduce BP in
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spontaneously hypertensive rat offspring [148], none of the SOD mimetics have been
approved in models of MetS programming to date.

4.2. Targeting ROS with Non-Enzymatic Antioxidants

Several non-enzymatic antioxidants applied during gestation and lactation have been
utilized as reprogramming strategies to prevent the development of MetS in animal models,
including vitamins, amino acids, melatonin, polyphenol, N-acetylcysteine (NAC), and
synthetic antioxidants.

4.2.1. Vitamins

The most widely explored nutraceuticals are vitamins C and E. Vitamin C is a potent
water-soluble antioxidant with the ability to quench ROS [149]. Vitamin E is a lipid-soluble
antioxidant that inhibits NADPH oxidase, cyclooxygenase, and lipoxygenase [150]. Our
prior review summarizes current evidence supporting perinatal use of vitamins C and E,
alone or combined with other antioxidants, for protecting rat offspring hypertension [151].
Disruption of epigenetic regulation can result in oxidative stress in relation to MetS pro-
gramming [152]. Despite a recognized role of vitamins B6, B12, and folate as methyl
donors for DNA methylation [153], whether their supplementations in pregnancy can avert
offspring MetS via regulation of epigenetics remain largely unknown. Although several
vitamins exert advantageous effects on oxidative-stress-related disorders, less attention has
been paid to determine their reprogramming effects on MetS of developmental origins.

4.2.2. Amino Acids

Several amino acids have antioxidant properties [154]. It is well-known that amino
acids participate in body fat composition [155], insulin signaling [155], and BP regula-
tion [156]. Previous research indicates that amino acid supplementation during gestation
and lactation can avert offspring hypertension in several animal models. Examples of amino
acids are taurine, arginine, citrulline, cysteine, and branched-chain amino acids (BCAAs).
BCAA supplementation in pregnancy does not only prevent maternal caloric-restriction-
induced offspring hypertension [157]: gestational supplementation of BCAAs also benefits
obesity-associated insulin resistance programmed by maternal high-fat diet [158].

Even though there are other amino acids showing reprogramming potential for hyper-
tension of developmental origins [156], their reprogramming effects in other MetS traits
remain largely unclear. Importantly, amino acid metabolism between the mother and the
fetus in pregnancy is crucial for fetal development. We must elucidate the pathophysiologic
roles of specific amino acids and their connections in the developmental programming of
MetS to avoid unintentional adverse consequences.

4.2.3. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic hormone essential for
pregnancy and fetal development [159]. Melatonin and its metabolites, acting as natu-
rally occurring antioxidants, can scavenge ROS/RNS, enhance expression of antioxidant
enzymes, and increase NO bioavailability [160,161]. Perinatal use of melatonin has been
proposed as a reprogramming strategy for many DOHaD-related adult diseases [162].

As shown in Table 1, the beneficial effects of maternal melatonin therapy are ex-
pressed in different models against offspring hypertension [100], insulin resistance [101],
and liver steatosis [106]. Perinatal use of melatonin can have beneficial effects against
rat offspring hypertension via restoration of the ROS/NO balance in a maternal caloric
restriction model [163] and a high-fructose model [164]. Additionally, prior studies have
demonstrated interplay between melatonin and several core mechanisms underlying MetS
programming, such as aberrant RAAS, dysregulated nutrient-sensing signaling, and glu-
cocorticoid programming [161]. These observations support the notion that perinatal use
of melatonin may act in diverse ways to avert MetS programming-induced disorders in
later life [161]. Melatonin is also involved in epigenetic regulation [165]. Melatonin can
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regulate antioxidant and pro-inflammatory genes via epigenetic on/off mechanisms [166].
While maternal melatonin therapy can epigenetically alter more than 450 transcripts in the
1-week-old offspring kidney [165], whether epigenetic regulation of melatonin has a role in
its protective effect in MetS programming remains to be elucidated.

Of note is that melatonin is a quite safe supplement in humans [167]. Although the
clinical use of melatonin during pregnancy remains inconclusive, it has nonetheless been
clinically used for several neonatal diseases [168]. Therefore, there is a desperate need for
further translational research into the long-term MetS-associated outcomes of perinatal
melatonin use.

4.2.4. Polyphenols

Polyphenols are the widespread phytochemical antioxidants in food [169]. Prior work
has revealed the valuable effect of polyphenols in the counterbalance of oxidative stress
by working as free-radical scavengers, NOS activators, metal chelators, and stimulator of
antioxidant enzymes [170,171]. Accordingly, polyphenols have shown beneficial effects in
MetS [172,173]. Though several systematic reviews have shown that dietary polyphenol
intake reduces CVD risk [174–177], only a few polyphenols have been tested in animal
models of MetS programming.

Polyphenols are commonly categorized as flavonoids and nonflavonoids [169]. Several
flavonoids are potent antioxidants [169]. As an antioxidant, quercetin has been used in
pregnancy to protect adult rat progeny against hypertension programmed by maternal
high-fat diet [106]. In another antenatal dexamethasone exposure rat model, maternal
treatment with epigallocatechin gallate moderated the developmental programming of
hypertension [106].

Resveratrol is a nonflavonoid polyphenol that is commonly used as a nutritional sup-
plement [170,178]. Resveratrol can act as an antioxidant against oxidative stress. Currently,
there is accumulating evidence that suggests a reprogramming effect of resveratrol for the
prevention of offspring MetS [179]. The use of resveratrol in early life has been reported to
protect rat offspring against hypertension [107,111], hyperlipidemia [75], obesity [76,180],
and insulin resistance [181] in various developmental programming models.

Also, genistein, curcumin, and resveratrol have been demonstrated to trigger the an-
tioxidant and anti-inflammatory machinery and ameliorate MetS traits via epigenetic mech-
anisms [182]. However, further research is needed to understand whether the beneficial
effects of polyphenols in MetS programming are directly related to epigenetic changes [183].

One major issue that limits the clinical translation of polyphenols is their low bioavail-
ability in vivo [184]. Considering the complexity and inter-individual variability of polyphe-
nol pharmacokinetics, further research is required to better elucidate the differential impact
of various polyphenols on the MetS of developmental origins.

4.2.5. N-acetylcysteine

N-acetylcysteine, an antioxidant naturally found in Allium plant, is a precursor to
glutathione [185]. Also, NAC is a stable L-cysteine analogue and can be used for H2S
synthesis [186]. Perinatal NAC therapy averts rat offspring hypertension as induced by a
number of early-life insults, such as maternal nicotine exposure [114], maternal hyperten-
sion [187], maternal L-NAME exposure [188], suramin-induced pre-eclampsia [189], and
prenatal dexamethasone and postnatal high-fat diet [190].

Using a maternal L-NAME exposure model, perinatal NAC therapy was shown
to protect rat offspring hypertension, accompanied by enhancement of H2S-generating
enzyme expression and activity in offspring kidneys [188]. In another study [190], the
advantageous effects of NAC against offspring hypertension were associated with an
increase in plasma glutathione level, reduction of oxidative stress, and upregulation of H2S-
generating enzymes. Furthermore, maternal NAC therapy was able to avert rat offspring
hypertension programmed by maternal suramin administration, which coincided with
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increased glutathione levels, restoration of NO bioavailability, and augmentation of H2S
pathways [189].

4.2.6. Synthetic Antioxidants

In addition to natural antioxidants, some synthetic antioxidants have been applied
to reduce oxidative stress in animal models to study MetS programming. The transcrip-
tion factor NRF2 is a master regulator of various homeostatic genes that defend against
oxidative stress [191]. In response to oxidative stress, NRF2 is released from its principal
negative regulator Kelch-like ECH-associated protein 1 (KEAP1) and translocated to the
nucleus, where NRF2 promotes the expression of several antioxidant genes via binding to
antioxidant response element (ARE) [192]. Accordingly, NRF2 activators are considered as
potential agents to protect oxidative-stress-related damage [193].

Dimethyl fumarate (DMF), an NRF2 activator, has been used to prevent rat offspring
hypertension in a combined maternal dexamethasone exposure and postnatal high-fat diet
model [194,195]. In addition, maternal lazaroid therapy, an inhibitor of lipid peroxida-
tion [196], prevented the elevation of BP in adult rat progeny born to dams that received a
protein-restricted diet [72]. Although certain synthetic antioxidants have been explored in
several animal models of oxidative stress, little is known regarding their ability to protect
adult offspring against MetS programming.

4.3. Targeting NO

A number of NO-targeted approaches have been utilized to increase NO bioavailability,
such as NO donors, supplementation of NO substrate, enhancement of the expression
and/or activity of NOS, ADMA-lowering agents, etc. So far, some of them have been
examined for therapeutic prevention of MetS programming.

While NO donors, molsidomine, and pentaerythritol tetranitrate have shown benefi-
cial effects against the development of hypertension [197,198], their reprogramming effects
on MetS traits deserve further clarification.

As the substrate for NOS isoenzymes, L-arginine supplementation has been applied
to augment NO bioavailability in several diseases [199], while the beneficial effects of L-
arginine from human trials remain inconclusive [200]. As the main precursor of L-arginine,
oral L-Citrulline supplementation has been utilized to increase L-arginine production and
bypass hepatic metabolism to raise NO levels [201]. To date, gestational L-citrulline sup-
plementation has shown benefits against offspring hypertension in rat models of maternal
caloric restriction [69], streptozotocin-induced diabetes [95], and prenatal dexamethasone
exposure [103]. Along with averting hypertension, L-citrulline supplementation has also
attenuated liver fat accumulation and prevented hypertriglyceridemia in adult rat offspring
born to dams that received a high-fructose diet [202].

The use of ADMA-lowering agents is another way to increase NO. Though a spe-
cific ADMA-lowering agent remains inaccessible at the time of this paper, a number of
clinically used drugs have been shown to restore ROS/NO balance throughout lowering
ADMA levels [203]. Telmisartan, glucagon-like peptide-1 receptor agonist, rosuvastatin,
and epigallocatechin-3-gallate can lower ADMA levels via reduced expression of ADMA-
generating enzyme. On the other hand, metformin, NAC, melatonin, atorvastatin, sal-
vianolic acid A, telmisartan, oxymatrine, and rosuvastatin can augment the activity and/or
expression of ADMA-metabolizing enzymes and thus decrease ADMA levels [203]. So far,
only a few ADMA-lowering agents have been studied in developmental programming
models to prevent offspring hypertension, including NAC [191], melatonin [204], and
metformin [205]. Metformin also showed benefits against liver steatosis in a maternal
high-fat diet rat model [206]. Moreover, supplementing melinjo (Gnetum gnemon) seed
extract during lactation protected adult female rat offspring hypertension by enhancing
eNOS expression in a maternal high-fructose diet model [207].
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4.4. Pros and Cons

Although animal studies implicate oxidative stress as an attractive target for MetS
prevention and therapy, their efficacy still awaits validation in human trials. Considering
the difficulties of recruiting pregnant or lactating women in medication research, the use of
breastmilk as a reprogramming strategy would be a good start. Breastmilk has a powerful
antioxidant composition [208]. There are reports that suggest that there is a relationship
between premature infants fed with breastmilk and lower rates of MetS in young adult
life [209]. As breastfeeding is recommended for infants during the first 6 months after
birth [210], the antioxidant protection offered by breastfeeding against MetS programming
is a key issue that deserve further study.

On the other hand, oxidative-stress-targeted therapy can also be disadvantageous.
Most oxidative-stress-targeted therapies such as antioxidants are administered orally or in-
travenously, which eventually enter the circulation and reach the targeted organ. However,
healthy tissues other than the targeted organs, which have not experienced oxidative stress
damage, may be non-specifically targeted by the antioxidant [211]. As a result, healthy
tissues/organs may be affected negatively, as their levels of ROS may fall below their
physiologically normal limit. As homeostasis of ROS is one of the mandatory requirements
for normal pregnancy and fetal development [57], antioxidant supplementation during
pregnancy and breastfeeding would only apply in the case of deficits, but not as a usual
dietary supplement.

Moreover, excessive antioxidant supplement may shift oxidative stress to an oppo-
site state, namely antioxidant stress [212]. However, it currently remains unclear which
pathogenetic mechanism should be targeted, which timing for reprogramming should be
appropriate, and which kind of antioxidants should be used. Further studies are required to
establish the particular developmental window (e.g., prenatal or pre-weaning stage), to elu-
cidate organ-specific redox-sensitive signaling responsible for different maternal-derived in-
sults underlying MetS programming, and to determine the ‘right’ oxidative-stress-targeted
therapy with the ‘right’ dose at the ‘right’ time for reprogramming.

5. Concluding Remarks and Perspectives

There is substantial evidence that suggests that oxidative stress is involved in MetS
programming, and oxidative-stress-targeted therapy is a potential preventive strategy. Our
review highlights how targeting ROS with enzymatic antioxidants, targeting ROS with
non-enzymatic antioxidants, and targeting NO might represent promising tools for the
prevention of MetS and associated disorders. However, with all the obvious benefits of
oxidative-stress-targeted therapy in MetS programming, we have to be mindful of timing,
dosage, and target organ for various pathologies, since the heterogeneity of MetS has to be
a central consideration. Although several oxidative-stress-targeted strategies were explored
in animal studies and some of them revealed promising data, their efficacy still awaits
future translation into human investigations.

While there has been significant progress in establishing animal models for studying
MetS of developmental origins, only a few models present all components of MetS. While
some oxidative-stress-targeted therapies offer substantial progress in certain characteristics
of MetS, it remains unclear whether their effects are beneficial for other MetS traits or if
they should be translated from one model into other models. Importantly, MetS of devel-
opmental origins, along with oxidative stress, is associated with other core mechanisms.
Therefore, it remains to be determined whether the protective effects of antioxidant therapy
in pregnancy are related to the common mechanisms behind MetS programming.

A deeper understanding of the molecular and biochemical mechanisms of abnormali-
ties associated with oxidative stress in MetS programming will facilitate the development
of preventive therapeutics. Such efforts might prove effective in the prevention of a global
epidemic of MetS.
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