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Abstract: The effects on lipid damage in canned horse mackerel (Trachurus trachurus) of a prior
frozen storage (−18 ◦C) period and the presence of an octopus (Octopus vulgaris) cooking juice
(OCJ) in the packing medium were investigated. An increase of the frozen storage time favoured
an increase (p < 0.05) of free fatty acid (FFA), peroxide, and thiobarbituric acid reactive substance
contents and a decrease (p < 0.05) of the phospholipid (PL) value and polyene index. Furthermore, an
increased presence of OCJ in the packing medium led to an inhibitory effect (p < 0.05) on fluorescent
compound formation as well as to a retention (p < 0.05) of the PL and FFA compounds. Colour
determination showed a substantial increase (p < 0.05) of L* and b* values in canned fish with
previous frozen storage time. Nevertheless, this increase was partly reduced (p < 0.05) by the OCJ
presence in the packing medium. It is concluded that previous holding time has led to an increased
lipid oxidation development and loss of beneficial lipid constituents (i.e., PLs and polyunsaturated
fatty acids). Remarkably, the presence in the packing medium of preservative compounds (i.e.,
antioxidants) included in waste juice obtained from octopus processing provided an effective tool for
lipid preservation and quality enhancement in canned fish.

Keywords: horse mackerel; frozen storage; canning; octopus processing; cooking liquor; packing
medium; lipids; oxidation; hydrolysis; colour

1. Introduction

Among traditional technologies, canning represents one of the most important possi-
bilities of fish preservation. In it, heat treatment involved can substantially alter the nature
of the initial substrate and lead to a food product with different properties, which can
support an important role in human nutrition [1,2]. However, since most species employed
as raw material employed in canneries occur in glut quantities, producers need to hold
the initial material before it is processed or just carried to the factory. For it, most of the
quality problems concerning canned seafood can be related to the quality of the initial
material, which continuously changes during the holding period [3,4]. As a cooling strategy,
frozen storage has been the most employed method on the basis of partially inhibiting
most damage mechanisms (i.e., lipid oxidation, endogenous enzyme activity, and microbial
decomposition) and retaining fish quality for a reasonable time [5,6]. However, if relatively
long periods are required during the previous frozen storage or if the holding temperature
is not correctly kept during the distribution chain, lipid hydrolysis and oxidation have
shown to occur and to influence fish acceptance [7,8].

In order to increase the rancidity stability of canned seafood, natural antioxidants from
different natural sources have been tested as packing systems. Thus, the high presence
of phenolic compounds in extra-virgin olive oil has proved a marked inhibition of lipid
oxidation development in canned tuna (Thunnus alalunga) when compared to brine-canned
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fish [9]. Similarly, a lower hydrolytic and oxidative damage was detected in canned fish
containing extra-virgin olive oil as packing medium when compared to other kinds of
oils [10]. Later on, the employment of sunflower oil as packing medium led to a lower
hydrolysis and oxidation development in canned yellowfin tuna (Thunnus albacares) when
compared to other coating oils [11]. An inhibitory effect on lipid oxidation development was
proved by inclusion of macroalgae extracts both in water-packed (Bifurcaria bifurcata) [12]
and brine-packed (Fucus spiralis and Ulva lactuca) [13] canned fish. Additionally, the
introduction of alga Fucus spiralis extracts in the packing medium led to an increased
rancidity stability in canned Chub mackerel (Scomber colias) that was previously stored
(0–9-day period) under chilling conditions [14].

Octopus species constitute highly nutritional seafood that are commercialised in a
great variety of products. Among the different wastes resulting from octopus processing,
cooking juice or liquor has attracted a great interest from technologists and fish trade on
the basis of its preserving and healthy properties. Thus, Oh et al. [15] detected remarkable
antioxidant and antihypertensive effects, while Kim et al. [16] proved that cooking drip
resulting from Giant Pacific octopus (Enteroctopus dofleini) processing showed a radical
scavenging activity and an inhibitory activity against tyrosine and angiotensin I converting
enzyme. On the basis of the DPPH assay, an antioxidant capacity was proved in cooking
drip from the same octopus species by Choi et al. [17]; notably, this effect showed to
increase by employing a previous gamma-irradiation treatment. Recently, the introduction
of octopus (Octopus vulgaris) cooking liquor as packing system led to an increased rancidity
stability of water-canned Chub mackerel (Scomber colias) [18].

In the present study, the effects of a prior frozen storage period (0–6-month period)
and the presence of cooking juice of common octopus (Octopus vulgaris) in the packing
medium were investigated in brine-canned horse mackerel (Trachurus trachurus). For it,
quality analyses related to lipid damage (lipid hydrolysis and oxidation; phospholipid and
polyene index values) and muscle colour (L*, a*, and b* parameters) were carried out in
initial and canned horse mackerel.

2. Materials and Methods
2.1. Octopus Cooking Juice, Initial Fish and Fish Frozen Storage

Octopus (O. vulgaris) cooking juice (OCJ) was facilitated by Frigoríficos Rosa de los
Vientos S. L. (Marín, Pontevedra, Spain). For it, 2 L of commercial vacuum-sealed juice were
employed. The product was stored under refrigerated conditions (4 ◦C) before employment.

Specimens (104 fish) of fresh horse mackerel (T. trachurus) (length and weight ranges:
25.5–29.0 cm and 163–179 g, respectively) were obtained at Vigo harbour (northwestern
Spain) and transported on ice to the laboratory within 20 min. The different steps carried
out in the present experimental procedure are expressed in Figure 1. As a first step, 8 fish
specimens were separated and divided into four groups (two specimens per group). The
fish (raw or initial fish) were beheaded, eviscerated, and filleted. Then, the white muscle
of the fillets was separated, pooled together within each group, minced, and analysed
independently (n = 4).

The remaining fish individuals (96 fish) were stored at −40 ◦C for 48 h. After this
time, 32 fish individuals were thawed overnight (4 ◦C) and then subjected to the canning
process (canned fish corresponding to the 0-month frozen period). In the meantime, 64 (two
32 individual groups) fish were kept frozen (−18 ◦C) for 3 and 6 months, respectively (canned
fish corresponding to the 3-month and 6-month frozen periods). At each sampling time,
specimens (32 fish) were thawed overnight (4 ◦C) and then subjected to the canning process.
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Figure 1. Summarised steps carried out in the present experimental procedure.

2.2. Canning Process

Thawed specimens were beheaded, eviscerated, and filleted. Then, 45 g portions of
fish fillets were taken and placed in small flat rectangular cans (105 × 60 × 25 mm; 150 mL).
As packing media, 0, 5, 15, and 30 mL of OCJ were introduced in the cans, followed by
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the addition of 40, 35, 25, and 10 mL of distilled water, respectively. Then, 40 mL of aq. 4%
NaCl solution were added to each can. Packing conditions prepared were named as control
(CT batch), low-concentrated (OCJ-1 batch), medium-concentrated (OCJ-2 batch), and
high-concentrated (OCJ-3 batch), respectively. Each can was prepared with a single fish.

All cans were vacuum-sealed and then subjected to sterilisation in a horizontal steam
retort (115 ◦C, 45 min; Fo = 7 min) (CIFP Coroso, Ribeira, A Coruña, Spain). After finishing
the heating time, steam was cut off, and air was used to flush away the remaining steam.
The cans were cooled at a reduced pressure. Cans were stored at room temperature (20 ◦C)
for 3 months. After this time, the cans were opened, the liquid part was carefully drained
off gravimetrically, and the content of the can was filtered through a filter paper. The fish
white muscle was considered for the study; for it, it was separated, wrapped in filter paper,
and used for analysis.

At each sampling time of the canned fish, the white muscle of two cans with the
same OCJ content was pooled together, minced, and employed to carry out the different
quality analyses. Each batch (CT, OCJ-1, OCJ-2, and OCJ-3) was analysed by means of four
replicates (n = 4).

A brine filling medium (i.e., final aq. 2% NaCl concentration) was employed in the
present study as being a common commercial filling medium employed for fish canning.
Additionally, such hydrophilic packing medium would prevent possible interactions of the
fish muscle lipids with a filling medium including a lipid component (i.e., vegetable oil).

The choice of the OCJ content tested in this canning study was based on preliminary
tests. Thus, a 30 mL volume addition (i.e., OCJ-3 batch) showed to correspond to the
highest concentration possible without modifying the sensory descriptors of the canned
horse mackerel (i.e., flesh colour, odour, or flavour) under the current brine-packing condi-
tions. Additionally, two lower volumes (namely, 5 and 15 mL, OCJ-1 and OCJ-2 batches,
respectively) were also checked in this study to analyse the effect of the OCJ content.

Chemical reagents and solvents used in this study were of reagent grade (Merck,
Darmstadt, Germany).

2.3. Moisture Determination and Lipid Extraction and Quantification in Initial Fish and Canned Fish

Determination of moisture in fish muscle was carried out as the weight difference
(1–2 g) before and after heating for 4 h at 105 ◦C according to the official method 950.46 B [19].
Results were calculated as g·kg−1 fish muscle.

Extraction of lipids of fish muscle was done following the Bligh and Dyer [20] method,
which employs a single-phase solubilisation of the lipids using a chloroform-methanol (1:1)
mixture. Quantification was undergone according to Herbes and Allen [21]. Results were
calculated as g·kg−1 fish muscle.

2.4. Determination of Rancidity Stability in Initial Fish and Canned Fish

Peroxide value (PV) was determined spectrophotometrically (520 nm; Beckman Coul-
ter DU 640 spectrophotometer, Brea, CA, USA) according to the method developed by
Chapman and McKay [22], in which peroxides included in the lipid fraction are reduced
with ferric thiocyanate. Results were calculated as meq. active oxygen·kg−1 lipids.

Thiobarbituric acid index (TBA-i) was analysed according to the method proposed by
Vyncke [23]. This method is based on the reaction between a trichloroacetic acid extract
of the fish muscle and thiobarbituric acid. The content of thiobarbituric acid reactive
substances (TBARS) was measured spectrophotometrically at 532 nm and calculated from
a standard curve that was prepared using 1,1,3,3-tetraethoxy-propane (TEP); this curve
was obtained from an aqueous solution of TEP (0.24 mL TEP·L−1) including a range of
0.1 × 10−8 to 4.0 × 10−8 moles of malondialdehyde. The results were calculated as mg
malondialdehyde·kg−1 fish muscle.

Fluorescent compound formation (Fluorimeter LS 45; Perkin Elmer España; Tres
Cantos, Madrid, Spain) was measured in the aqueous fraction obtained from the lipid
extraction process of horse mackerel muscle [24]. For it, fluorescence development was
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measured at excitation/emission at 393/463 and 327/415 nm. The relative fluorescence (RF)
was calculated according to the following formula: RF = F/Fst, where F is the fluorescence
measured at each excitation/emission wavelength pair, and Fst is the fluorescence intensity
of a quinine sulphate solution (1 µg·mL−1 in 0.05 M H2SO4) measured at the corresponding
wavelength pair. The fluorescence ratio (FR) was calculated as the ratio between the two
RF values: FR = RF393/463 nm/RF327/415 nm.

Lipid extracts were converted into fatty acid methyl esters (FAME) by using acetyl
chloride in methanol. Then, they were analysed by gas–liquid chromatography (Perkin
Elmer 8700 chromatograph, Madrid, Spain) [25]. Identification of peaks corresponding to
FAME was carried out by comparison of their retention times with those of commercial
standard mixtures (Qualmix Fish, Larodan, Malmo, Sweden; FAME Mix, Supelco, Inc.,
Bellefonte, PA, USA). For quantitative purposes, peak areas were automatically integrated,
with C19:0 fatty acid being used as the internal standard. The content of each fatty acid
(FA) was calculated as g·100 g−1 total FA. The polyene index (PI) was calculated as the
following FA content ratio [25]: (C20:5ω3 + C22:6ω3)/C16:0.

2.5. Determination of Free Fatty Acid (FFA) and Phospholipid (PL) Contents in Initial Fish and
Canned Fish

FFA content in the lipid extract was spectrophotometrically (710 nm) determined
following the method of Lowry and Tinsley [26]; this method is based on the formation of
a complex with cupric acetate–pyridine. Results were calculated as g FFA·kg−1 fish muscle
and g FFA·kg−1 lipids.

PL content was measured according to the method of Raheja et al. [27]; this method is
based on formation of a complex with ammonium molybdate. Results were calculated as
g PL·kg−1 fish muscle and g PL·kg−1 lipids.

2.6. Colour Assessment in Initial Fish and Canned Fish

A tristimulus HunterLab Labscan 2.0/45 colorimeter (Reston, VA, USA) was employed
to carry out the instrumental colour determination (CIE 1976). Colour parameter (L*, a*,
and b*) scores corresponding to each muscle sample (initial and canned) were averaged
over four measurements; such measurements were taken by rotating the measuring head
90◦ among triplicate measurements per position.

2.7. Statistical Analysis

Data (n = 4) obtained from the different physicochemical analyses were subjected
to one-way ANOVA (p < 0.05) to investigate differences resulting from previous frozen
storage time and from concentration of OCJ in the packing medium (Statistica version
6.0, 2001; Statsoft Inc., Tulsa, OK, USA). Comparison of means was carried out by using a
least-squares difference (LSD) method.

3. Results and Discussion
3.1. Determination of Moisture and Lipid Contents

Moisture and lipid contents of initial horse mackerel were 773.9 ± 4.3 and 14.2 ± 2.4 g·kg−1

muscle, respectively. Contents for both constituents agree with previous studies related to this
pelagic medium-fat species [25,28]. Canning process led to a substantial moisture loss (range
of 740–755 g·kg−1 muscle), while the lipid content showed a marked increase (range of
17.5–22.5 g·kg−1 muscle). Notably, no effect (p > 0.05) on the content of both constituents in
canned muscle could be detected as a result of previous frozen storage time and presence
of OCJ in the packing medium (data not shown).

Moisture loss in the canned muscle can be explained as a result of protein denaturation
during the sterilisation process, which in turn leads to a decrease of water-holding capacity
of muscle [3,5,29]. As a result, a drip loss into the packing medium would be produced,
so that other constituents such as the lipid fraction would increase their relative content
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in canned muscle, which agrees with current results on lipid content in canned horse
mackerel.

Previous research related to the effect on moisture and lipid contents of canned
fish muscle of previous frozen storage time and packing media, including preservative
compounds, can be considered very scarce. Thus, no effect of previous frozen storage
time (0–15-month period) of sardine (Sardina pilchardus) was detected on the water and
lipid contents of the corresponding canned product [30]. According to the present study,
previous research also employing the juice resulting from octopus (O. vulgaris) cooking did
not provide differences for moisture and lipid contents in water-canned Atlantic mackerel
(S. scombrus) [18]. No differences in lipid content were obtained by Barbosa et al. [13] in
canned Chub mackerel (S. colias) when aqueous extracts of alga (Fucus spiralis or Ulva
lactuca) were included in the filling medium.

3.2. Assessment of Lipid Oxidation Development

Determination of lipid oxidation was carried out by following different and comple-
mentary analytical tools, i.e., including indices related to primary, secondary, and tertiary
lipid oxidation compound formation.

Peroxide levels were very low in initial fish (1.56 ± 0.71 meq·kg−1 lipids; Table 1)
and showed a substantial increase after the canning process, with all canned values being
included in the 1.53–6.66 meq·kg−1 lipids range. Additionally, an increasing tendency
(p < 0.05) was detected in all batches by increasing the previous holding time. Thus, a
significant increase (p < 0.05) was detected in all cases when comparing samples stored for
3 months with their counterparts from the 0-month period. Concerning the content of the
OCJ in the packing medium, no significant differences could be detected (p > 0.05). It can
be concluded that the presence of OCJ in the packing medium did not produce any effect
on the peroxide content in canned fish.

Table 1. Determination * of primary and secondary lipid oxidation in initial and canned horse
mackerel previously subjected to frozen storage and canned with different packing systems **.

Storage Time
(Months) Packing System

CT OCJ-1 OCJ-2 OCJ-3

PV (meq·kg−1 lipids)

Initial 1.56 A
(0.71)

1.56 A
(0.71)

1.56 A
(0.71)

1.56A
(0.71)

0 1.63 aA
(0.42)

1.53 aA
(0.22)

2.25 aA
(0.51)

1.88 aA
(0.25)

3 4.43 aB
(1.12)

6.22 aB
(1.45)

5.02 aB
(1.26)

5.39 aB
(0.92)

6 6.11 abC
(1.82)

4.56 aB
(1.30)

5.80 abB
(1.70)

6.66 bB
(0.76)

TBA-i (mg
malondial-dehyde·kg−1

muscle)

Initial 0.06 A
(0.03)

0.06 A
(0.03)

0.06 A
(0.03)

0.06 A
(0.03)

0 0.14 aAB
(0.10)

0.24 aBC
(0.16)

0.13 aB
(0.06)

0.18 aB
(0.05)

3 0.23 aB
(0.03)

0.23 aB
(0.06)

0.32 aC
(0.05)

0.41 aC
(0.14)

6 0.34 aC
(0.02)

0.54 bC
(0.13)

0.29 aC
(0.08)

0.30 aBC
(0.07)

* Average values of four (n = 4) replicates; standard deviations are indicated in brackets. In each column,
different capital letters (A–C) indicate significant differences (p < 0.05) as a result of previous frozen storage
time. In each row, different lowercase letters (a, b) indicate significant differences (p < 0.05) as a result of OCJ
concentration. ** Abbreviations: PV (peroxide value), TBA-i (thiobarbituric acid index), and OCJ (octopus cooking
juice). Packing systems: CT (control), OCJ-1 (low-concentrated OCJ), OCJ-2 (medium-concentrated OCJ), and
OCJ-3 (high-concentrated OCJ) batches, according to preparation described in the Materials and Methods section.

Very low TBA-i values were detected in the initial fish (Table 1). However, a substantial
increase was detected in the canned fish corresponding to the 0-month storage as a result of
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the sterilisation process. Additionally, a progressive TBA-i increase (p < 0.05) was observed
in all batches by increasing the previous frozen storage time. However, values were in all
cases included in the 0.13–0.54 mg malondialdehyde·kg−1 muscle range, so that a great
formation of secondary lipid oxidation compounds could not be inferred [25,31]. Related
to the OCJ presence in the packing medium, significant differences (p > 0.05) were very
scarce so that a definite effect on the formation of secondary lipid oxidation compounds
could not be concluded.

Detection of tertiary lipid oxidation compounds (i.e., FR value) was carried out by
assessing the interaction compound formation between primary and secondary lipid
oxidation compounds and nucleophilic compounds present in the fish muscle (i.e., protein-
type molecules) [25,30]. Results showed a marked increase as a result of the canning
process (Table 2), which can be explained by the effect of the heating step involved (i.e.,
sterilisation). This FR increase was even higher (p < 0.05) by increasing the previous holding
time, with differences being significant (p < 0.05) for control canned fish previously stored
for 3 months. In general, a progressive increase of average FR values was proved by
increasing the previous storage period. The presence of OCJ in the packing medium did
not lead to differences in samples corresponding to the 0-month storage. However, when
considering canned samples previously stored for 3 months, all OCJ batches showed lower
(p < 0.05) FR values than their canned control counterparts. A significantly lower (p < 0.05) FR
value was also detected in canned horse mackerel corresponding to the OCJ-3 batch when
compared to the canned control. It is concluded that the presence of the OCJ in the packing
medium has led to an inhibitory effect on the formation of tertiary lipid oxidation compounds.

Table 2. Determination * of fluorescence ratio (FR) and polyene index (PI) in initial and canned horse
mackerel previously subjected to frozen storage and canned with different packing systems **.

Storage Time
(Months) Packing System

CT OCJ-1 OCJ-2 OCJ-3

FR

Initial 1.36 A
(0.41)

1.36 A
(0.41)

1.36 A
(0.41)

1.36 A
(0.41)

0 4.43 aB
(0.54)

4.06 aB
(0.27)

4.13 aB
(0.49)

3.99 aB
(0.19)

3 5.32 bC
(0.17)

4.53 aB
(0.30)

4.23 aB
(0.38)

4.31 aB
(0.49)

6 5.93 bC
(0.58)

4.76 abB
(0.95)

4.21 abB
(0.74)

3.92 aB
(0.26)

PI

Initial 1.42 B
(0.12)

1.42 B
(0.12)

1.42 B
(0.12)

1.42 B
(0.12)

0 1.22 aB
(0.11)

1.18 aA
(0.15)

1.41 aB
(0.32)

1.23 aAB
(0.09)

3 1.10 aA
(0.05)

1.38 aAB
(0.15)

1.19 aAB
(0.18)

1.18 aA
(0.06)

6 0.98 aA
(0.13)

1.12 aA
(0.14)

1.14 aA
(0.09)

1.28 aAB
(0.18)

* Average values of four (n = 4) replicates; standard deviations are indicated in brackets. In each column, different
capital letters (A–C) indicate significant differences (p < 0.05) as a result of previous frozen storage time. In each
row, different lowercase letters (a, b) indicate significant differences (p < 0.05) as a result of OCJ concentration.
** Abbreviations: OCJ (octopus cooking juice). Packing systems as expressed in Table 1.

The lipid oxidation mechanism is considered a complex deteriorative pathway involv-
ing the formation of a great diversity of molecules. The general lipid oxidation development
found in the present study can be explained on the basis of several factors. First, pro-oxidant
endogenous enzymes (i.e., peroxidases, lipoxygenases, etc.) would catalyse this damage
mechanism during the fish frozen storage [7,8]. Additionally, the strong heating treatment
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involved in the canning process would accelerate the formation of the different lipid ox-
idation compounds (i.e., primary, secondary, and tertiary) [2,3]. Finally, the presence in
the packing medium of preservative compounds (namely, antioxidants) included in the
OCJ would decrease this lipid oxidation development, this leading to a lower formation of
oxidised lipid molecules (i.e., tertiary lipid oxidation compounds).

Previous research accounts for a wide number of studies showing the antioxidant prop-
erties of cooking juices resulting from the commercial processing of tuna species, this effect
being attributed in most cases to lower-molecular-weight peptides [32,33]. Concerning the
preservative properties of liquors resulting from octopus species cooking, several studies
can be mentioned. Thus, Oh et al. [15] analysed the components of octopus cooking liquors
and demonstrated an antioxidant behaviour on the basis of carrying out a Rancimat assay.
In the same way, cooking liquor from Giant Pacific octopus (E. dofleini) revealed an antiox-
idant behaviour (DPPH assay) that could be increased if a previous gamma-irradiation
process was applied [17]. Kim et al. [16] demonstrated that a 70% ethanol extract from the
cooking juice of Giant Pacific octopus (E. dofleini) included a great content of polyphenol
molecules; additionally, FRAP and DPPH assays proved a radical scavenging behaviour
and inhibitory properties against tyrosine and angiotensin I-converting enzyme. Recently,
an inhibitory effect on fluorescent compound formation was detected in water-canned Chub
mackerel (S. colias) when including octopus cooking liquor in the packing medium [18].

Previous research also accounts for the antioxidant effect of other natural extracts
included in the packing medium during fish canning. Thus, the employment of extra-virgin
olive oil as a packing medium led to a marked inhibition of lipid oxidation development
in canned tuna (T. alalunga) when compared to fish packed in brine solution [9]; this
preservative effect was attributed to the high presence of polyphenol molecules in extra-
virgin olive oil. In a subsequent study, polyphenols extracted from extra-virgin olive oil and
included in the packing medium showed to be effective for inhibiting the lipid oxidation
development of canned tuna (T. alalunga) [34]. Later on, Caponio et al. [10] showed the
lowest hydrolytic and oxidative damage in canned fish (tuna, sardine, anchovy, mackerel)
containing extra-virgin olive oil when compared to their counterpart canned fish packed
under olive oil or refined seed oil. A lower formation of fluorescent compounds was
detected by Naseri and Rezaei [35] in canned sprat (Clupeonella cultriventris) packed in
sunflower oil when compared to its counterpart packed in brine solution; this inhibitory
effect on lipid oxidation was attributed to the presence of antioxidant compounds in the
oily medium. Later on, the employment of sunflower oil as packing medium led to a
lower FFA formation and a lower TBARS content in canned yellowfin tuna (T. albacares)
when compared to coconut and ground nut oils as coating media [11]. Moreover, in
agreement with the present study, the lipid oxidation development during canning was
partially inhibited by the presence of macroalgae extracts both in water- and brine-packed
fish [12,13]. An inhibitory effect of fluorescent compound formation was also detected in
canned Chub mackerel (S. colias) that was previously subjected to chilling storage (0–9-day
period) by including an F. spiralis extract in the packing medium [14].

Closely related to lipid oxidation development, the polyene index has shown to afford
complementary knowledge on the development of this damage mechanism. Thus, it
provides information on the content increase or decrease of the polyunsaturated fatty acids
as a result of fish canning or fish processing in general; additionally, this index has shown to
be directly related to the nutritional value [25,36]. Results obtained are depicted in Table 2.
A general decrease of the average value was found by comparison of the initial fish and
samples corresponding to the 0-month holding period; differences were found significant
(p < 0.05) in the case of the OCJ-1 batch. A progressive decrease (p < 0.05) of average
values was detected in all kinds of canned samples by increasing the previous storage time.
Thus, the lowest average values in CT, OCJ-1, and OCJ-2 batches were detected in canned
fish corresponding to the 6-month holding time. No significant differences (p > 0.05) were
detected as a result of the OCJ presence in the packing medium. Average values showed the
lowest levels in the control batch in the case of considering canned samples corresponding
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to a previous storage time of 3 and 6 months. In canned samples corresponding to the
longest holding time, the highest average value was obtained in canned horse mackerel,
including the most concentrated OCJ packing medium. However, a significant (p > 0.05)
effect on PUFA damage could not be concluded in the present study.

A preservative effect on the PI retention has been reported in previous related research
as a result of the addition of antioxidant compounds to the packing medium. In a closely
related study, the presence in the packing medium of a cooking liquor resulting from
octopus (O. vulgaris) processing led to a preservative effect on the PI score in water-canned
Chub mackerel (S. colias) [18]. Furthermore, a significant PI retention in canned Atlantic
salmon (Salmo salar) muscle was proved when packed in a water medium including an
ulte (basal part of alga Durvillaea antarctica) extract [37]; on the contrary, no differences in
effect were detected when other algae (cochayuyo, frond of D. antarctica; U. lactuca; Pyropia
columbina) extracts were employed as packing systems. Furthermore, higher PI values were
obtained in canned Atlantic Chub mackerel (S. colias) when F. spiralis or U. lactuca extracts
were included in the packing system [13]. According to the present results, no differences
of the PI were detected in 3-year canned sprat (C. cultriventris) by comparison with brine
and sunflower oil as packaging media [35].

3.3. Determination of FFA and PL Contents

A low FFA content was observed in initial fish (42.60 ± 3.32 mg·kg−1 muscle; Figure 2)
(3.04 ± 0.52 g·kg−1 lipids), which corresponds to a high-quality fish substrate [25]. Com-
parison between initial fish and canned fish corresponding to the 0-month frozen period
showed a marked increase (p < 0.05) of FFA content in fish muscle, which can be explained
as a result of the thermal breakdown of higher-molecular weight lipid classes such as
triacylglycerol and PL molecules. This FFA content increase showed to be more important
(p < 0.05) by increasing the previous frozen storage time of the fish to be canned. Thus,
the highest (p < 0.05) FFA levels were detected in canned fish previously subjected to a
6-month storage.

Remarkably, an increasing presence of OCJ in the packing medium led to an increased
value of FFA content. Thus, canned samples corresponding to the OCJ-3 batch showed
higher (p < 0.05) FFA contents than their counterparts from CT and OCJ-1 batches in all
cases. For samples from the OCJ-2 batch, differences with the control batch were found
significant (p < 0.05) when considering canned fish corresponding to 3 and 6 months of
previous storage.

Results obtained for FFA levels can be influenced by several and opposite factors. One
side, endogenous enzyme activity during the frozen storage period, would increase the
FFA content, with this increase being more important with storage time [7,8]. On the other,
the sterilisation process should breakdown higher-molecular weight lipid molecules and
lead to a content increase of FFA values [24,30]. However, it has been proven that FFA
compounds are more prone to undergo lipid oxidation development than higher-molecular
weight molecules [38,39]. Therefore, the oxidation of FFA ought to be produced during the
frozen storage and especially during the sterilisation process, leading to an FFA content
decrease. Finally, the presence of preservative molecules (i.e., antioxidants) in the OCJ can
inhibit the lipid oxidation development so that a preservative effect on FFA compounds
may be produced. On the basis of the results obtained, this preservative effect has been
proven to take place, so that an increased retention of FFA molecules was detected in the
present research by increasing the OCJ concentration in the packing medium.

Previous research provides contradictory results when addressing the effect of packing
conditions on lipid hydrolysis development. According to the present results, higher
average FFA contents were observed in canned Atlantic mackerel (Scomber scombrus) by
including B. bifurcata aqueous extracts in the packing medium [12]. Additionally, higher
average FFA values were observed in canned Chub mackerel (S. colias) by the presence of
F. spiralis or U. lactuca extracts in the covering medium [13]. Contrary to the current results,
the FFA values of canned Chub mackerel (S. colias) did not show differences as a result of
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employing aqueous extracts of macroalga F. spiralis as a packing medium [14]. In a closely
related study, no effect on the FFA content in water-canned fish (S. colias) was detected by
including octopus (O. vulgaris) cooking liquor as a packing medium [18].
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Figure 2. Determination of free fatty acid (FFA) content (g·kg−1 muscle) in initial and canned horse
mackerel previously subjected to frozen storage and canned with different packing systems. Average
values of four (n = 4) replicates; standard deviations are indicated by bars. Different capital letters
(A–D) indicate significant differences (p < 0.05) as a result of previous frozen storage time. Different
lowercase letters (a, b) indicate significant differences (p < 0.05) as a result of OCJ presence. Packing
systems as expressed in Table 1.

The PL content of initial fish was 4.34± 0.71 g·kg−1 muscle (Figure 3) (305.51± 50.12 g·kg−1

lipids). Comparison between the initial fish and canned samples corresponding to the 0-
month storage showed a general PL content increase. This increase can be explained as a
result of marked losses on other constituents during the canning process such as moisture
and hydrophilic constituents in general. Remarkably, an important decrease of the PL
content in canned muscle was detected by increasing the previous frozen storage time; this
tendency was observed in all batches and can be explained on the basis of the strong activity
of endogenous enzymes (i.e., phopholipases) during the holding period [7,8]. A marked
effect of OCJ presence in the packing medium was detected on PL content of canned fish,
so that an increasing OCJ presence led to a higher average PL content. Canned samples
corresponding to the 6-month storage revealed higher PL values in fish corresponding to
OCJ-2 and OCJ-3 batches when compared to canned control fish. According to the results
obtained, a preservative effect on the PL fraction is concluded for the OCJ when included
in the packing medium.

PL compounds have been described as serving as drug delivery systems and having
a high bioavailability and protecting effect on different kinds of diseases [40,41]. On the
basis of pharmaceutical and food production industries, great efforts are being focused on
the retention of PL compounds from marine species and their commercial byproducts as
supporting a high polyunsaturated fatty acid content [31,42]. However, previous research
concerning the effect of preservative compounds included in the packing medium on
the PL content in canned fish muscle can be considered very scarce. According to the
present results, an increased PL content was detected in canned Chub mackerel (S. colias) by
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including aqueous extracts of algae F. spiralis and U. lactuca in the packing medium [13]; this
effect was found to increase with the alga concentration present in the packing medium.
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Figure 3. Determination of phospholipid (PL) content (g·kg−1 muscle) in initial and canned horse
mackerel previously subjected to frozen storage and canned with different packing systems. Av-
erage values of four (n = 4) replicates; standard deviations are indicated by bars. Capital letters
(A–C) indicate significant differences (p < 0.05) as a result of previous frozen storage time. Lowercase
letters (a–c) indicate significant differences (p < 0.05) as a result of OCJ presence. Packing systems as
expressed in Table 1.

3.4. Determination of Colour Changes

Assessment of average L* values revealed a marked increase with canning by com-
parison of initial fish and canned samples corresponding to the 0-month storage (Table 3);
differences were found significant (p < 0.05) in all batches except for OCJ-1 fish. This
increase agrees with previous research, showing an important lightness increase as a result
of the canning process [3]. Furthermore, an increasing tendency (p < 0.05) of the L* value
was detected in the current study with the previous holding time in all kinds of canned
samples. Thus, the highest average values were obtained in canned fish corresponding to
6 months of frozen storage in all batches.

Remarkably, the presence of the OCJ in the packing medium led to an inhibitory
effect on the L* value increase. Thus, canned fish corresponding to the two highest OCJ
concentrations (i.e., OCJ-2 and OCJ-3 batches) showed lower (p < 0.05) values than fish
corresponding to the control batch in all cases. It is concluded that OCJ presence has led
to an inhibitory effect on the lightness increase in the canned fish. Determination of the
a* colour value did not provide valuable results (data not shown), so that a definite effect
of previous frozen storage time or presence of OCJ in the packing medium could not be
inferred for this colour parameter.

Related to the b* value, on the basis of the comparison between initial fish and 0-month
canned samples, a marked increase (p < 0.05) resulted from the canning process (Table 3).
This increase agrees with previous research [43,44] and can be explained on the basis of
the effect of the sterilisation step, which facilitates the interaction compound formation
between oxidised lipids and protein-type molecules, and therefore the yellowish colour
development. A progressive increase (p < 0.05) of average b* values was detected by
increasing the previous holding time in all batches; as a result, the highest average values
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were detected in all cases in samples corresponding to the 6-month period. Concerning the
presence of the OCJ, an inhibitory effect on the b* value increase was detected in canned fish
corresponding to OCJ-3 batch (months 3 and 6) and OCJ-2 batch (month 6) when compared
to the control batch. It is concluded that OCJ presence in the packing medium has led to an
inhibitory effect on the yellowish colour development in canned fish, this measurement
being closely related to lipid oxidation development [3,43].

Table 3. Determination * of colour values in initial and canned horse mackerel previously subjected
to frozen storage and canned with different packing systems **.

Storage Time
(Months) Packing System

CT OCJ-1 OCJ-2 OCJ-3

L*

Initial 44.04 A
(3.49)

44.04 A
(3.49)

44.04 A
(3.49)

44.04 A
(3.49)

0 67.66 cB
(1.50)

60.01 bAB
(0.71)

60.51 bB
(0.73)

54.31 aB
(1.49)

3 66.14 cB
(0.56)

65.34 cC
(1.25)

59.63 bB
(1.05)

57.07 aC
(0.82)

6 70.15 cC
(0.52)

66.50 bC
(2.60)

63.46 abC
(1.77)

61.16 aD
(1.25)

B*

Initial 3.33 A
(0.04)

3.33 A
(0.04)

3.33 A
(0.04)

3.33 A
(0.04)

0 14.08 aB
(1.84)

14.37 aB
(0.75)

14.86 aB
(1.62)

13.17 aB
(0.60)

3 17.05 bB
(1.84)

16.34 bB
(1.25)

15.63 bB
(1.16)

12.97 aB
(1.23)

6 18.47 cC
(0.26)

18.45 cC
(0.53)

16.25 bB
(0.78)

14.41 aB
(0.61)

* Average values of four (n = 4) replicates; standard deviations are indicated in brackets. In each column, different
capital letters (A–D) indicate significant differences (p < 0.05) as a result of previous frozen storage time. In each
row, different lowercase letters (a–c) indicate significant differences (p < 0.05) as a result of OCJ concentration.
** OCJ (octopus cooking juice). Packing systems as expressed in Table 1.

Previous studies related to the effect of previous storage and packing conditions on the
colour parameters of canned fish can be considered as scarce. Thus, increasing the previous
storage time and temperature provoked an increase in the L* value and a decrease in the
a* value in canned skipjack tuna (Katsuwonus pelamis) [45]. Conversely, previous chilling
time (0–9–day period) did not lead to a significant effect on colour parameter values in
canned and Coho salmon (Oncorhynchus kisutch) [24]. The employment of sunflower oil
as packing medium led to lower L* and b* values in canned yellowfin tuna (T. albacares)
when compared to coconut and ground nut oils as coating media [11]. Later on, a marked
increase for L* and b* values in canned Atlantic mackerel (S. scombrus) by comparison with
the initial raw fish was detected [12]; remarkably, this increase was partially inhibited by
increasing the presence in the packing system of an aqueous extract of macroalga B. bifurcata.
Recently, an inhibitory effect on the L* value increase was detected in canned Chub mackerel
(S. colias) by including an F. spiralis aqueous extract in the packing medium [14]; additionally, a
higher retention of the a* value was inferred by the alga extract presence in the coating system.

4. Conclusions

Previous frozen storage time and the presence of OCJ in the packing medium showed
a substantial effect on the lipid quality and colour development in canned horse mackerel
(T. trachurus). It is concluded that the previous holding time has led to an increased lipid
damage development (oxidation and hydrolysis) and loss of beneficial lipid constituents
(i.e., PLs and polyunsaturated fatty acids). However, the presence in the packing medium
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of preservative compounds (i.e., antioxidants) included in the waste juice obtained from
octopus processing provided an effective tool for quality retention in canned fish according
to lipid damage (FFA, PL, and FR) and external colour (L* and b*) determinations.

Food technology research is currently addressing an increasing attention to natural
preservative strategies for the production of high-quality seafood and food in general.
Furthermore, a great interest is also accorded to technologies susceptible to use commercial
waste substrates that allow and facilitate the environmental sustainability and the circular
economy. The current study provides a beneficial strategy consisting of the employment of
a waste material to enhance the quality of commercial canned fish. This green strategy also
agrees with present global interests in the search for effective antioxidants obtained from
natural sources in order to replace synthetic antioxidants in food in general. On the basis of
the relevance of the results obtained in the present research, further studies are envisaged
to optimise and scale-up the employment of OCJ in different kinds of canned fish species.
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