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Abstract: Phlorizin (phloridzin) is a polyphenolic phytochemical primarily found in unripe Malus
(apple). It is a glucoside of phloretin and acts as an inhibitor of renal glucose transport, thus lowering
blood glucose. The objective of this study was to determine effects of dietary supplementation with
phlorizin on stress response, aging, and age-related diseases using Caenorhabditis elegans as a model
system. Survival after oxidative stress or ultraviolet irradiation was significantly increased by pre-
treatment of phlorizin. Dietary supplementation with phlorizin also significantly extended lifespans
without reducing fertility. Age-related decline of muscle function was delayed by supplementation
with phlorizin. Phlorizin induced the expression of stress-responsive genes hsp-16.2 and sod-3 and
nuclear localization of DAF-16, a FOXO transcription factor modulating stress response and lifespan
in C. elegans. Amyloid-beta-induced toxicity was significantly reduced by phlorizin. This effect
was dependent on DAF-16 and SKN-1. Increased mortality induced with a high-glucose diet was
partially prevented by phlorizin via SKN-1. Inactivation of dopaminergic neurons observed in a
Parkinson’s disease model was completely recovered by supplementation with phlorizin. Genetic
analysis suggests that lifespan extension by phlorizin is mediated through oxidative stress response
and autophagy. Taken together, these data suggest that phlorizin has strong anti-oxidant and anti-
aging activities with potential to be developed as a novel anti-oxidant nutraceutical against aging
and age-related diseases.
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1. Introduction

Aging is one of the most complicated biological pathways observed in all living organ-
isms. Physiological changes occurring during aging include linear decline of the body and
bone mass, progressive increase in blood pressure and blood glucose, decreased motility
and cardiac output, and so on [1]. At the molecular level, aging can be characterized as
the accumulation of DNA mutations, protein oxidation, and lipid peroxidation [2]. How-
ever, an underlying mechanism that can explain those age-related changes and increased
mortality with time has not been fully understood yet. Many theories of aging have been
advanced to elucidate the cause and process of aging. The free radical theory of aging
was suggested by Dr. Harman in 1956 and supported by scientific data in various model
organisms [3]. It claims that the accumulation of oxidative damage by intracellular or
extracellular free radicals is the major causal factor of aging. Old animals show more
cellular oxidative damage than young animals [4]. In mammals, maximum lifespans of
species are negatively correlated with production levels of reactive oxygen species (ROS),
which are the main free radicals found in cells [5]. The telomerase theory of aging suggests
that attrition of repeated sequences found at both ends of each chromosome, the telomere,
can lead to cellular senescence and organismal aging [6]. The mitochondrial decline theory
emphasizes the importance of functional mitochondria for healthy cellular metabolism
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and bioenergetics. Age-related declines of mitochondrial functions include reduced ATP
generation, increased ROS production, decreased number of mitochondria, and changes in
mitochondrial permeability [7].

In addition to studies focusing on the understanding of the aging process, people have
searched possible nutritional interventions that can retard aging and extend lifespans. The
most successful intervention so far is dietary restriction (DR). The effect of DR was first
reported in rats [8]. Since then, the longevity phenotype with DR was observed in yeast,
nematodes, fruit flies, and mice [9,10]. DR decreased the age-associated increase in oxida-
tive protein modification, DNA mutations, and lipid peroxidation [9]. Dietary-restricted
mice and monkeys showed significantly reduced incidence of age-related diseases, includ-
ing cancer, Alzheimer’s disease (AD), amyotropic lateral sclerosis, and cataracts [11,12].
However, beneficial effects of DR are observed only when DR is maintained continuously,
which is hard to apply in human life. Based on the free radical theory of aging, effects of
supplementation with anti-oxidants have also been studied using various animal models.
Resveratrol, a polyphenolic compound rich in red wine, showed strong anti-oxidant activity
and increased lifespan in yeast, nematodes, and fruit flies [13,14]. Intake of resveratrol
delayed age-related decline of physical activity and reduced cancer incidence and amyloid
beta (Aβ) aggregation [15,16]. Supplementation with vitamin E also extended the lifespan
in Caenorhabditis elegans and Drosophila melanogaster [17]. In mice, a long lifespan was
observed only with extremely high dose of vitamins [18]. Chicoric acid, an anti-diabetic
caffeoyl derivative, exhibited anti-oxidant activity by scavenging cellular ROS and in-
creased lifespan of C. elegans in a dose-dependent manner [19]. Silymarin, a flavanone
derivative, increased resistance to oxidative stress, delayed Aβ-induced paralysis, and
extended lifespans [20]. Recent studies have reported that cysteine derivatives, N-acetyl-L-
cysteine, S-allylcysteine, and selenocysteine, had strong anti-oxidant activity and conferred
a longevity phenotype [21–23]. Dietary supplementation with coenzyme Q10 or lycopene
reduced both susceptibility to oxidative stress and tumor incidence. However, it failed to
show lifespan extension in mice [24].

Phlorizin, also known as phloridzin, is a flavonoid found in the plants of the Malus
genus. It was first isolated from the bark of apple trees [25]. Flavonoids are phenolic
metabolites generated by all plants. They are known to have many biological activities,
including anti-oxidant and anti-fungal activities [26]. Phlorizin is a competitive inhibitor
of sodium–glucose transporters SGLT1 and SGLT2 [25]. It can reduce plasma glucose
concentration by decreasing glucose uptake in the intestine and glucose resorption in
kidneys [25]. In a transgenic mouse model of type 2 diabetes mellitus (DM), phlorizin
decreased blood glucose levels but increased urine glucose levels [27]. In addition, elevated
glycogen synthesis and reduced gluconeogenesis were observed in the liver of type 2
DM mice after treatment with phlorizin [28]. In a type 1 DM model, phlorizin reduced
blood glucose levels and body weight, suggesting an anti-obesity activity [29]. Phlorizin
also shows anti-tumor and neuroprotective activities. A protective effect of phlorizin
has been observed in human cancer cell lines, and cognitive impairment induced by
lipopolysaccharide was significantly alleviated by phlorizin treatment [30,31]. Phlorizin
has strong anti-oxidant activity. Dietary supplementation with phlorizin can scavenge free
radicals, increase activity of anti-oxidant enzymes such as superoxide dismutase (SOD)
and catalase (CAT), and prevent lipid peroxidation [32].

The aim of the current study was to investigate the anti-aging effect of phlorizin using
C. elegans as a model system. We examined effects of dietary supplementation with phlorizin
on response to environmental stressors, including oxidative stress, heat shock, ultraviolet
(UV) irradiation, and lifespan. Changes in physiological and molecular biomarkers of aging,
fertility, and motility, and expression of stress-responsive genes in animals treated with
phlorizin were monitored. The beneficial effect of phlorizin on age-related diseases was
investigated using genetic or nutritional models of AD, DM, and Parkinson’s disease (PD).
Possible underlying mechanisms involved in phlorizin-induced longevity were studied
using long-lived genetic mutants and genetic knockdown of candidate genes.
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2. Materials and Methods
2.1. Worm Strains and Maintenance

Wild-type N2 and all transgenic strains were purchased from C. elegans Genetics Center
(CGC, Minneapolis, USA). CL2070 (dvIs70 [Phsp-6.2::GFP, rol-6]) and CF1553 (muIs84 [Psod-
3::GFP, rol-6]) express GFP with promoter of hsp-16.2 and sod-3, respectively. TJ356 (zls356
IV [daf-16p::daf-16a/b::GFP, rol-6]) was used for measuring subcellular localization of DAF-
16. CL4176 (dvls27 [myo-3/Aβ1-42/let UTR, rol-6]) contains a muscle-specific human Aβ

transgene. BZ555 (egls1 [dat-1p::GFP]) expresses bright GFP in dopaminergic neurons;
age-1 (U56101) (hx546), clk-1 (U55384) (e2519), and eat-2 (NM064558) (ad465) are long-lived
mutant strains of C. elegans. Worms were grown on Nematode Growth Media (NGM)
agar plates (25 mM NaCl, 2.5 mg/mL peptone, 50 mM KPO4, 5 µg/mL cholesterol, 1 mM
CaCl2, 1 mM MgSO4, and 1.7% agar) at 20 ◦C. Escherichia coli OP50 was spread on NGM
plates as a food source. Phlorizin (Sigma Aldrich, PHL80513) was dissolved and diluted in
distilled water.

2.2. Resistance to Environmental Stressors

After age synchronization, three-day-old worms were transferred to NGM plates pre-
treated with different concentrations of phlorizin (100 µL of each diluted phlorizin solution
was spread on NGM plates and dried overnight). After 24 h, individual worms were
transferred to single wells of a 96-well plate containing 1 mM hydrogen peroxide (H2O2)
in S-basal medium without cholesterol (5.85 g sodium chloride, 1 g potassium phosphate
dibasic, and 6 g potassium phosphate monobasic in 1 L sterilized distilled water) to induce
oxidative stress (n = 30). Percent survival was determined after 6 h of incubation. UV
irradiation was imposed with 20 J/cm2/min of UV for 1 min in a UV crosslinker (BLX-254,
VILBER Lourmat Co., Torcy, France). Eight hours of incubation at 35 ◦C was used for heat
shock. Daily survival of worms after heat shock or UV irradiation was recorded until all
worms were dead (n = 60).

2.3. Intracellular ROS Levels

Age-synchronized worms were grown for seven days after hatching. Twenty worms
were randomly selected and transferred to a 96-well black plate containing 195 µL of PBST
(single worm in each well) and 5 µL of H2DCF-DA (Sigma-Aldrich, St. Louis, MO, USA)
was added to each well. After 3 h of incubation, fluorescence intensity was determined in a
fluorescence multi-reader (Infinite F200, Tecan, Grodig, Austria).

2.4. Lifespan Assay

NGM plates containing OP50 and 12.5 mg/L of 5-Fluoro-2′-deoxyruridine to prevent
internal hatching (bagging) were used to monitor lifespans of worms (n = 60). Live and
dead worms were counted every day. Live worms were transferred to fresh NGM plates to
inhibit starvation. Worms lost, killed, or bagged during the assay were excluded from data
analysis. For statistical analysis, the log-rank test was employed [33].

2.5. Fertility Assay

Twelve worms were randomly selected at 48 h after hatching and transferred individ-
ually to a fresh NGM plate. Each worm was allowed to lay eggs for 24 h and transferred to
a fresh NGM plate. This cycle was repeated throughout the gravid period. Eggs spawned
for 24 h by individual worms were incubated for additional 48 h at 20 ◦C. Progeny hatched
from eggs were counted daily during the gravid period.

2.6. Measurement of Age-Related Decline of Muscle Function

For qualitative analysis of muscle function, locomotive activity of single worms was
monitored for 5-, 10-, 15-, and 20-day-old worms (n = 100). It was categorized into three
different phases: phase 1, worms that moved spontaneously without mechanical stimuli;
phase 2, worms that moved only when mechanical stimuli were given; and phase 3, worms



Antioxidants 2022, 11, 1996 4 of 16

that only moved their heads in response to mechanical stimuli. For quantitative analysis of
muscle function, number of thrashings was measured for 10- and 15-day-old worms. Fifteen
worms were randomly selected and placed on NGM plates without OP50 individually
for 2 min. After adapting in M9 buffer for 10 min, number of thrashings per minute was
recorded for each worm.

2.7. Expression of Stress-Responsive Genes

Age-synchronized CL2070 and CF1553 worms (n = 20) grown on NGM plates with
or without phlorizin were randomly selected and mounted onto glass slides coated with
2% agarose and 1 M sodium azide. Expression of GFP was monitored under a fluores-
cence microscope and quantified with a fluorescence multi-reader (Infinite F200, Tecan,
Grodig, Austria). TJ356 worms were anesthetized with 1 M sodium azide on glass slides
at 5, 7, and 9 days after hatching. Nuclear localization of GFP was determined using a
fluorescence microscope.

2.8. Aβ-Induced Toxicity

CL4176 worms were allowed to lay eggs for 2 h at 15 ◦C. After removing adult worms,
only eggs were incubated for additional 24 h. Sixty hatched worms were selected and
incubated at 25 ◦C for 24 h for induction of human Aβ gene in muscle. After 8 h of
incubation, paralyzed worms were counted every hour (n = 60).

2.9. High-Glucose-Diet (HGD)-Induced Toxicity

Sixty age-synchronized worms were transferred to NGM plates spread with 100 µL of
40 mM glucose to induce glucose toxicity. Worms were transferred to fresh NGM plates
daily during gravid period and every other day after reproduction until all worms were
dead. Number of live and dead worms were recorded every day as previously mentioned.

2.10. Degeneration of Dopaminergic Neurons

Age-synchronized L3 of BZ555 were treated with 50 mM 6-hydroxydopamine (6-
OHDA) and 10 mM ascorbic acid in OP50/NGM solution to induce degeneration of
dopaminergic neurons. Solutions were gently mixed every 10 min for 1 h at 20 ◦C. Worms
were washed with M9 buffer three times and transferred onto NGM/OP50 plates containing
10 µM phlorizin and 12.5 mg/L of 5-Fluoro-2-deoxyruridine. After 72 h at 20 ◦C, worms
were mounted onto 2% agarose pads on glass slides with 1M sodium azide. Dopaminergic
neurodegeneration was examined using a fluorescence microscope with 485 nm excitation
and 530 nm emission filters. The fluorescent intensity in the anterior head region of each
worm was measured using image J software. L-3,4-dihydroxyphenylalanie (L-DOPA) was
used as a positive control.

2.11. Gene Knockdown by RNAi

Ahringer RNAi library was used to obtain RNAi clones for daf-16 (AF032112), skn-1
(M84359), and bec-1 (NM068443) genes [34]. Isopropyl-β-D-thio-galactoside (IPTG, Sigma-
Aldrich, St. Louis, MO, USA) was used as an inducer for double-stranded RNA. Cultured
RNAi clones of each gene were fed to age-synchronized worms (n = 60). Empty vector (EV)
clone was used as a negative control.

2.12. Quantitative RT-PCR

Approximately 300 9-day-old worms were collected from 9 cm plates using M9 buffer
and washed three times to remove bacteria. Total RNA was extracted using a Trizol reagent
(Thermo Fisher Scientific) according to the manufacturer’s protocol and stored at −80 ◦C.
Total RNA (1 µg) was reverse transcribed into cDNA using the ReverTra Ace qPCR RT
Master Mix (TOYOBO). Quantitative RT-PCR was performed using 2x SyGreen Mix Hi-
ROX (qPCRBIO) according to the manufacturer’s protocol on a StepOne Plus Real-Time
PCR System (Applied Biosystems). Expression level of each gene was normalized to the
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expression of ama-1 (NM068122). Relative expression levels were calculated using the
2–∆∆Ct method. The primer pairs used for this study are shown in Table S1.

3. Results
3.1. Phlorizin Modulated Response to Environmental Stressors

The effect of phlorizin on response to oxidative stress, UV irradiation, and heat shock
was measured. Among different concentrations of phlorizin tested, 10 µM of phlorizin
significantly increased resistance to oxidative stress. After 6 h of incubation with H2O2,
76.7 ± 1.92% (mean ± standard error) of worms survived in the untreated control, while
92.2 ± 1.11% of worms survived after being pre-treated with 10 µM of phlorizin (p = 0.002)
(Figure 1A). There was no significant difference in survival with 1 µM of phlorizin (p = 0.651).
To determine whether the increased resistance to oxidative stress with 10 µM of phlorizin
was due to decreased cellular ROS level, we compared cellular ROS levels in untreated
control and worms treated with 10 µM of phlorizin. Cellular ROS levels were not changed
by supplementation with phlorizin, suggesting that increased resistance to oxidative stress
after treatment with phlorizin was not due to reduced cellular ROS levels (Figure 1B).
Survival after UV irradiation was also significantly increased by supplementation with
phlorizin. Mean survival time of the untreated control was 4.98 d. It was increased to 5.70 d
after treatment with 1 µM of phlorizin (p = 0.016), 5.70 d after treatment with 10 µM of
phlorizin (p = 0.023), and 5.66 d after treatment with 100 µM of phlorizin (p = 0.019). There
was no significant difference in survival after treatment with 1000 µM of phlorizin (p = 0.079)
(Figure 1C). However, resistance to heat shock was not affected by supplementation with
phlorizin. Survival curves obtained for animals treated with phlorizin were not significantly
different from those of untreated control (Figure 1D). Having observed increased survival
under oxidative stress and UV irradiation with 10 µM of phlorizin, we decided to use this
effective concentration in the following experiments.
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Figure 1. Effects of phlorizin on stress response and cellular ROS levels. (A) Resistance to oxidative
stress induced by H2O2 was examined. (B) Cellular ROS levels were compared between untreated
control and worms treated with 10 µM of phlorizin in 5-, 7-, and 9-day-old worms. Survival after UV
irradiation (C) or heat shock (D) was examined with different concentrations of phlorizin; 0, 1, 10,
100, and 1000 µM. Error bar indicates standard error. *, a significant difference (p < 0.05) compared to
untreated control (0 µM of phlorizin).
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3.2. Phlorizin Extended Lifespan without Accompanying Reduced Fertility

Based on the free radical theory of aging, we next determined whether phlorizin
could confer a longevity phenotype in addition to its anti-oxidant activity. Both mean and
maximum lifespan were significantly increased by supplementation with phlorizin. Mean
lifespan was extended from 17.5 d for the untreated control to 20.6 d for the phlorizin-treated
group (p < 0.001, 18.0% increase). Maximum lifespans were 23 d and 27d for the untreated
control and phlorizin-treated group, respectively (Figure 2A). Independent replicative
experiments also showed a significant increase in lifespan. The mean lifespan was increased
from 18.4 d to 20.1 d in the second experiment (p = 0.022) and from 18.9 d to 22.2 d in
the third experiment (p = 0.001) (Table S2). Previous studies have reported a reduced
reproduction in long-lived animals as a trade-off for longevity [35,36]. Total number of
progenies produced during the gravid period was not altered by supplementation with
phlorizin: 293.0 ± 13.1 in the untreated control and 300.6 ± 7.60 in phlorizin-treated
group (p = 0.614). As shown in Figure 2B, the number of progenies produced on each day
was not different between the untreated control and phlorizin-treated group through the
gravid period.
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killed/lost/bagged worms were excluded from data analysis. (B) Time-course distributions of
progeny number produced were compared between untreated control and worms treated with
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3.3. Age-Related Decline of Motility Was Delayed by Supplementation with Phlorizin

To examine the role of phlorizin on age-related muscular dysfunction, we employed
both qualitative and quantitative analyses. Locomotive activity was compared between
untreated control and phlorizin-treated group at the age of 5, 10, 15, and 20 d. Locomotive
activity of each worm was classified into three phases: phase 1, worms that moved sponta-
neously without mechanical stimuli; phase 2, worms that moved only when mechanical
stimuli were given; and phase 3, worms that moved only their head in response to mechan-
ical stimuli. All 5-day-old young animals showed spontaneous locomotive activity with
or without supplementation with phlorizin. As expected, locomotive activity declined as
worms grew old. In the untreated control, the percentage of worms showing spontaneous
locomotive activity with any mechanical stimuli was decreased from 78.0% in 10-day-old
worms to 22.0% in 20-day-old worms. This age-related decline of motility was delayed
in phlorizin-treated worms. Higher percentages of worms moving spontaneously were
observed in the phlorizin-treated group: 92.8% vs. 78.0% (phlorizin-treated group vs.
untreated control) in 10-day-old worms, 65.4% vs. 44.3% in 15-day-old worms, and 37.9%
vs. 22.0% in 20-day-old worms (Figure 3A). To show the effect of phlorizin on motility
quantitatively, we measured the number of thrashings per min. At the age of 10 d, there
was a significant increase in the number of thrashings after supplementation with phlorizin.
Average numbers of thrashings per min were 99.3 ± 5.28 and 122.5 ± 2.14 in the untreated
control and phlorizin-treated group, respectively (p = 0.001). Phlorizin increased the aver-
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age number of thrashings per min from 47.6 ± 6.06 in the untreated control to 68.9 ± 6.42
in the phlorizin-treated group at 15 d after hatching (p = 0.046) (Figure 3B).
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Figure 3. Delayed muscular dysfunction with age by supplementation with phlorizin. (A) Locomotive
activity was classified into three phases according to motility of each worm (n = 100). (B) Number of
thrashings was counted for 1 min for 10- and 15-day-old worms under microscope (n = 15). Error
bar indicates standard error. C, untreated control; PZ, phlorizin (10 µM); *, a significant difference
(p < 0.05) compared to untreated control.

3.4. Phlorizin Induced Expression of Hsp-16.2 and Sod-3 and Nuclear Localization of DAF-16

Previous studies have found that expression levels of hsp-16.2 (NM001392482) and
sod-3 (NM078363) are positively correlated with an individual’s lifespan and that they
can be used as longevity-assuring biomarkers [37,38]. Supplementation with phlorizin
significantly up-regulated expression of both hsp-16.2 and sod-3 (Figure 4A). The expression
of hsp-16.2 was increased 1.4-fold in 7-day-old worms and 4.0-fold in 9-day-old worms after
treatment with phlorizin compared to the untreated control (both p < 0.001). Expression of
sod-3 was also markedly induced in the phlorizin-treated group (2.8- and 3.3-fold increases
in 7- and 9-day-old worms, respectively, both p < 0.001) (Figure 4B). DAF-16 is a FOXO
transcription factor that can regulate the expression of many stress-responsive and age-
related genes including hsp-16.2 and sod-3 after nuclear localization [39]. Using GFP fused
to DAF-16, we determined the subcellular distribution of DAF-16 (Figure 4C). Enhanced
nuclear localization of DAF-16 was observed after phlorizin supplementation. The percent
of worms showing nuclear localization of DAF-16 were 55.8 ± 1.60% in the untreated
control and 64.6 ± 2.92% in the phlorizin-treated worms (p = 0.039) in 9-day-old worms
(Figure 4D).

3.5. Positive Impact of Phlorizin Was Observed in Age-Related Disease Models

Using a genetic or nutritional disease model, we tested effects of phlorizin on age-
related diseases. Dietary supplementation with phlorizin significantly delayed Aβ-induced
toxicity. The time when 50% of worms paralyzed after the induction of the Aβ transgene in
muscle was extended up to 13.5% by phlorizin treatment: 7.2 h in the untreated control and
8.2 h in the phlorizin-treated group (p = 0.013) (Figure 5A). Recent studies have found that
DAF-16 and SKN-1 are involved in Aβ-induced toxicity [40,41]. Genetic knockdown of
full-length daf-16 or skn-1 completely abolished delayed paralysis by phlorizin (Figure 5B).
This suggests that the inhibitory effect of phlorizin on Aβ-induced toxicity requires DAF-16
and SKN-1 (Figure 5B). Repeated experiments showed similar results (Table S3). HGD
was developed as a nutritional disease model of DM in C. elegans [42]. Increased mortal-
ity caused by HGD was markedly recovered by supplementation with phlorizin. Mean
lifespan was decreased from 18.8 d in the untreated control to 12.9 d in the group fed HGD
(p < 0.001). However, simultaneous treatment with HGD and phlorizin prevented the
toxic effect of HGD (mean lifespan of 21.0 d, p < 0.001 compared to worms treated with
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HGD only) (Figure 5C). RNAi of skn-1 eliminated the effect of phlorizin on HGD-induced
toxicity (Figure 5D). This indicates that SKN-1 is necessary for the prevention of reduced
survival under HGD by phlorizin (Figure 5D). Independent replication exhibited a signifi-
cant inhibition of HGD-induced toxicity by phlorizin and the requirement of SKN-1 for
the effect of phlorizin (Table S4). Degeneration of dopaminergic neurons, a key physio-
logical change observed in PD, was induced by treatment with 6-OHDA but disappeared
after simultaneous treatment with 6-OHDA and L-DOPA, a widely used drug for PD.
Interestingly, supplementation with phlorizin also markedly prevented degeneration of
dopaminergic neurons caused by 6-OHDA (Figure 6A). Treatment with 6-OHDA decreased
GFP expressed in dopaminergic neurons to 60.4 ± 5.28% compared to the untreated control
(100.0 ± 5.76%, p < 0.001). Relative fluorescence was recovered up to 113.9 ± 7.20% by
L-DOPA (p < 0.001) and 102.9 ± 5.94% by phlorizin (p < 0.001) (Figure 6B). Replicative ex-
periments also showed a significant inhibitory effect of phlorizin on dopaminergic neuronal
degeneration (Table S5).
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Figure 4. Transcriptional regulation of stress-responsive genes by phlorizin. (A) GFP expression
induced by either hsp-16.2 or sod-3 promoter was observed in a fluorescence microscope. (B) Quantifi-
cation of fluorescence was determined using a fluorescence multi-reader. Relative percent expression
is shown compared to 100% for untreated control. (C) Subcellular localization of DAF-16 fused to GFP
was determined under a fluorescence microscope. (D) Percent of worms showing nuclear localization
was compared between untreated control and phlorizin-treated group. Error bar indicates standard
error. C, untreated control; PZ, phlorizin (10 µM); *, a significant difference (p < 0.05) compared to
untreated control.
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Figure 5. Effects of phlorizin on disease models of Alzheimer’s disease and diabetes mellitus.
(A) Number of paralyzed worms after induction of Aβ transgene was counted every hour until
all worms were paralyzed. (B) Effects of phlorizin on paralysis caused by Aβ were compared
between control with EV RNAi and worms with daf-16 or skn-1 RNAi. (C) Survivals of worms
were monitored for untreated control, HGD-treated group, and both HGD and phlorizin-treated
group. (D) Role of SKN-1 in inhibitory effect of phlorizin on HGD-induced toxicity was examined
using genetic knockdown of skn-1. PZ, phlorizin (10 µM); EV, empty vector; HGD, high-glucose diet
(40 mM glucose).
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Figure 6. Inhibited degeneration of dopaminergic neurons by phlorizin. (A) GFP expressed in
dopaminergic neurons was observed for untreated control, 6-OHDA-treated, 6-OHDA/L-DOPA-
treated, and 6-OHDA/phlorizin-treated groups under a fluorescence microscope. (B) Quantification
of fluorescence in the anterior head region was performed using image J program. Error bar indicates
standard error. *, a significant difference (p < 0.05) compared to untreated control; **, a significant
difference (p < 0.05) compared to 6-OHDA-treated group; 6-OHDA, 6-hydroxydopamine; L-DOPA,
L-3,4-dihydroxyphenylalanine; PZ, phlorizin (10 µM).
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3.6. Lifespan Extension by Phlorizin Was Mediated through Oxidative Stress Response
and Autophagy

To identify the underlying mechanisms involved in phlorizin-induced longevity, three
mutants representing each known genetic pathway leading to lifespan extension were
employed. The lifespan of age-1, a long-lived mutant due to reduced insulin/IGF-1-like
signaling, was not changed after treatment with phlorizin. Mean lifespan of age-1 was
29.7 d in the untreated control and 30.7 d in the group of age-1 treated with phlorizin
(p = 0.254) (Figure 7A). In the clk-1 mutant, in which ROS production was reduced by
dysfunctional mitochondria to induce a long lifespan, phlorizin failed to increase lifespans.
Mean lifespans were 19.5 and 18.7 d for untreated control and phlorizin-treated groups of
clk-1, respectively (p = 0.163) (Figure 7B). The eat-2 mutation is a genetic model of DR. DR
retards aging and age-related physiological changes in many model organisms [9,10]. The
mean lifespan of eat-2 (20.4 d) was not affected by phlorizin treatment (18.6 d, p = 0.898)
(Figure 7C). Taken together, no additional lifespan extension of long-lived mutants suggests
that the lifespan-extending effect of phlorizin overlaps with that of each genetic pathway.
We then examined the role of specific factors common to those lifespan-extending pathways.
The phlorizin-induced longevity observed in the wild-type N2 completely disappeared
when the expression of daf-16 was repressed. Mean lifespans of N2 with daf-16 RNAi
(12.9 d) and N2 with daf-16 RNAi and phlorizin treatment (12.8 d) were not significantly
different (p = 0.941) (Figure 7D). The effect of lifespan extension by phlorizin was also
abolished by genetic knockdown of bec-1, a worm homolog of a human autophagic gene.
Mean lifespans were 18.9 and 18.5 d in N2 with bec-1 RNAi and N2 with bec-1 RNAi
and phlorizin treatment, respectively (p = 0.724) (Figure 7D and Table S6). Since DAF-16
modulates the response to oxidative stress and BEC-1 is a key factor regulating autophagy,
we analyzed the effect of phlorizin on expression of genes involved in oxidative stress
response and autophagy. Among four oxidative stress-responsive genes tested, expression
levels of ctl-1 and sod-3 as downstream targets of DAF-16 were significantly increased
after supplementation with phlorizin (1.4- and 1.5-fold increase in mRNA levels of ctl-1
(p = 0.016) and sod-3 (p = 0.027), respectively) (Figure 8). Expression levels of skn-1 and
gst-4 (NM069447) were also increased after supplementation with phlorizin, although such
increases were not statistically significant (p > 0.05). The increase in the expression of bec-1
by phlorizin (1.3-fold) was not statistically significant (p = 0.178). The mRNA level of lgg-1
(NM062876), a well-known autophagic gene and a positive regulator of autophagosome
assembly, was induced 1.3-fold by supplementation with phlorizin compared to that in the
untreated control (p = 0.052) (Figure 8).
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Figure 7. Underlying mechanisms involved in phlorizin-induced longevity. Lifespans of known long-
lived mutants, age-1 (A), clk-1 (B), and eat-2 (C), were monitored with or without supplementation
with phlorizin. (D) Effect of phlorizin on lifespan was examined when expression of daf-16 or bec-1
was repressed by RNAi. PZ, phlorizin (10 µM); EV, empty vector.
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Figure 8. Effects of phlorizin on expression of anti-oxidant and autophagic genes. Quantitative
RT-PCR was performed with total RNA extracted from 9-day-old worms treated with or without
phlorizin. Relative percent expression of each gene in phlorizin-treated group was calculated com-
pared to 100% for untreated control. *, 0.05 < p < 0.1 compared to untreated control; **, a significant
difference (p < 0.05) compared to untreated control; PZ, phlorizin (10 µM).

4. Discussion

Most phytochemicals are secondary metabolites produced in diverse plants to pro-
tect against environmental stresses and microbial infections. Phytochemicals have been
found in various fruits, vegetables, cereals, and nuts. They can be categorized into several
classes according to their chemical structures: phenolic compounds, terpenes, betalains,
polysulfides, organosulfur compounds, and so on [43]. Lifespan-extending effects of
supplementation with phytochemicals have been reported in various model organisms.
Epicatechin, a phytochemical abundant in cocoa bean, increased the lifespan of C. elegans,
Drosophila melanogaster, and mice [44]. In humans, dietary intake of chocolate improved
average life expectancy up to 4 years [45]. Butein, a phenolic compound, showed lifespan-
extending activity in the yeast Saccharomyces cerevisiae [13]. Supplementation with other
phytochemicals such as fisetin, kaempferol, and myricetin conferred a longevity phenotype
via DAF-16, a FOXO transcription factor regulating expression of anti-oxidant genes in C.
elegans [43]. We showed that phlorizin, a phenolic phytochemical abundant in apples, could
significantly increase both mean and maximum lifespans of C. elegans. Age-related decline
of motility was also significantly delayed by phlorizin. The lifespan-extending effect of
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phlorizin has been previously reported in S. cerevisiae and D. melanogaster [43]. Reduced
locomotor function observed in aged animals was partially reversed by phlorizin in fruit
flies [46]. Many phytochemicals exhibit anti-oxidant activity through scavenging ROS
directly or modulating the expression of anti-oxidant genes. Generally, phytochemicals hav-
ing hydroxy groups have ROS scavenging activity. However, the exact structure–activity
relationship for ROS scavenging activity is still elusive. Quercetin and kaempferol are
known to be strong ROS scavengers [44]. The anti-oxidant activity of luteolin, luteolin
tetramethylether, and kaempferol, all of which have four hydroxy groups, are markedly
different, although all of them have four hydroxy groups [47]. Previous studies suggested
that the in vivo anti-oxidant activity of luteolin, curcumin, and resveratrol is due to the
activation of stress-responsive transcription factor Nrf2, and not related to direct ROS scav-
enging activity because of a poor bioavailability in vivo [44]. Nuclear import of DAF-16
was induced by supplementation with myricetin, kaempferol, and quercetin, and activities
of its downstream target anti-oxidant genes were also increased [43]. In the present study,
supplementation with phlorizin significantly increased resistance to oxidative stress with-
out affecting cellular ROS levels. However, increased nuclear localization of DAF-16 and
induction of hsp-16.2 and sod-3 as downstream targets of DAF-16 were observed. These
findings suggest that the anti-oxidant activity of phlorizin might not be due to its ROS
scavenging activity, but due to modulation of DAF-16-mediated anti-oxidant response.
Interestingly, hsp-16.2 and sod-3 were identified as longevity-assurance genes, as their ex-
pression levels were positively correlated with the lifespan of C. elegans [37,38]. Further
studies focusing on the identification of genetic pathways mediating anti-oxidant and
anti-aging activities of phlorizin and the effects on lifespan of the mammalian system will
provide a deeper scientific understanding of the bioactivities of phlorizin.

Phytochemicals also show preventive or therapeutic effects on several chronic diseases
such as cancer, cardiovascular disease, obesity, and diabetes. Resveratrol reduced oxidation
of low-density lipoprotein, which is one of major causes of coronary heart disease and
induced cancer cell death [15,48]. Epigallocatechin gallate inhibited the accumulation of
Aβ in C. elegans [49]. We showed that dietary supplementation with phlorizin exhibited
beneficial effects in disease models of AD, DM, and PD. A previous study has shown
that phlorizin reduced neuronal damage and improved learning and memory abilities
in D-galactose-induced aged mice [50]. In streptozotocin-induced dementia of AD, phlo-
rizin alleviated cognitive decline and neuropathological conditions with AD [51]. Oral
administration of phlorizin reversed decreased dopamine, neuroinflammation, and motor
dysfunction observed in PD model mice [52]. Recent studies have identified transcription
factors that can mediate protective effects of anti-oxidants against AD in C. elegans. Fluox-
etine significantly reduced Aβ-induced toxicity via DAF-16 [53]. The inhibitory effect of
Terminalia chebula Retz and otophylloside B on Aβ aggregation was dependent on DAF-16,
but not on SKN-1 [54,55]. In contrast, delayed Aβ-induced paralysis by rose essential oil
required SKN-1, but not DAF-16 [56]. According to the result presented here, the protective
effect of phlorizin against Aβ-induced toxicity was dependent on both DAF-16 and SKN-1.
HGD can impair immune response and increase mortality in C. elegans. Molecular path-
ways causing those detrimental effects are mediated by SKN-1 [42]. The recovery effect
of phlorizin on the HGD-induced shortened lifespan completely disappeared by genetic
knockdown of skn-1. This indicates that SKN-1 is required for the prevention of HGD-
induced toxicity. Taken together, it is suggestive that phlorizin is a strong phytochemical
candidate for the development of nutraceuticals targeting age-related diseases.

Several lifespan-extending pathways have been identified in C. elegans. They are
well-conserved in other species. The first genetic mutant showing a longevity phenotype
was the age-1 mutant, which could increase the lifespan via reduced insulin/IGF-1-like
signaling [57]. Other mutations in genes such as daf-2 and daf-16 involved in insulin/IGF-1-
like signaling could also regulate the lifespan of C. elegans [58]. The clk-1 mutant produces
less ROS due to decreased function of the mitochondrial electron transport chain reaction,
leading to increased lifespan [59]. The eat-2 mutant is a widely used genetic model of
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DR, since it intakes less food owing to reduced pumping rate in pharynx [36]. Dietary
supplementation with phlorizin in three mutants representing each lifespan-extending
pathway did not further increase their lifespans, although a significant extension was
observed for wild-type N2. These findings suggest that the effect of phlorizin on lifespan
overlaps with effects of three genetic pathways. Such effect of phlorizin is mediated by
common downstream mechanisms. DAF-16 can bind and activate promoters of many
anti-oxidant genes. It is known to be a key downstream effector for lifespan extension via
reduced insulin/IGF-1-like signaling and DR [39]. We observed enhanced nuclear location
of DAF-16 and increased expression of ctl-1 and sod-3 (anti-oxidant genes regulated by
DAF-16) in long-lived animals treated with phlorizin. In addition, repression of daf-16 by
RNAi abolished lifespan extension induced by supplementation with phlorizin. Based on
these data, we can conclude that improved response to oxidative stress by DAF-16 is one of
the major underlying mechanisms involved in phlorizin-induced longevity. Autophagy
is a eukaryotic process for degrading and recycling cellular organelles and components
during development or starvation. Recent studies have shown that autophagy is increased
in many lifespan-extending interventions. Accumulation of vacuolar structures and early
autophagosomes was increased in long-lived animals having reduced insulin/IGF-1-like
signaling [60]. Autophagy was also triggered by DR in C. elegans [61]. Genetic knockdown
of autophagic genes, including bec-1, atg-18, and unc-51, eliminated the longevity phenotype
observed in age-1, clk-1, and eat-2 [62]. This suggests that autophagy is a central mechanism
common to known lifespan-extending pathways. Interestingly, the long lifespan conferred
by phlorizin treatment disappeared when the expression of bec-1 was inhibited. Significant
induction of lgg-1, a gene responsible for autophagosome assembly, was also observed
in long-lived worms supplemented with phlorizin. These results suggest that increased
autophagy is another major underlying mechanism involved in the lifespan extension
caused by phlorizin. The effects of phlorizin on autophagy are necessary to solidate our
findings. Since it is very hard to predict the physiological relevance of findings in lower
organisms to higher organisms, effects of dietary intervention with phlorizin should be
studied in mammals in the near future. Further studies that identify other intracellular
changes associated with phlorizin-induced longevity will help us understand the role of
phlorizin in aging to provide scientific rationales for the development of novel anti-aging
nutraceuticals using phlorizin.

5. Conclusions

Dietary supplementation with phlorizin increased resistance to oxidative stress and
UV irradiation. Phlorizin also extended lifespans and delayed the age-related decline of
motility. Beneficial effects of phlorizin were observed in disease models of AD, DM, and
PD. Genetic analysis with mutant strains and RNAi knockdown suggested that the anti-
oxidant activity of phlorizin is mediated via DAF-16-dependent stress response, and that
the lifespan-extending effect of phlorizin involves DAF-16 and autophagy. In conclusion,
phlorizin has strong anti-oxidant and anti-aging activities and can ameliorate the conditions
of several age-related diseases.
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