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Abstract: Inflammatory bowel disease (IBD) is a gastrointestinal disease that involves chronic mu-
cosal or submucosal lesions that affect tissue integrity. Although IBD is not life-threatening, it
sometimes causes severe complications, such as colon cancer. The exact etiology of IBD remains
unclear, but several risk factors, such as pathogen infection, stress, diet, age, and genetics, have
been involved in the occurrence and aggravation of IBD. Immune system malfunction with the
over-production of inflammatory cytokines and associated oxidative stress are the hallmarks of IBD.
Dietary intervention and medical treatment suppressing abnormal inflammation and oxidative stress
are recommended as potential therapies. Thymol, a natural monoterpene phenol that is mostly found
in thyme, exhibits multiple biological functions as a potential adjuvant for IBD. The purpose of
this review is to summarize current findings on the protective effect of thymol on intestinal health
in the context of specific animal models of IBD, describe the role of thymol in the modulation of
inflammation, oxidative stress, and gut microbiota against gastrointestinal disease, and discuss the
potential mechanism for its pharmacological activity.

Keywords: gastrointestinal disease; gut health; natural anti-oxidant; oxidative stress; chronic inflammation

1. Introduction

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of
the gastrointestinal tract (GIT) [1]. It is not fatal, but imposes a burden on global healthcare
and greatly reduces the quality of life of patients. From 1990 to 2017, the number of IBD
patients increased from 37 million to more than 68 million, and the global prevalence of
IBD increased by 85.1% [2]. The United States has the highest age-standardized prevalence
rate in the world, accounting for nearly a quarter of all global IBD patients in 2017. Among
European countries, the United Kingdom has the highest age-standardized prevalence. The
prevalence of IBD in the United States ranges from 252 to 439 cases per 100,000 people [3].
Compared with western countries, the incidence of IBD in Asia is relatively low, but it
has risen from 0.54 to 3.44 per 100,000 individuals across eight Asian countries [4,5]. The
prevalence and incidence of IBD are continuing to increase worldwide in different races
and countries [6].

IBD includes Crohn’s disease (CD) and ulcerative colitis (UC). UC involves long-lasting
inflammation and ulcers along the superficial lining of the large intestine (rectum and colon),
while CD is characterized by the discontinuous transmural inflammation in deeper layers
of most regions of the GIT [7,8]. The exact cause of IBD remains unknown, but malfunction
in the immune system is its hallmark. In IBD patients, an abnormal immune response to
pathogen infection or stress causes chronic inflammation in the GIT contributing to the
incidence of the disease [9]. Some genetic factors involved in an inappropriate immune
response are a reason for IBD [10]. Oxidative stress (OS) with excessive accumulation
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of reactive oxygen species (ROS) has been reported to correlate with intestinal chronic
inflammation and incidence of IBD [11]. Moreover, alteration in the gut microbiota has
been associated with the pathogenesis of IBD [12]. Unfortunately, there is currently no cure
for IBD. Anti-inflammation medicines are used to relieve inflammation and even surgery
is required to remove damaged parts of the GIT when patients suffer. Recently, advances
in dietary regulation of inflammation, OS, and gut microbiota have resulted in dietary
intervention against IBD incidence being recommended as a long-term prevention and
therapy technique [13]. Currently, more research is focusing on natural plant extracts, such
as phenol compounds, for the prevention and relief of IBD [14].

Thymol (2-isopropyl-5-methylphenol), a natural monoterpene phenol compound, is
the major component of the essential oils extracted from plants of thyme species, such
as Thymus vulgaris, Coridothymus capitatus, and Origanum vulgare [15]. Thymol exhibits
multiple biological and pharmacological properties, including anti-inflammation, anti-
oxidation, anti-bacteria, anti-fungal, and anti-tumor potential [16]. A high dose of thymol
up to 500 mg/kg diet has been shown to have no toxicity [17]. Thus, thymol is considered
as a beneficial food supplement. Recent studies reported that thymol improves intestinal
integrity and alleviates intestinal injury via the regulation of the immune response and
oxidation-reduction homeostasis [18]. In this review, we discussed the potential of thy-
mol as a natural anti-inflammatory, anti-oxidative, and anti-bacterial compound in the
modulation of mucosal immunity, OS, and gut microbes for IBD treatment.

2. Pharmacokinetics and Pharmacological Properties of Thymol

Thymol is the secondary metabolite produced by the aromatization of γ-terpinene
to p-cymene, followed by the hydroxylation of p-cymene in plants [19] (Figure 1), includ-
ing Thymus zygis [20], Thymbra capitata [21], Thymus vulgaris [22], Satureja thymbra [23],
Nigella sativa seeds [24], and Monarda didyma [25]. Pure thymol has low solubility in water,
high volatility, and a strong bitter/irritating taste [26]; thus, it is usually encapsulated in
electrospun nanofibers to enhance its water solubility and high temperature stability [27].
Emulsification is also used for thymol processing. Both encapsulation and emulsification
have been shown to improve the anti-oxidant activity of thymol [28].
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Figure 1. Thymol biosynthesis in plants. Thymol is synthesized by the hydroxylation of p-cymene,
which originates from the aromatization of γ-terpinene.

Thymol administered orally can be rapidly absorbed in the stomach and small in-
testines, and then transported to various organs via the circulation system in animals [29].
Thymol can be metabolized to thymol sulfate and thymol glucuronide by sulfation and
glucuronidation in the intestines, liver, kidney, and other organs, respectively [30]. Thymol
and its metabolites reach the maximum concentration in the blood 30 min after oral admin-
istration and then are slowly eliminated in about 24 h [26]. They also present in the lungs,
kidneys, mucosa of the small and large intestines, and other organs, suggesting that they
may function directly in these organs. It is difficult to determine which compound is the
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active form of thymol, because thymol metabolites can be deconjugated to thymol locally
and export its pharmacological activity in this way [31]. Recently, scientists have focused
on the pharmacological activities of thymol.

Thymol-containing plants have long been used in traditional Chinese medicine due
to its pharmacological properties. Thymol acts as a potent inhibitor of the release of in-
flammatory cytokines, such as interleukin (IL)-6, IL-1β, and IL-8 [32]. Thymol enhances
anti-oxidative capacity to alleviate OS in different tissues [33]. As a spectrum anti-bacterial
agent, thymol reduces the activities of microorganisms belonging to the Enterobacteri-
aceae, Streptococcus, and Saccharomycetaceae families, involving membrane rupture,
inhibition of biofilm formation, and other pathways [34,35]. Thymol shows anti-viral
potential to inhibit virus colonization, such as severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-298), by docking with the S1 receptor-binding domain of spike
glycoprotein [36]. Thymol also exhibits other pharmacological functions, such as analgesia,
anti-malarial, and anti-fungal properties [37–41]. This review focuses on the therapeutic
potential of thymol in IBD in terms of its pharmacological properties and discusses the
underlying mechanisms.

3. Thymol Protects Intestinal Barrier Function against IBD

The intestinal barrier, mainly composed of intestinal epithelial cells (IECs) and immune
cells, maintains the balance between the luminal contents and mucosa. The disturbance of
this balance has been associated with gastrointestinal diseases, such as IBD [42]. Although
the exact pathogenesis of IBD remains unclear, a “leaky gut” with impaired intestinal
barrier function is the main feature. The intestinal barrier is the first line of defense
against pathogen infection, and injury to the intestinal barrier aggravates the disease. Thus,
understanding how thymol protects the intestinal barrier is important for relieving IBD.

Thymol has exhibited a protective function for the intestinal barrier in both in vivo and
in vitro studies, as illustrated in Table 1, and its specific mechanism is shown in Figure 2.
Thymol attenuates weaning stress-induced diarrheal and intestinal barrier dysfunction in
weanling pigs by reducing the serum diamine oxidase level, an indicator of intestinal in-
tegrity, and increasing the expression of the tight junction protein zonula occludens-1 (ZO-1)
and occludins [43]. Thymol alleviates dextran sulfate sodium (DSS)-induced intestinal
damage and increases tight junction claudin-3 expression [44]. Increased plasma endotoxin
and D-lactic acid levels are markers of increased intestinal permeability. The latest study
found that dietary thymol reduced the plasma endotoxin and D-lactic acid concentrations
on days 7 and 14 post-weaning [45]. The intestinal mucus layer is the first line of defense
maintaining bacterial symbiosis with the host and preventing bacterial penetration into
epithelial cells [46]. Thymol increases mucus secretion to relieve ethanol-induced ulcer
mucosal damage in rats [47]. In IPEC-J2 cells, thymol alleviates lipopolysaccharide (LPS)-
induced decrease in trans-epithelial electrical resistance (TEER), indicating an increase in
the integrity of the single cell layer [48]. In Caco-2 cells, thymol increases the integrity
of the tight junction and up-regulates cyclooxygenase-1 (COX1) activity to maintain GIT
homeostasis, which is beneficial for intestinal health [49]. In addition, thymol changes the
expressions of 120 and 59 genes in the oxyntic and pyloric mucosa, respectively, which
are associated with gastric epithelium proliferation and maturation activities in weaned
pigs [29].
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Table 1. Protective function of thymol on the intestinal barrier.

Model Thymol Dose Effects Ref.

In vivo

Weaned pigs 50 mg/kg diet Enrichment of 120 and 59 gene sets in oxyntic
and pyloric mucosa↓ [29]

Ethanol-induced acute ulcer 10–100 mg/kg diet Mucosal damage↓
Amount of mucus↑ [47]

Chicken infected with
Clostridium perfringens 30 mg/kg diet

Intestinal lesions and mortality↓
Lactobacillus salivarius and L. johnsonii↓
L. crispatus, L. agilis, and Escherichia coli↑

[50]

Weaned pigs 100 mg/kg diet

Expression of ZO-1 and occludins in jejunal mucosa↓
Enterococcus genus and E. coli↓
Plasma diamine oxidase concentration↓
Weaning-induced intestinal OS↓

[43]

In vitro

IPEC-J2 50 µM
TEER↑
Cell permeability↓
ZO-1and actin staining↑

[48]

Caco-2 cells 15 mg/L
COX1 transcription↑
COX1:COX2 ratio↑
TEER↑

[49]

↑ indicates for rising; ↓ indicates for descending.
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Figure 2. Action of thymol to protect intestinal barrier function. Pathogen infection in the intestinal
lumen reduces mucus secretion and the expressions of tight junction proteins, and increases intestinal
permeability, resulting in a “leaky gut”, which increases the risk of intestinal disease. Thymol has
been shown to defend against pathogen invasion, promote mucus secretion, and enhance intestinal
barrier integrity.

4. Thymol Alleviates Intestinal Inflammation in IBD

The dysregulation of innate and adaptive immune responses leads to chronic intestinal
inflammation in IBD patients [51–53]. Transcription factor nuclear factor κB (NF-κB) is the
key mediator regulating the inflammatory response. The activation of NF-κB signaling
induces the expression of pro-inflammatory cytokines, including tumor necrosis factor-α
(TNF-α), inductible nitric oxide synthase (iNOS), interleukin (IL-1β), and IL-6 [54]. The
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over-production and accumulation of inflammatory cytokines cause intestinal epithelial
apoptosis and the disruption of intestinal homeostasis, resulting in the dysfunction of the
intestinal epithelial barrier in IBD patients [55]. Currently, the suppression of inflammation
is the mainstay of IBD treatment.

Thymol shows strong anti-inflammatory properties in in vivo and in vitro studies [56].
The anti-inflammatory properties of thymol are listed in Table 2 and a schematic diagram of
thymol’s action is depicted in Figure 3. Toll-like receptors (TLRs) are the main sensors used
to detect various dangerous signals and activate innate immune responses. The classic TLR
signaling pathway activates NF-κB to regulate the expressions of a series of cytokines [57].
In mice and macrophages, thymol inhibits TLR4 expression and then inhibits the activation
of NF-κB signaling, which reduces the production of inflammatory cytokines, such as TNF-
α and IL-1β [58,59]. NF-κB is a master mediator of inflammatory responses. Inactive NF-κB
binds to IκB, an inhibitory subunit of NF-κB, and presents in the cytoplasm. When activated
by a variety of signals, such as cytokine receptors and pattern-recognition receptors (PRRs),
IκB is phosphorylated and degraded to release RelA (p65) from the NF-κB complex. p65
is then translocated to the nucleus to induce pro-inflammatory cytokine expression as a
transcription factor [60]. Thymol has been shown to inhibit NF-κB activation by reducing
p65 translocation and abundance in the colons of acetic acid-induced colitis rats and in
LPS-activated macrophages, respectively, with decreased cytokine production [61,62]. The
activation of NF-κB induces the expressions of iNOS and COX-2, which further promote
vigorous inflammation. In ulcerative colitis rats, thymol reduces the COX-2 expression
and nitric oxide (NO) levels produced by iNOS in the rats’ colon [63]. These studies
showed the anti-inflammatory function of thymol through the inhibition of the NF-κB
signaling pathway.

Table 2. Summary of the effect of thymol in different inflammation models.

Model Thymol Dose Effects Ref.
In vitro

Mouse macrophages challenged with LPS 20 mg/mL IL-1β expression↓ [59]
Mouse mammary epithelial cells
challenged with LPS 10–40 µg/mL TNF-α, IL-6, iNOS, and COX-2 expression↓

Phosphorylation of IκBα, NF-κBp65↓ [64]

Human peritoneal mesothelial cell
line challenged with LPS 10–40 µg/mL

TLR4 expression↓
NF-κB p65, IκK, and IκBα phosphorylation↓
TNF-α, IL-6 expression↓

[65]

IPEC-J2 cells challenged with LPS 10–100 µM IL-8 secretion↓ [66]
Chitin-induced airway epithelial cells 30 µg/mL TLR4 is inhibited

IL-25 and IL-33 release↓ [67]
HaCaT cells challenged with
Staphylococcus aureus 512 µg/mL IL-1β, IL-6, and IL-8 expression↓

Phosphorylation of p65 and IκBα↓ [68]

In vivo

DSS-induced mouse colitis 30–60 mg/kg diet NO, TNF-α, IL-1β, IL-6 expression↓
Phosphorylation of IκBα and NF-κBp65↓ [62]

Indomethacin-induced rat gastric ulcer 75–500 mg/kg diet TNF-α, iNOS levels↓ [17]

Indomethacin-induced rat gastric ulcer 50–500 mg/kg diet ROS, eNOS, TNF-α, caspase-3 levels↓
Prostaglandin E2 (PGE2) levels↑ [69]

Rat ulcerative colitis 100 mg/kg diet

COX-2, IL-6, IL-1β and TNF-α expression↓
mRNA level of NF-κB p65↓
Myeloperoxidase (MPO) activity, NO, and
malondialdehyde (MDA) level↓

[63]

Ovalbumin-induced rat allergic rhinitis 20 mg/kg diet Plasma IL-5, IL-13, IgE levels↓
TNF-α expression in the nasal mucosa of rats↓ [70]

Clostridium perfringens infection-induced
chicken necrotic enteritis 15–60 mg/kg diet TLR2 and TNF-α level in ileum↓ [18]

↑ indicates for rising; ↓ indicates for descending.
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Figure 3. Mechanism of thymol in relieving inflammation. Cells receive various stimuli and activate
IκB kinases (IκKs) through the TLR4 signaling pathway, and then IκB proteins are phosphorylated,
ubiquitinated, and degraded, and NF-κB dimers are released. The NF-κB dimer is then further
activated through various post-translational modifications and translocated into the nucleus to
bind to target genes to promote pro-inflammatory gene transcription. In addition, by activating
the MAPKs family, it can promote the expression of c-jun terminal kinases (JNK) 1/2, extracellular
signal-regulated kinase (ERK), and p38 for activation, thereby promoting the nuclear entry of acti-
vator protein 1 (AP-1) to regulate the expression of pro-inflammatory genes. Thymol inhibits the
dissociation of the IκB protein and NF-κB dimer and the activation of the mitogen-activated protein
kinase (MAPK) signaling pathway to relieve inflammation.

Studies have reported that proteins in the MAPK family, such as JNK1/2, p38α, and
ERK, are activated in the colonic mucosa of IBD patients [71]. The suppression of the
MAPK signaling pathway is an approach for alleviating inflammation and thus IBD [71].
It has been reported that thymol inhibits p38 phosphorylation and interferes with the
activation of the MAPK signaling pathway to maintain the immune balance [64]. Thymol
also suppresses LPS-induced activation of p-p38, p-JNK, and p-ERK, and correspondingly
inhibits the production of NO, IL-6, TNF-α, COX-2, and other inflammatory cytokines [72].
Therefore, thymol can also reduce the inflammatory response by inhibiting the MAPK
signaling pathway.

Cytokines are synthesized and secreted by activated immune cells, such as macrophages,
T cells, B cells, dendritic cells (DCs), and natural killer cells. Among them, the regulatory
T cell (Treg) is essential to control autoimmunity. Treg is defined by the expression of CD4,
CD25, and transcription factor forkhead box P3 (Foxp3) [73]. Thymol promotes the differen-
tiation of naïve T cells to CD4+CD25+Foxp3+ Treg cells and induces Foxp3 expression [74].
Meanwhile, thymol also maintains the balance of the Th1/Tregs and Th17/Tregs ratios to
prevent autoimmunity as a result of suppressed inflammation [74,75]. Additionally, thymol
exerts inhibitory effects on DCs’ maturation and T cell activation [76]. Although thymol
has influenced the immune cell population in some studies, more information is required
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on how thymol modulates immune cell differentiation and whether the changes in the
immune cell population by thymol contribute to the relief of IBD.

5. Thymol Improves Anti-Oxidant Capacity in IBD

IBD has been also associated with intestinal OS [77]. OS is the result of the excessive
accumulation of ROS caused by the imbalance of the oxidation and anti-oxidation systems
in cells [78]. Generally, ROS include hydrogen peroxide (H2O2), superoxide anions (O2

·−),
and hydroxyl radicals (HO·). The accumulation of ROS alters the structure and function
of cell contents, such as DNA and proteins, and causes a series of cellular dysfunctions,
including the disruption of cell metabolism, disruption of cell cycles, dysregulation of the
immune response, etc. In IBD patients, the overproduction of ROS destroys the cytoskeleton
and interrupts tight junction proteins in the intestinal epithelium, resulting in increased
epithelial permeability and intestinal barrier dysfunction [79]. In addition, OS has been
reported to be positively correlated with the level of inflammation [80], and OS in the GIT
exacerbates intestinal inflammation and IBD. Therefore, the relief of intestinal OS is another
strategy for treating IBD [81].

Thymol has been shown to have anti-oxidative capacity in a variety of OS models
in vitro and in vivo, as listed in Table 3. A schematic mechanism of thymol’s action is
depicted in Figure 4. Thymol acts as a strong anti-oxidant. partially due to its phenolic
hydroxyl groups, which directly neutralize free radicals [82]. 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) are commonly
used free radicals to evaluate anti-oxidant activity. Thymol eliminates 50% of DPPH
radicals and scavenges ABTS+ radicals as a direct anti-oxidant in vitro [83]. However,
other studies have indicated that phenolic compounds exert an anti-oxidative function
through the activation of anti-oxidation-related signaling pathways, rather than directly
neutralizing free radicals by the phenolic hydroxyl group [84]. Studies indicated that
dietary polyphenols activate the anti-oxidation-related nuclear factor-E2-related factor
2 (Nrf2) signaling pathway, which plays a pivotal role in regulating the expression of
anti-oxidant genes and the activities of anti-oxidant enzymes [85]. Studies have indicated
that thymol activates Nrf2 signaling in different tissues [86,87]. Importantly, the Nrf2
downstream target HO-1 catalyzes the degradation of heme into Fe2+, CO, and bilirubin.
Heme enhances ROS formation in OS, while bilirubin is an anti-oxidant and protects
tissues [88]. Thymol promotes HO-1 expression in the lungs of mice, accounting for its anti-
oxidative capacity [87]. Moreover, HO-1-induced CO also performs anti-inflammation and
anti-apoptosis functions, which support the mechanism of thymol alleviating inflammation
and intestinal damage.

Table 3. Anti-oxidant properties of thymol.

Model Thymol Dose Response Ref.

In vitro

Tert-butyl hydroperoxide-induced OS in
Chang cells 12.5–50 µg/mL ROS generation and MDA level↓

Glutathione (GSH) level↑ [89]

Radiation-induced cytotoxicity
in lung fibroblast (V79) cells 0–100 µg/mL

Radiation-induced lipid peroxidation↓
GSH, catalase (CAT), and superoxide dismutase
(SOD)↑

[90]

Chinese hamster lung fibroblast cells (V79) 0–100 µg/mL Radiation-induced genotoxicity and apoptosis↓ [91]
Candida albicans 5–20 µg/mL Activity of CAT, glutathione peroxidase (GPX)↑ [92]

in vivo

Imidacloprid-induced testicular toxicity 30 mg/kg diet CAT, SOD, and GSH↑
MDA↓ [93]

L-arginine-induced acute pancreatitis 50–100 mg/kg diet MPO and O2
·−↓ [94]
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Table 3. Cont.

High fat diet-induced obesity in mice 14 mg/kg diet SOD and CAT activity in serum↑
MDA level in serum↓ [95]

Ovalbumin-induced asthma in mice 8–32 mg/kg diet MDA level↓ [39]

Wistar rats 42.5 mg/kg diet
GSH-Px activity↑
Brain total anti-oxidant status↑
Proportions of docosahexaenoic acid (DHA)↑

[96]

Rats 10–20 mg/kg diet
MDA levels in testicles, liver, and kidney↓
Oxidative damage↓
Anti-oxidant levels and GSH levels↑

[97]

Cisplatin-induced nephrotoxicity in rats 20 mg/kg diet GSH, SOD, and CAT levels in kidney↑
Caspase-3 and MDA levels in kidney↓ [98]

↑ indicates for rising; ↓ indicates for descending.
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Figure 4. Mechanism of thymol scavenging free radicals. XO catalyzes the oxidation of xanthine
and hypoxanthine with increased production of O2

·− in purine metabolism or O2
·− is generated

in the mitochondrial inner membrane through the respiratory electron transport chain. The former
enters the peroxisome and the latter is catalyzed by SOD in the mitochondria to generate H2O2. CAT
and GPX in the peroxisome catalyze H2O2 to generate H2O and O2, and H2O2 in the cytoplasm is
affected by Fe2+ to generate OH·. Elevated levels of free radicals can lead to oxidative stress. Thymol
reduces ROS by directly scavenging free radicals, combining with XO, or increasing anti-oxidant
enzyme activity.

Nrf2 maintains the cellular redox balance and prevents oxidative damage by regulating
anti-oxidant enzymes, such as GSH and GPX. As a result, thymol increases the activities of
anti-oxidant enzymes to reduce ROS production. SOD reduces superoxide O2

·− radicals
by catalyzing them into O2 and H2O2. H2O2 is then transformed by either CAT or GPX in
the peroxisome to generate water and O2. Thymol enhances the activities of anti-oxidant
enzymes and alleviates OS in animal models of OS [89]. Thymol enhances the total anti-
oxidative capacity and reduces the ROS level in rats challenged with imidacloprid [93].
Thymol reduces the MDA level, a byproduct of lipid peroxidation and a marker of OS,
increases SOD activity, and ameliorates OS in mouse obesity models [95]. In in vitro studies,
thymol ameliorates acetaminophen-induced OS in HepG2 cells by increasing the GPX and
SOD activities and decreasing the MDA level [99]. In lung fibroblasts, thymol increases the
enzyme activities of SOD, CAT, and GPX, leading to a reduction in ROS production [90]. In
the Chang liver cell line, thymol inhibits ROS production by increasing the GPX level and
decreasing the MDA level, alleviating t-butyl-hydroperoxide-induced oxidative damage.
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In addition to the aforementioned anti-oxidant enzymes, thymol reduces OS through the
inhibition of free-radical-generating enzyme xanthine oxidase (XO) [100]. XO catalyzes the
oxidation of xanthine and hypoxanthine with increased production of O2

· − and H2O2 in
purine metabolism [101]. Thymol binds to XO directly and inhibits XO activity to produce
ROS [100]. Collectively, thymol relieves OS via directly scavenging free radicals by its
phenolic hydroxyl group, directly inhibiting free-radical-producing enzymes, and indirectly
activating the Nrf2-mediated signaling pathway.

6. Thymol Changes Gut Microbes and Prevents Pathogen Infection

Mammalian gut microbes are mainly composed of four phyla, including Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria. Alterations in the gut microbiota are
observed in patients with IBD compared with healthy individuals. Notably, the abun-
dance of the phylum Firmicutes is reduced in the stool of UC patients [102]. Although
there is a lack of clinical research about the thymol-modulated gut microbial structure in
IBD, multiple animal studies have described increases in the proportional abundance of
Firmicutes potentially against IBD pathogenesis due to thymol [103]. However, a direct
causative relationship between IBD and dysbiosis has not been clearly established in hu-
mans. The change in gut microbes by thymol as a therapeutical mechanism requires more
elucidative studies.

Currently, studies of the microbial etiology of IBD indicate that persistent pathogen
infection, such as enterotoxic E. coli, causes a “leaky gut” and chronic inflammation, sub-
sequently leading to the excessive translocation of intestinal bacteria and the dysbiosis
between “beneficial” and “detrimental” bacteria, resulting in IBD [104]. The members of the
Proteobacteria phylum, notably the Enterobacteriaceae E. coli, are increased in IBD patients
relative to healthy individuals [105]. Several studies have indicated the anti-pathogen ca-
pacity of thymol in different animal infection models and bacterial cultures, as illustrated in
Table 4, as the potential mechanism. Researchers found that thymol reduces the abundance
of the detrimental bacteria E. coli in the GIT of pigs [43]. In another study, feeding pigs with
microencapsulated thymol promoted the proliferation of beneficial bacteria in the colon
and decreased the colonization of detrimental bacteria, such as Escherichia, Campylobacter,
Treponema, and Streptococcus [106]. In chickens infected with C. perfringens, thymol inhib-
ited C. perfringens proliferation and then alleviated intestinal damage and mortality [50]. In
these studies, thymol also promoted the colonization of beneficial bacteria, such as Clostrid-
ium, Lactobacillus, and Bacteroides, to improve gut health. Additionally, thymol also
exhibited a direct anti-bacterial effect inhibiting human pathogens, such as E. coli, Listeria
monocytogenes, and C. perfringens, which are harmful to the body’s health [107–110].

Table 4. Thymol prevents pathogen infection.

Model Thymol Dose Effects Ref.

In vivo

Weaning pigs 2% thymol diet Colon probiotic bacteria↑
Potential pathogens↓ [106]

Cobb broilers 150 mg/kg diet
Clostridium, Bacteroides,
Lactobacillus↑
Proteobacteria↓

[111]

Pathogen culture medium

Ground chicken 100–200 ppm E. coli O157:H7↓ [108]

Meat medium 46.875–6000 µg/mL E. coli, Salmonella, and C.
perfringens↓ [107]

Apple cider and milk 0.5 g/L E. coli O157:H7 and L.
monocytogenes↓ [109]

Cattle waste 6.7 mM Fecal coliforms↓ [110]
↑ indicates for rising; ↓ indicates for descending.
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Overall, thyme exhibits therapeutic potential to treat IBD through multiple mecha-
nisms, including the intestinal barrier, inflammation, redox homeostasis, and gut microbiota.
The deregulation of any one aspect influences others, which also renders IBD a complex
and multifactor disease. As mentioned, a compromised gut barrier leads to the invasion of
pathogens, leading to an imbalance in the gut microbiota and the activation of an immune
response; uncontrolled inflammation causes enterocyte death and further aggravates in-
testine damage. Moreover, prolonged inflammation also leads to the accumulation of free
radicals and imbalance of redox homeostasis, which exacerbate inflammation. Therefore, it
is difficult to conclude which mechanism plays a pivotal role in mediating thymol action
unless a dedicated molecular mechanism is illustrated.

7. Conclusions

Multiple factors, including the environment, microorganisms, and genetics, interact
to promote the development and occurrence of IBD [112]. Environmental factors, such
as diet, which lead to gut microbiota dysbiosis, alter host mucosal defenses, and induce
intestinal OS, are deemed to be major potential risk factors for IBD [113]. Simultaneously,
diet is also a double-edged sword that is beneficial to the prevention and relief of IBD.
More recently, green tea polyphenols have been shown to benefit IBD patients by reversing
gut dysbiosis [114]. Therefore, nutritional intervention should be further promoted as a
low-cost, side-effect-free method for the prevention and treatment of IBD [115]. Thymol,
a natural product derived from medicinal plants or herbs, is commonly used as a dietary
supplement to prevent IBD by improving gut integrity, reducing gut OS, and modulating
gut immune responses. In addition, thymol maintains a good intestinal microenvironment
through its anti-bacterial properties. Currently, considering that the common drugs used for
IBD, such as corticosteroids, mesalazine, and balasaladin, have relatively large side effects,
herbal plant extracts, such as thymol, as natural anti-oxidants may represent promising
substances in the complementary therapy of IBD, with special emphasis on prevention.
However, there are still doubts regarding how thymol regulates mucosal immunity and the
mechanism of treating IBD by improving OS in the intestinal tract. Meanwhile, there have
been no clinical trials yet, so an effective method and dosage for people ingesting thymol
need to be further studied. In conclusion, considering the health benefits of thymol and its
non-toxicity, thymol is a potential drug and rational strategy for the relief of IBD.
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Activity, and Inhibition. J. Chem. 2015, 2015, 294858. [CrossRef]

102. Rehman, A.; Rausch, P.; Wang, J.; Skieceviciene, J.; Kiudelis, G.; Bhagalia, K.; Amarapurkar, D.; Kupcinskas, L.; Schreiber, S.;
Rosenstiel, P.; et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 2016, 65,
238–248. [CrossRef] [PubMed]

103. Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol.
2017, 14, 573–584. [CrossRef] [PubMed]

http://doi.org/10.1155/2017/4535194
http://www.ncbi.nlm.nih.gov/pubmed/28744337
http://doi.org/10.1155/2016/4350965
http://www.ncbi.nlm.nih.gov/pubmed/26998193
http://doi.org/10.1016/j.cub.2014.03.034
http://www.ncbi.nlm.nih.gov/pubmed/24845678
http://doi.org/10.1016/j.animal.2022.100557
http://doi.org/10.1016/j.arcmed.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20637373
http://doi.org/10.1080/0972060X.2014.971069
http://doi.org/10.1016/j.jfda.2016.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28911561
http://doi.org/10.3945/jn.110.131490
http://doi.org/10.1016/j.abb.2015.11.014
http://doi.org/10.1007/s11011-016-9921-z
http://doi.org/10.1016/j.micpath.2017.12.065
http://doi.org/10.1016/j.freeradbiomed.2004.11.002
http://doi.org/10.1016/j.toxicon.2011.03.021
http://doi.org/10.1016/j.mrgentox.2009.09.010
http://doi.org/10.1177/1534735410387421
http://www.ncbi.nlm.nih.gov/pubmed/21147817
http://doi.org/10.1016/j.micpath.2015.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25681060
http://doi.org/10.1016/j.ecoenv.2021.112435
http://www.ncbi.nlm.nih.gov/pubmed/34171690
http://doi.org/10.1016/j.lfs.2021.119704
http://doi.org/10.3109/15376516.2013.861888
http://doi.org/10.1017/S000711450000012X
http://doi.org/10.1080/13813455.2018.1476979
http://doi.org/10.1177/0960327115627688
http://doi.org/10.1016/j.ijbiomac.2018.08.018
http://doi.org/10.1155/2015/294858
http://doi.org/10.1136/gutjnl-2014-308341
http://www.ncbi.nlm.nih.gov/pubmed/25567118
http://doi.org/10.1038/nrgastro.2017.88
http://www.ncbi.nlm.nih.gov/pubmed/28743984


Antioxidants 2022, 11, 1947 15 of 15

104. Liu, S.; Zhao, W.; Lan, P.; Mou, X. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy. Protein Cell
2021, 12, 331–345. [CrossRef]

105. Manichanh, C.; Rigottier-Gois, L.; Bonnaud, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.; Chardon, P.; Marteau, P.;
et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 55, 205–211.
[CrossRef] [PubMed]

106. Mo, K.; Li, J.; Liu, F.; Xu, Y.; Huang, X.; Ni, H. Superiority of Microencapsulated Essential Oils Compared With Common
Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Front. Nutr. 2021, 8, 808106.
[CrossRef]

107. Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler
chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 58. [CrossRef]

108. Chien, S.Y.; Sheen, S.; Sommers, C.H.; Sheen, L.Y. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and
Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol. Front. Microbiol. 2016, 7, 920. [CrossRef]

109. Shah, B.; Davidson, P.M.; Zhong, Q. Nanocapsular dispersion of thymol for enhanced dispersibility and increased antimicrobial
effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in model food systems. Appl. Environ. Microbiol. 2012,
78, 8448–8453. [CrossRef]

110. Varel, V.H.; Miller, D.N. Plant-derived oils reduce pathogens and gaseous emissions from stored cattle waste. Appl. Environ.
Microbiol. 2001, 67, 1366–1370. [CrossRef]

111. Qiao, J.; Shang, Z.; Liu, X.; Wang, K.; Wu, Z.; Wei, Q.; Li, H. Regulatory Effects of Combined Dietary Supplementation With
Essential Oils and Organic Acids on Microbial Communities of Cobb Broilers. Front. Microbiol. 2021, 12, 814626. [CrossRef]
[PubMed]

112. Ananthakrishnan, A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205–217. [CrossRef]
[PubMed]

113. Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for In-
flammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019, 157, 647–659.e644. [CrossRef]
[PubMed]

114. Wu, Z.; Huang, S.; Li, T.; Li, N.; Han, D.; Zhang, B.; Xu, Z.Z.; Zhang, S.; Pang, J.; Wang, S.; et al. Gut microbiota from green tea
polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021, 9, 184.
[CrossRef]

115. Green, N.; Miller, T.; Suskind, D.; Lee, D. A Review of Dietary Therapy for IBD and a Vision for the Future. Nutrients 2019, 11, 947.
[CrossRef]

http://doi.org/10.1007/s13238-020-00745-3
http://doi.org/10.1136/gut.2005.073817
http://www.ncbi.nlm.nih.gov/pubmed/16188921
http://doi.org/10.3389/fnut.2021.808106
http://doi.org/10.1186/s40104-015-0055-7
http://doi.org/10.3389/fmicb.2016.00920
http://doi.org/10.1128/AEM.02225-12
http://doi.org/10.1128/AEM.67.3.1366-1370.2001
http://doi.org/10.3389/fmicb.2021.814626
http://www.ncbi.nlm.nih.gov/pubmed/35046927
http://doi.org/10.1038/nrgastro.2015.34
http://www.ncbi.nlm.nih.gov/pubmed/25732745
http://doi.org/10.1053/j.gastro.2019.04.016
http://www.ncbi.nlm.nih.gov/pubmed/31014995
http://doi.org/10.1186/s40168-021-01115-9
http://doi.org/10.3390/nu11050947

	Introduction 
	Pharmacokinetics and Pharmacological Properties of Thymol 
	Thymol Protects Intestinal Barrier Function against IBD 
	Thymol Alleviates Intestinal Inflammation in IBD 
	Thymol Improves Anti-Oxidant Capacity in IBD 
	Thymol Changes Gut Microbes and Prevents Pathogen Infection 
	Conclusions 
	References

