
����������
�������

Citation: Valls-Bellés, V.; Abad, C.;

Hernández-Aguilar, M.T.; Nacher, A.;

Guerrero, C.; Baliño, P.; Romero, F.J.;

Muriach, M. Human Milk

Antioxidative Modifications in

Mastitis. Further Beneficial Effects of

Cranberry Supplementation.

Antioxidants 2022, 11, 51. https://

doi.org/10.3390/antiox11010051

Academic Editors: Soliman Khatib

and Dana Atrahimovich Blatt

Received: 1 December 2021

Accepted: 16 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Article

Human Milk Antioxidative Modifications in Mastitis. Further
Beneficial Effects of Cranberry Supplementation
Victoria Valls-Bellés 1, Cristina Abad 1, María Teresa Hernández-Aguilar 1, Amalia Nacher 1, Carlos Guerrero 1 ,
Pablo Baliño 1, Francisco J. Romero 2,* and María Muriach 1,*

1 Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I,
12071 Castellon de la Plana, Spain; vallsv@uji.es (V.V.-B.); cristina.abad@cofcastellon.org (C.A.);
lactancia_peset@gva.es (M.T.H.-A.); nacher_ama@gva.es (A.N.); cguerrer@uji.es (C.G.); balino@uji.es (P.B.)

2 Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain
* Correspondence: romero_fragom@gva.es (F.J.R.); muriach@uji.es (M.M.)

Abstract: Mastitis is the inflammation of one or several mammal lobes which can be accompanied by a
mammary gland infection, and is the leading cause of undesired early weaning in humans. However,
little information exists regarding the changes that this disease may induce in the biochemical
composition of human milk, especially in terms of oxidative status. Given that newborns are
subject to a significant increase in total ROS burden in their transition to neonatal life and that
their antioxidant defense system is not completely developed, the aim of this study was to evaluate
antioxidant defense (glutathione peroxidase (GPx), reduced glutathione (GSH), total polyphenol
content (TPP), and total antioxidant capacity (TAC)) in milk samples from mothers suffering from
mastitis and controls. We also measured the oxidative damage to lipids (malondyaldehyde (MDA))
and proteins (carbonyl group content (CGC)) in these samples. Finally, we tested whether dietary
supplementation with cranberries (a product rich in antioxidants) in these breastfeeding mothers
during 21 days could improve the oxidative status of milk. GPx activity, TPP, and TAC were increased
in milk samples from mastitis-affected women, providing a protective mechanism to the newborn
drinking mastitis milk. MDA concentrations were diminished in the mastitis group, confirming this
proposal. Some oxidative damage might occur in the mammary gland since the CGC was increased
in mastitis milk. Cranberries supplementation seems to strengthen the antioxidant system, further
improving the antioxidative state of milk.

Keywords: mastitis; human milk; oxidative status; cranberry

1. Introduction

Human milk is characterized by a huge variability in its composition, as it includes
nutrients as well as bioactive compounds and a vast array of microbes known as the
human milk microbiota. As the neonatal immune system develops, this milk variability
and composition provides the infant with well-balanced nutrition and protection against
potential infectious pathogens [1,2]. The World Health Organization (WHO) recommends
that infants be exclusively breastfed for the first six months of life for optimal growth,
development, and health, and that breastfeeding continues to be an important part of the
diet until the infant is at least two years old [3].

With regard to bioactive compounds, the antioxidant content of breast milk has been
the subject of a number of studies, confirming the presence of different components that
have been reported to modulate the effects of oxidative stress [4–10]. Birth represents a
significant oxidative challenge because it involves the transition from the relatively hypoxic
intrauterine conditions to the oxygen-rich extrauterine environment. Thus, newborns
are subject to a significant increase in total ROS burden in their transition to neonatal
life [11,12].
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This situation is especially relevant in premature newborns due to their undeveloped
antioxidant defense system [13,14]. Moreover, increasing evidence also indicates that some
pathological conditions appearing in adulthood (such as type 2 diabetes, hypertension,
obesity, and others) associated with oxidative stress may have their origin in the fetal or
neonatal period of life [15–17].

Mastitis is the inflammation of one or several mammal lobes which can be accompa-
nied by a mammary gland infection, and is the leading cause of unwelcome early human
weaning. The primary origin of mastitis is milk stasis [18], and its incidence varies from 2%
to 33% according to different authors, being more frequent during the early postpartum
weeks. Infective mastitis is usually associated with the growth of certain species of staphy-
lococci, streptococci, and/or corynebacteriae in the milk [19,20]. Treatment traditionally
consists of antibiotic therapy, analgesic medication, and proper milk removal [21]. How-
ever, the WHO has highlighted significant concerns regarding the adverse side effects of
antibiotics due to the emergence of antibiotic-resistant strains of microorganisms. In this
context, more recently specific probiotic bacteria have been postulated to prevent mastitis
due to their anti-inflammatory and immunomodulatory properties [22].

In fact, almost all of our knowledge regarding the biology of human mastitis is extrapo-
lated from bovine or goat studies [23]. The group of Gelasakis and colleagues demonstrated
lower fat and lactose content in milk from goats with subclinical mastitis, together with a
mild increase in protein content [24]. Similar results were obtained by Sun et al. in bovine
mastitis [25]. Furthermore, it has been reported that subclinical mastitis in goats upreg-
ulates nitric oxide-derived oxidative stress and reduces milk antioxidant properties [26].
However, it is noteworthy that two recent studies also described the effect of lactational
mastitis on the macronutrient content of human breast milk [27,28] in accordance with the
above-mentioned results reported in bovine and goats. In addition, Perez et al. reported
that mastitis modifies the biogenic amine profile of human milk [29]. Interestingly, it has
been described that human mastitis milk has the same anti-inflammatory components
and characteristics of normal milk, with elevations in selected components/activities (not
including antioxidant activity in terms of spontaneous cytochrome c reducing activity)
that may help protect the nursing infant from developing clinical illness due to feeding
on mastitis milk [30]. This work aims to study oxidative status in milk from mothers with
mastitis. Moreover, we extended the present investigation to study whether dietary sup-
plementation with cranberries (Vaccinium sp.) a product known to be rich in antioxidants,
could improve oxidative status in human milk [31,32].

2. Materials and Methods
2.1. Experimental Design

In total, 60 non-smoking lactating mothers who had delivered to term and breastfed
their babies starting from the first day postpartum were included in the study. The study
was approved by the Research Ethics Committees from both, Hospital General Universitario
from Castellón (4/2015) and Hospital Universitario Dr. Peset from Valencia (23/16). All
the participants were fully informed of the procedure and gave their written consent
to participate. They were also allowed to withdraw from the study at will. Of these
mothers, 30 were healthy lactating mothers and the other 30 referred to symptoms of
mastitis which included breast swelling and redness together with pain or a burning
sensation continuously or while breast-feeding. No fever or abscess were present in
any case. The microbiological culture confirmed the bacterial infection in all cases, and
therefore all subjects in the mastitis group received antibiotic treatment during the study.
A total of 15 subjects from each group accepted dietary supplementation with cranberries
(20 g/day) for 21 days. Thus, subjects were finally assigned to 4 groups (n = 15): control
(C), control + cranberries (C + C), mastitis (M), and mastitis + cranberries (M + C).

Vaccinium berry fruits are widely known for their health benefits. These particular,
berry species present high concentrations of antioxidants, including phenolic compounds,
and the presence of specific, particularly potent polyphenolic compounds [31,32].
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Two samples of mature milk were obtained from each mother, with one taken at
the beginning of the study and another after 21 days. Prior to sampling, all donors gave
informed consent regarding participation in the study and completed a questionnaire on
nutritional habits, with the purpose of confirming the homogeneity of the population.
Furthermore, the demographic characteristics of the subjects were recorded, and dietary
intake was assessed using 24 h recall. This dietary assessment was performed over 3 days
(1 holiday and 2 working days). The food ingested on the different days was processed
by the “Alimentador” software of the Sociedad Española de Dietética y Ciencias de la
Alimentación (SEDCA).

2.2. Collection of Samples

Approximately 10 mL of mature milk was collected prior to feeding of the nursing
infant using an electric breast pump fitted with a vacuum regulator (MEDELA) connected
to polypropylene containers in which the samples were collected directly. After milk ex-
traction, the samples were immediately transported to liquid N2 storage in dark conditions
to avoid oxidative processes. The samples were subsequently divided into 4 aliquots and
frozen at −80 ◦C.

2.3. Methods

The oxidative status of human milk samples was assessed in this study. For this
purpose, on one hand the total antioxidant capacity (TAC), glutathione peroxidase (GPx)
activity, reduced glutathione (GSH) concentration, and total polyphenol content (TPP)
values were measured. On the other hand, oxidative damage to macromolecules was
assessed by measuring malondialdehyde (MDA) as a lipid peroxidation product and
carbonyl group content (CGC) as a marker of oxidative damage to proteins.

2.4. TAC Determination

The ABTS assay to determine TAC was modeled after the method proposed by Miller
and Rice Evans [33] and modified by Re et al. [34]. Briefly, the assay is based on the oxida-
tion of ABTS by potassium persulphate to form the radical monocation ABTS•+, which is
reduced in the presence of hydrogen-donating antioxidants. The reagent ABTS•+ was gener-
ated by exposing a 7 mM solution of ABTS to a solution of 2.45 mM potassium persulphate
at a 1:1 ratio. The assay included 2.970 mL of ABTS•+ and 30µL of plasma. Antioxidant
activity was determined by measuring the decolorization of the ABTS•+ (reduction of the
radical cation) through the absorbance at 734 nm.

2.5. Assay of GPx Activity

Glutathione peroxidase activity, which catalyzes the oxidation by H2O2 of GSH to its
disulfide (GSSG), was assayed spectrophotometrically as reported by Lawrence et al. [35]
by monitoring the oxidation of NADPH at 340 nm. The reaction mixture consisted of
240 mU/mL of GSH disulfide reductase, 1 mM GSH, and 0.15 mM NADPH in 0.1 M
potassium phosphate buffer at pH 7.0 containing 1 mM EDTA and 1 mM sodium azide. A
50 µL sample was added to this mixture and allowed to equilibrate at 37 ◦C for 3 min. The
reaction was started by the addition of hydrogen peroxide to adjust the final volume of the
assay mixture to 1 mL.

2.6. Assay of GSH Concentration

GSH concentration was quantified following the method of Reed et al. [36] based on
the reaction of iodoacetic acid with the thiol groups followed by a chromophore deriva-
tization of the amino groups with Sanger reactant (1-fluoro-2,4-dinitrobencene), giving
rise to derivatives which are quickly separated by means of high-performance liquid
chromatography (HPLC).



Antioxidants 2022, 11, 51 4 of 12

2.7. TPP Determination

To measure the total content of polyphenols in breast milk, the method of Folin
Ciocalteu was used [37]. This method is based on the oxidation of polyphenols with the
Folin reagent. When milk is mixed with the reagent, the formation of a blue complex
is achieved, for which absorbance is measured at 750 nm. Briefly, milk samples were
centrifuged at 12,000× g for 5 min. Then, 500 µL of supernatant was taken and 100 µL
of 1.32 M metaphosphoric acid was added for protein precipitation. The mixture was
centrifuged at 2700 rpm for 3 min, and the supernatant was collected. Then, 20 µL of the
supernatant, 80 µL of distilled water, and 500 µL of reagent were mixed. Subsequently,
400 µL of 7.5% sodium carbonate was added and measured at 750 nm, using gallic acid
as standard.

2.8. Assay of MDA Concentration

MDA concentration was measured by liquid chromatography according to a modifica-
tion [38] of the original method of Richard et al. [39]. Briefly, 0.1 mL of sample (or standard
solutions prepared daily from 1,1,3,3-tetramethoxypropane) and 0.75 mL of working solu-
tion (thiobarbituric acid 0.37% and perchloric acid 6.4%; 2:1, v/v) were mixed and heated
to 95 ◦C for 1 h. After cooling for 10 min in an ice water bath, the flocculent precipitate was
removed by centrifugation at 3200× g for 10 min. The supernatant was neutralized and
filtered (0.22 µm) prior to injection on an ODS 5 µm column (250 × 4.6 mm). The mobile
phase consisted of 50 mM phosphate buffer (pH 6.0): methanol (58:42, v/v). Isocratic
separation was performed with 1.0 mL/min flow and detection at 532 nm.

2.9. Quantification of CGC

Carbonyl groups were determined to evaluate protein oxidation in milk samples. The
CGC released during incubation with 2,4-dinitrophenylhydrazine was measured using the
method reported by Levine et al. [40]. Briefly, the samples were centrifuged at 13,000× g
for 10 min. Then, 20 mL of brain homogenate was placed in a 1.5 mL Eppendorf tube, and
400 mL of 10 mM 2,4 dinitrophenylhydrazine/2.5 M hydrochloric acid (HCl) and 400 mL
of 2.5 M HCl were added. This mixture was incubated for 1 h at room temperature. Protein
precipitation was performed using 1 mL of 100% TCA, and the mixture was washed twice
with ethanol/ethyl acetate (1/1, v/v) and centrifuged at 12,600× g for 3 min. Finally, 1.5 mL
of 6 N guanidine (pH 2.3) was added and the samples were incubated in a 37 ◦C water bath
for 30 min and centrifuged at 12,600× g for 3 min. The carbonyl content was calculated
from peak absorption (373 nm) using an absorption coefficient of 22,000 M−1 cm−1 and
was expressed as nmol/mg protein.

2.10. Protein Concentration Measurement

Protein content was determined using Bradford method.

2.11. Statistical Analysis

The statistical analyses were performed using SPSS 24 (IBM SPSS, Chicago, IL, USA).
The Kolmogorov test was used to check the normal distribution of each population
(p > 0.100) to analyze the data based on parametric analysis of variance (ANOVA).

Generally, multifactorial ANOVA is applied to analyze the differences between data
groups (in this case for example according to the influence of the cranberry supplement
and considering time as a second factor). However, given that the “time” factor includes
only two measurements, we finally decided to use 1-way ANOVA using the factor of
“treatment”, with the studied variable being the difference in the results for each parameter
measured at the beginning and the end of the study. Statistical significance was considered
at p < 0.05. Significant differences in each sampling group were assessed using the least
significant difference (LSD) procedure.
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3. Results

The obtained anthropometric measurements and dietetic assessment results are listed
in Table 1. There were no differences in age, weight, height, and BMI among the different
groups in the study. Significant differences were not found in terms of macronutrient and
micronutrient intakes among the four groups.

Table 1. Anthropometric measurements and dietetic assessment (daily average).

C C + C M M + C

Age 36.5 ± 4.1 33.8 ± 3.7 33.7 ± 3.9 36.4 ± 3.3
Weight (kg) 60.6 ± 7.2 64.6 ± 8.8 66.2 ± 10.5 63.9 ± 10.5
Height (cm) 164.6 ± 4.7 165.5 ± 6.2 163.2 ± 4.8 164.6 ± 6.7

BMI 22.3 ± 2.5 23.6 ± 2.6 24.8 ± 3.9 23.6 ± 4
Kcal 1595 ± 394 1510 ± 265 1659 ± 248 1631 ± 428

Carbohydrates (g) 166.2 ± 54.5 167.8 ± 48 191.2 ± 44.7 188.6 ± 40
Proteins (g) 73.8 ± 15.9 71.6 ± 16 82.7 ± 12.5 80.8 ± 19.6

Fat (g) 77.6 ± 23 67 ± 11.2 68.9 ± 16.7 68.2 ± 30.1
Cholesterol (mg) 227.5 ± 76.3 238.7 ± 109.2 249.7 ± 90.6 231.8 ± 86.1

Fiber (g) 12.4 ± 6 9.5 ± 3.5 14.6 ± 7.5 11.5 ± 5.6
C: Control group; C + C: Control group supplemented with Cranberries; M: Mastitis group; M + C: Mastitis group
supplemented with Cranberries. BMI: Body Mass Index. The results are expressed as mean ± standard deviation.

Regarding the oxidative status of human milk, TAC was higher at the beginning of the
study in milk from the mastitis group than in control milk. Twenty-one days later the values
for this parameter were similar to those of the control. When the TAC evolution in every
group throughout the study was analyzed, a significant decrease in TAC in milk samples
from the mastitis group was observed when compared to the control group (Figure 1b).
Furthermore, Figure 1b shows that cranberry intake significantly increased TAC in control
and mastitis milk samples.
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Figure 1. (a) Total antioxidant capacity of human milk of Control and Mastitis groups (p < 0.05 vs. C). (b)
Variation of total antioxidant capacity of human milk along the study of Control, Control + Cranberries,
Mastitis and Mastitis + Cranberries groups. Control (C), Control + Cranberries (C + C), Mastitis (M) and
Mastitis + Cranberries (M + C). * p < 0.05 vs. M and M + C, ** p < 0.05 vs. rest of groups.

An increase in TPP content in mastitis samples at the beginning of the study was
observed (Figure 2a). Similar to what occurs to TAC, TPP content normalized after 21 days.
Cranberry intake increased TPP content in milk samples during the study, although this
was significant only in the mastitis group (Figure 2b).
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The GSH concentration of milk was not significantly affected by mastitis (Figure 3a).
In contrast, GPx activity was increased in the milk of the mastitis group as compared to
the control at the beginning of the study (Figure 3c), but again normalized 21 days later.
No significant changes were observed in the evolution of this parameter in any group over
the 21 days of the study. Cranberry intake had no effect on GSH concentrations nor GPx
activity (Figure 3b,d, respectively).
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Greater oxidative damage to proteins was observed in mastitis milk samples as com-
pared to the control at the beginning of the study (Figure 4a). However, this difference
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was not statistically significant in the samples obtained after 21 days. Nor were signifi-
cant differences observed in the evolution of this parameter within groups throughout
the study (Figure 4b). Contrary to the findings of CGC, MDA concentration in milk was
significantly lower in the mastitis group at the beginning of the study as compared to the
control (Figure 4c). Similar to CGC, after 21 days MDA concentration was normalized.
Figure 4d shows that MDA concentrations were not affected by cranberry intake.
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groups (p < 0.05 vs. C). (d) Variation of MDA concentration of human milk along the study of Control,
Control + Cranberries, Mastitis and Mastitis + Cranberries groups. Control (C), Control + Cranberries
(C + C), Mastitis (M) and Mastitis + Cranberries (M + C). * p < 0.05 vs. C.

4. Discussion

In recent decades there have been significant lifestyle changes in the human pop-
ulation, with a tendency towards an increased consumption of processed foods and a
consequent rearrangement of dietary patterns [41,42]. The results from the present study
demonstrate insufficient nutrient intake in the study population with respect to WHO
recommendations [3], i.e., daily fruit and vegetables, as well as carbohydrate intakes were
below those recommended by WHO, whereas fat and protein consumption was above
WHO recommendations [3].

It has been widely reported that breast milk has a powerful and essential antioxidant
composition, which is related to the combination of both exogenous and endogenous
molecules including, among others, enzymes, vitamins, protein components and deriva-
tives, oligoelements, carotenoids, and polypohenols [7,17]. Mastitis is associated with
inflammatory processes and innate immune cell recruitment and activation, which in turn
results in the release of proinflammatory cytokines [43]. Although leukocyte recruitment
can also increase the local free radical production to unbalanced levels, thus compromis-
ing the oxidative status of milk, as has been previously described in cows, goats, and
sheep [44–46], it is not clear whether the anti-inflammatory content of human milk in
mastitis affected women, provides an extra protection against these changes [30]; these
authors proposed that the increased contents of selected components in womens’ mastitis
milk (e.g., TNFa or IL-1RA) might help protect the nursing infant from clinical illness due
to feeding on mastitis milk [30].

To the best of our knowledge our study shows for the first time that total antioxidant
capacity (TAC) was increased (Figure 1), along with GPx activity and TPP content in
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milk samples from women suffering from mastitis when compared to the control group
(Figures 2 and 3a,b). These results may be explained as a compensatory adaptation to
oxidative stress that has previously been described in other pathological conditions, in
which the antioxidative response is stimulated to reduce the oxidant content and reestablish
the redox balance [47,48], or a breast-specific mechanism that increases permeability of
the mammary gland for certain components. Regarding the GPx increase, it has been
previously reported that lactoferrin (LF) concentration is increased in human breast milk
during mastitis [27,49]. This protein is known to upregulate the expression of GPx [50]
and to enhance its activity [51]. On the other hand, recent studies have demonstrated
that mastitis is associated with an increase in milk selenium (Se) concentrations [27];
selenocysteine is present in the active site of GPx [52]. Therefore, the increase in milk Se
concentration could certainly contribute to the enhanced GPx activity in milk from the
mastitis group as compared to the control.

Polyphenols are present in human milk, of which flavonoids represent the largest
subgroup [53]. Li et al. compared polyphenol content in human breast milk with that in
formula [54]. However, as mentioned above, at present there are no studies addressing the
effect of mastitis on human milk TPP content.

In contrast to the findings on GPx activity and TPP content, no increase in GSH
concentration was observed in milk from the mastitis group (Figure 3c,d), in agreement
with former results in bovine milk [44]; although these authors reported a decrease of
TAC in bovine milk. Furthermore, Dimri et al. also described a decrease in milk TAC
together with lower GPx activity in buffaloes [55]. These discordances may be due to
interspecies differences.

Interestingly, 21 days after mastitis onset, values for all the parameters studied re-
turned to normal, probably due to the effect of antibiotics. Moreover, 21 days cranberry
supplementation increased TTP content in milk samples from both the control and mastitis
group (Figure 2), since cranberries are fruits that are especially rich in polyphenols [56].
Other authors have previously demonstrated that dietary supplementation with foods rich
in these compounds are able to increase the quantities of flavonoids in human milk [57,58].
Similar results were obtained for TAC in milk after supplementation with cranberries
(Figure 1). Other studies in animal models of mastitis have also focused on the role of
natural antioxidants such as vitamin E or ginsenoside Rg1 in protecting the oxidative status
of milk [55,59], although no studies are available on human milk.

With regard to oxidative damage to macromolecules, there are no reports at present
showing the effects of mastitis in terms of oxidative damage to proteins. We have demon-
strated that mastitis induces oxidative damage to milk proteins (Figure 4). This result
is consistent with the increase in mastitis milk protein content reported by Samuel and
cols. [27]. In contrast to the observed oxidative damage to proteins, lipid peroxidation
(MDA concentration) was diminished in milk from the mastitis group when compared to
the control (Figure 4a,b). This is a surprising result, given that lipids are more sensitive to
oxidative damage than proteins. In this respect, it is noteworthy that Say et al. recently evi-
denced that lactational mastitis is associated with lower breast milk fat [28], and therefore it
is possible that the decrease in MDA concentration in the mastitis group was due, at least in
part, to the diminished fat content. Furthermore, as mentioned above, recent studies have
reported that mastitis increases LF concentrations [27,50]. LF sequesters Fe3+, preventing
the formation of hydroxyl radicals via the Fenton reaction, and in turn prevents lipid
peroxidation [51,60]. Therefore, the increase in LF content in milk could also contribute to
the decrease in MDA concentration observed in the mastitis group (Figure 4a,b). Again,
these consequences of mastitis could be specific to lactating human females, since lipid
peroxidation products are increased in milk samples from rats or cows with mastitis [61,62].

Both CGC and MDA concentrations normalized at the end of the study, after antimi-
crobial therapy (Figure 4), which probably reduces the macronutrient content impairment
described previously [27,28]. It is remarkable that cranberry supplementation had no effect
on these oxidative damage parameters (Figure 4), probably because cranberries are able
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to attenuate the oxidative insult by increasing overall antioxidant defense. Many studies
have assayed therapies with antioxidants in different animal models to prevent the effects
of mastitis on the oxidative status of milk [55,59,63]. The results have been mainly success-
ful, but some controversial results have also been reported regarding the use of several
antioxidants such as vitamin E [64,65]. However, at present there are no studies reporting
on the antioxidative status of milk from women with mastitis or the effects of antioxidant
supplementation on this status in human milk.

In conclusion, during mastitis there is a compensatory mechanism in human milk
in which antioxidant defenses are increased, providing the nursing infant with further
protection while feeding on mastitis milk. In addition, the use of cranberries as supplement
for antibiotic therapy seems to strengthen the antioxidant system of milk.
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